Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Pain and swelling in the joints, increased synovial thickness, and bone and cartilage degeneration are all symptoms of Rheumatoid Arthritis (RA). Anti-rheumatic medications, which are used in conventional treatment plans for RA, need high doses, frequent administration, and long-term use, all of which increase the risk of major adverse effects and low patient compliance. Drug Delivery Systems (DDS) have been developed for RA treatment in an effort to avoid these obstacles and improve clinical efficacy. There have been many successful experimental RA models using these techniques. There has been a notable uptick in the study of RA nanotherapies as a prospective improvement over conventional systemic therapy. In order to overcome the limits of traditional treatments, researchers have begun looking into nanotherapeutic approaches, notably drug-delivery nanosystems. The precise delivery and concentration of therapeutic drugs in the affected regions are made possible by the passive or active targeting of systemic administration. Several new DDS for treating RA have been addressed here. Therefore, nanoscale drug delivery devices increase drug solubility and bioavailability while decreasing the need for higher doses.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010306005240605072550
2024-06-20
2025-10-08
Loading full text...

Full text loading...

References

  1. LiuY. JinJ. XuH. WangC. YangY. ZhaoY. HanH. HouT. YangG. ZhangL. WangY. ZhangW. LiangQ. Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy.Acta Biomater.202112154155310.1016/j.actbio.2020.11.027 33227489
    [Google Scholar]
  2. SharmaA. GoelA. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products.Mol. Biol. Rep.20235054687470610.1007/s11033‑023‑08406‑4 37022525
    [Google Scholar]
  3. GargA. GargR. The Research Trends and Scientometric Assessment of Rheumatoid Arthritis in India During 2016-2021.Curr. Rheumatol. Rev.2023191263510.2174/1573397118666220804162313 35927825
    [Google Scholar]
  4. XiaoS. TangY. LvZ. LinY. ChenL. Nanomedicine – advantages for their use in rheumatoid arthritis theranostics.J. Control. Release201931630231610.1016/j.jconrel.2019.11.008 31715278
    [Google Scholar]
  5. DolatiS. SadreddiniS. RostamzadehD. AhmadiM. Jadidi-NiaraghF. YousefiM. Utilization of nanoparticle technology in rheumatoid arthritis treatment.Biomed. Pharmacother.201680304110.1016/j.biopha.2016.03.004 27133037
    [Google Scholar]
  6. SimonsG. CaplanJ. DiSantostefanoR.L. VeldwijkJ. EnglbrechtM. BywallK.S. KihlbomU. RazaK. FalaheeM. Systematic review of quantitative preference studies of treatments for rheumatoid arthritis among patients and at-risk populations.Arthritis Res. Ther.20222415510.1186/s13075‑021‑02707‑4 35193653
    [Google Scholar]
  7. ShenQ. DuY. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis.Int. J. Pharm.202363512269810.1016/j.ijpharm.2023.122698 36754181
    [Google Scholar]
  8. GuptaR. GuptaJ. KumarD. Alternative Approaches for Rheumatoid Arthritis Management: Future Perspective, Herbal, Dietary, Lifestyle, Psychological, Nutritional Intervention and Healthcare.J. Pharm. Res. Int.20213334236310.9734/jpri/2021/v33i54A33756
    [Google Scholar]
  9. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for treatment of rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.686155 34305919
    [Google Scholar]
  10. RaduA.F. BungauS.G. Management of rheumatoid arthritis: an overview.Cells20211011285710.3390/cells10112857 34831081
    [Google Scholar]
  11. SantD. RojekarS. GeraS. PallapatiA.R. Gimenez-RoigJ. KuoT.C. PadillaA. KorkmazF. CullenL. ChatterjeeJ. ShellyE. MeseckM. MiyashitaS. MacdonaldA. SultanaF. BarakO. RyuV. KimS.M. RobinsonC. RosenC.J. CaminisJ. LiznevaD. HaiderS. YuenT. ZaidiM. Optimizing a therapeutic humanized follicle‐stimulating hormone–blocking antibody formulation by protein thermal shift assay.Ann. N. Y. Acad. Sci.202315211677810.1111/nyas.14952 36628526
    [Google Scholar]
  12. ZaidiM. KimS-M. MathewM. KorkmazF. SultanaF. MiyashitaS. Bone circuitry and interorgan skeletal crosstalk.eLife202312e8314210.7554/eLife.83142
    [Google Scholar]
  13. GholapA.D. RojekarS. KapareH.S. VishwakarmaN. RaikwarS. GarkalA. MehtaT.A. JadhavH. PrajapatiM.K. AnnapureU. Chitosan scaffolds: Expanding horizons in biomedical applications.Carbohydr. Polym.202432312139410.1016/j.carbpol.2023.121394 37940287
    [Google Scholar]
  14. DamiriF. GowdaB.H.J. AndraS. BaluS. RojekarS. BerradaM. Chitosan Nanocomposites as Scaffolds for Bone Tissue Regeneration BT - Chitosan Nanocomposites: Bionanomechanical Applications.SingaporeSpringer Nature Singapore2023377394
    [Google Scholar]
  15. CroiaC. BursiR. SuteraD. PetrelliF. AlunnoA. PuxedduI. One year in review 2019: pathogenesis of rheumatoid arthritis.Clin. Exp. Rheumatol.2019373347357 31111823
    [Google Scholar]
  16. FengX. ChenY. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis.J. Drug Target.2018261084585710.1080/1061186X.2018.1433680 29376442
    [Google Scholar]
  17. WangP. LiA. YuL. ChenY. XuD. Energy conversion-based nanotherapy for rheumatoid arthritis treatment.Front. Bioeng. Biotechnol.2020865210.3389/fbioe.2020.00652 32754578
    [Google Scholar]
  18. DavignonJ.L. RauwelB. DegboéY. ConstantinA. BoyerJ.F. KruglovA. CantagrelA. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review.Arthritis Res. Ther.201820122910.1186/s13075‑018‑1725‑6 30314507
    [Google Scholar]
  19. MateenS. ZafarA. MoinS. KhanA.Q. ZubairS. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis.Clin. Chim. Acta2016455161171c10.1016/j.cca.2016.02.010 26883280
    [Google Scholar]
  20. KurowskaW. Kuca-WarnawinE.H. RadzikowskaA. MaślińskiW. The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis.Cent. Eur. J. Immunol.201742439039810.5114/ceji.2017.72807 29472818
    [Google Scholar]
  21. MuckeJ. KruscheM. BurmesterG.R. A broad look into the future of rheumatoid arthritis.Ther. Adv. Musculoskelet. Dis.2022141759720X221076210.1177/1759720X221076211 35154419
    [Google Scholar]
  22. RaduA.F. BungauS.G. Nanomedical approaches in the realm of rheumatoid arthritis.Ageing Res. Rev.20238710192710.1016/j.arr.2023.101927 37031724
    [Google Scholar]
  23. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  24. ConfortiA. Di ColaI. PavlychV. RuscittiP. BerardicurtiO. UrsiniF. GiacomelliR. CiprianiP. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis.Autoimmun. Rev.202120210273510.1016/j.autrev.2020.102735 33346115
    [Google Scholar]
  25. YangM. FengX. DingJ. ChangF. ChenX. Nanotherapeutics relieve rheumatoid arthritis.J. Control. Release201725210812410.1016/j.jconrel.2017.02.032 28257989
    [Google Scholar]
  26. WegnerN. LundbergK. KinlochA. FisherB. MalmströmV. FeldmannM. VenablesP.J. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis.Immunol. Rev.20102331345410.1111/j.0105‑2896.2009.00850.x 20192991
    [Google Scholar]
  27. PetrovskáN. PrajzlerováK. VencovskýJ. ŠenoltL. FilkováM. The pre-clinical phase of rheumatoid arthritis: From risk factors to prevention of arthritis.Autoimmun. Rev.202120510279710.1016/j.autrev.2021.102797 33746022
    [Google Scholar]
  28. AlamJ. JantanI. BukhariS.N.A. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy.Biomed. Pharmacother.20179261563310.1016/j.biopha.2017.05.055 28582758
    [Google Scholar]
  29. GoyalA. AgrawalN. Quercetin: A potential candidate for the treatment of arthritis.Curr. Mol. Med.202222432533510.2174/1566524021666210315125330 33719956
    [Google Scholar]
  30. AletahaD. NeogiT. SilmanA.J. FunovitsJ. FelsonD.T. BinghamC.O.III BirnbaumN.S. BurmesterG.R. BykerkV.P. CohenM.D. CombeB. CostenbaderK.H. DougadosM. EmeryP. FerraccioliG. HazesJ.M.W. HobbsK. HuizingaT.W.J. KavanaughA. KayJ. KvienT.K. LaingT. MeaseP. MénardH.A. MorelandL.W. NadenR.L. PincusT. SmolenJ.S. Stanislawska-BiernatE. SymmonsD. TakP.P. UpchurchK.S. VencovskýJ. WolfeF. HawkerG. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative.Arthritis Rheum.20106292569258110.1002/art.27584 20872595
    [Google Scholar]
  31. AvouacJ. GossecL. DougadosM. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review.Ann. Rheum. Dis.200565784585110.1136/ard.2006.051391 16606649
    [Google Scholar]
  32. ForslindK. SvenssonB. MRI evidence of persistent joint inflammation and progressive joint damage despite clinical remission during treatment of early rheumatoid arthritis.Scand. J. Rheumatol.20164529910210.3109/03009742.2015.1070902 26313244
    [Google Scholar]
  33. ØstergaardM. BoesenM. Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography.Radiol. Med. (Torino)2019124111128114110.1007/s11547‑019‑01014‑y 30880357
    [Google Scholar]
  34. RaduA.F. BungauS.G. NegruP.A. MarcuM.F. Andronie-CioaraF.L. In-depth bibliometric analysis and current scientific mapping research in the context of rheumatoid arthritis pharmacotherapy.Biomed. Pharmacother.202215411361410.1016/j.biopha.2022.113614 36058148
    [Google Scholar]
  35. CroffordL.J. Use of NSAIDs in treating patients with arthritis.Arthritis Res. Ther.201315S3Suppl. 3S210.1186/ar4174 24267197
    [Google Scholar]
  36. HuangR. ZhangC. BuY. LiZ. ZhengX. QiuS. MachukiJ.O. ZhangL. YangY. GuoK. GaoF. A multifunctional nano-therapeutic platform based on octahedral yolk-shell Au NR@CuS: Photothermal/photodynamic and targeted drug delivery tri-combined therapy for rheumatoid arthritis.Biomaterials202127712108810.1016/j.biomaterials.2021.121088 34464824
    [Google Scholar]
  37. RahmanM. BegS. AnwarF. KumarV. UbaleR. AddoR.T. AliR. AkhterS. Liposome-based nanomedicine therapeutics for rheumatoid arthritis.Crit. Rev. Ther. Drug Carrier Syst.201734428331610.1615/CritRevTherDrugCarrierSyst.2017016067 29199587
    [Google Scholar]
  38. WangQ. JiangJ. ChenW. JiangH. ZhangZ. SunX. Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of rheumatoid arthritis.J. Control. Release2016230647210.1016/j.jconrel.2016.03.035 27057749
    [Google Scholar]
  39. ChuangS.Y. LinC.H. HuangT.H. FangJ.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis.Nanomaterials2018814210.3390/nano8010042
    [Google Scholar]
  40. ZhangM. HuW. CaiC. WuY. LiJ. DongS. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment.Mater. Today Bio20221410022310.1016/j.mtbio.2022.100223 35243298
    [Google Scholar]
  41. RenH. HeY. LiangJ. ChengZ. ZhangM. ZhuY. HongC. QinJ. XuX. WangJ. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy.ACS Appl. Mater. Interfaces20191122203042031510.1021/acsami.8b22693 31056910
    [Google Scholar]
  42. HelmyH. El-SaharA. SayedR. ShammaR. SalamaA. El-BazE. Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis.Int. J. Nanomedicine2017127015702310.2147/IJN.S147738 29026298
    [Google Scholar]
  43. WangX. FengY. FuJ. WuC. HeB. ZhangH. WangX. DaiW. SunY. ZhangQ. A Lipid micellar system loaded with dexamethasone palmitate alleviates rheumatoid arthritis.AAPS PharmSciTech201920831610.1208/s12249‑019‑1449‑1 31602546
    [Google Scholar]
  44. ZhaoG. ZhangH. Notch-1 siRNA and methotrexate towards a multifunctional approach in rhematoid arthritis management: a nanomedicine approach.Pharm. Res.201835612310.1007/s11095‑018‑2401‑x 29679159
    [Google Scholar]
  45. LorscheiderM. TsapisN. ur-Rehman, M.; Gaudin, F.; Stolfa, I.; Abreu, S.; Mura, S.; Chaminade, P.; Espeli, M.; Fattal, E. Dexamethasone palmitate nanoparticles: An efficient treatment for rheumatoid arthritis.J. Control. Release201929617918910.1016/j.jconrel.2019.01.015 30659904
    [Google Scholar]
  46. MaC. LiB. ZhangJ.R. SunY. LiJ.J. ZhouH.C. ShenJ.L. GuR. QianJ.C. FanC.H. ZhangH.J. LiuK. 2021, Significantly Improving the Bioefficacy for Rheumatoid Arthritis with Supramolecular Nanoformulations.Adv. Mater.20213316210009810.1002/adma.202100098
    [Google Scholar]
  47. LiangH. PengB. DongC. LiuL. MaoJ. WeiS. WangX. XuH. ShenJ. MaoH.Q. GaoX. LeongK.W. ChenY. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation.Nat. Commun.201891429110.1038/s41467‑018‑06603‑5 30327464
    [Google Scholar]
  48. QamarN. JohnP. BhattiA. Toxicological and Anti-rheumatic potential of trachyspermum ammi derived biogenic selenium nanoparticles in arthritic balb/c mice.Int. J. Nanomedicine2020153497350910.2147/IJN.S243718 32547009
    [Google Scholar]
  49. ParkJ.Y. HyunJ.S. JeeJ.G. ParkS.J. KhangD. Structural deformation of MTX Induced by nanodrug conjugation dictate intracellular drug transport and drug efficacy.Int. J. Nanomedicine2021164943495710.2147/IJN.S317231 34326636
    [Google Scholar]
  50. NgouneR. PetersA. von ElverfeldtD. WinklerK. PützG. Accumulating nanoparticles by EPR: A route of no return.J. Control. Release2016238587010.1016/j.jconrel.2016.07.028 27448444
    [Google Scholar]
  51. YangY. GuoL. WangZ. LiuP. LiuX. DingJ. ZhouW. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization.Biomaterials202126412039010.1016/j.biomaterials.2020.120390 32980634
    [Google Scholar]
  52. DuanW. LiH. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis.J. Nanobiotechnology20181615810.1186/s12951‑018‑0382‑x 30060740
    [Google Scholar]
  53. LiY. WeiS. SunY. ZongS. SuiY. Nanomedicine-based combination of dexamethasone palmitate and MCL-1 siRNA for synergistic therapeutic efficacy against rheumatoid arthritis.Drug Deliv. Transl. Res.20211162520252910.1007/s13346‑021‑01037‑x 34331261
    [Google Scholar]
  54. PandeyS. RaiN. MahtabA. MittalD. AhmadF.J. SandalN. NeupaneY.R. VermaA.K. TalegaonkarS. Hyaluronate-functionalized hydroxyapatite nanoparticles laden with methotrexate and teriflunomide for the treatment of rheumatoid arthritis.Int. J. Biol. Macromol.202117150251310.1016/j.ijbiomac.2020.12.204 33422513
    [Google Scholar]
  55. GuoL. ChenY. WangT. YuanY. YangY. LuoX. HuS. DingJ. ZhouW. Rational design of metal-organic frameworks to deliver methotrexate for targeted rheumatoid arthritis therapy.J. Control. Release202133011913110.1016/j.jconrel.2020.10.069 33333119
    [Google Scholar]
  56. MahtabA. RabbaniS.A. NeupaneY.R. PandeyS. AhmadA. KhanM.A. GuptaN. MadaanA. JaggiM. SandalN. RawatH. AqilM. TalegaonkarS. Facile functionalization of Teriflunomide-loaded nanoliposomes with Chondroitin sulphate for the treatment of Rheumatoid arthritis.Carbohydr. Polym.202025011692610.1016/j.carbpol.2020.116926 33049840
    [Google Scholar]
  57. GongT. TanT. ZhangP. LiH. DengC. HuangY. GongT. ZhangZ. Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor-A on activated macrophages to treat rheumatoid arthritis.Biomaterials202025812029610.1016/j.biomaterials.2020.120296 32781326
    [Google Scholar]
  58. WangY. LiuZ. LiT. ChenL. LyuJ. LiC. LinY. HaoN. ZhouM. ZhongZ. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis.Theranostics20199370872010.7150/thno.30418 30809303
    [Google Scholar]
  59. XuX.L. LiW.S. WangX.J. DuY.L. KangX.Q. HuJ.B. LiS.J. YingX.Y. YouJ. DuY.Z. Endogenous sialic acid-engineered micelles: a multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis.Nanoscale20181062923293510.1039/C7NR08430G 29369319
    [Google Scholar]
  60. LiJ. LongY. GuoR. RenK. LuZ. LiM. WangX. LiJ. WangY. ZhangZ. HeQ. Shield and sword nano-soldiers ameliorate rheumatoid arthritis by multi-stage manipulation of neutrophils.J. Control. Release2021335384810.1016/j.jconrel.2021.05.008 33965503
    [Google Scholar]
  61. LimaA.C. CamposC.F. CunhaC. CarvalhoA. ReisR.L. FerreiraH. NevesN.M. Biofunctionalized liposomes to monitor rheumatoid arthritis regression stimulated by interleukin-23 neutralization.Adv. Healthc. Mater.2021102200157010.1002/adhm.202001570 33103383
    [Google Scholar]
  62. LiC. LiH. WangQ. ZhouM. LiM. GongT. ZhangZ. SunX. pH-sensitive polymeric micelles for targeted delivery to inflamed joints.J. Control. Release201724613314110.1016/j.jconrel.2016.12.027 28038947
    [Google Scholar]
  63. MateenS. MoinS. ZafarA. KhanA.Q. Redox signaling in rheumatoid arthritis and the preventive role of polyphenols.Clin. Chim. Acta201646341010.1016/j.cca.2016.10.007 27720800
    [Google Scholar]
  64. HaY.J. LeeS.M. MunC.H. KimH.J. BaeY. LimJ.H. ParkK.H. LeeS.K. YooK.H. ParkY.B. Methotrexate-loaded multifunctional nanoparticles with near-infrared irradiation for the treatment of rheumatoid arthritis.Arthritis Res. Ther.202022114610.1186/s13075‑020‑02230‑y 32552859
    [Google Scholar]
  65. ZhenX. PuK. JiangX. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second nearinfrared construction.Small2021176200472310.1002/smll.202004723 33448155
    [Google Scholar]
  66. JungH.S. VerwilstP. SharmaA. ShinJ. SesslerJ.L. KimJ.S. Organic molecule-based photothermal agents: an expanding photothermal therapy universe.Chem. Soc. Rev.20184772280229710.1039/C7CS00522A 29528360
    [Google Scholar]
  67. ZhangS. WuL. CaoJ. WangK. GeY. MaW. QiX. ShenS. Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy.Colloids Surf. B Biointerfaces201817022423210.1016/j.colsurfb.2018.06.016 29929166
    [Google Scholar]
  68. LiX. YuC. MengX. HouY. CuiY. ZhuT. LiY. TengL. SunF. LiY. Study of double-targeting nanoparticles loaded with MCL-1 siRNA and dexamethasone for adjuvant-induced arthritis therapy.Eur. J. Pharm. Biopharm.202015413614310.1016/j.ejpb.2020.07.009 32681961
    [Google Scholar]
  69. SunX. DongS. LiX. YuK. SunF. LeeR.J. LiY. TengL. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy.Nanomedicine20192010201710.1016/j.nano.2019.102017 31128293
    [Google Scholar]
  70. LiP. YangX. YangY. HeH. ChouC.K. ChenF. PanH. LiuL. CaiL. MaY. ChenX. Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice.J. Control. Release20203198710310.1016/j.jconrel.2019.12.025 31862360
    [Google Scholar]
  71. XuY. MuJ. XuZ. ZhongH. ChenZ. NiQ. LiangX.J. GuoS. Modular acid-activatable acetone-based ketal-linked nanomedicine by dexamethasone prodrugs for enhanced anti-rheumatoid arthritis with low side effects.Nano Lett.20202042558256810.1021/acs.nanolett.9b05340 32167768
    [Google Scholar]
  72. XuX.L. ShuG.F. WangX.J. QiJ. JinF.Y. ShenQ.Y. YingX.Y. JiJ.S. DuY.Z. Sialic acid-modified chitosan oligosaccharide-based biphasic calcium phosphate promote synergetic bone formation in rheumatoid arthritis therapy.J. Control. Release202032357859010.1016/j.jconrel.2020.04.047 32376462
    [Google Scholar]
  73. AnL. LiZ. ShiL. WangL. WangY. JinL. ShuaiX. LiJ. Inflammation targeted celastrol nanodrug attenuates collagen-induced arthritis through NFkappaB and notch1 pathways.Nano Lett.202020107728773610.1021/acs.nanolett.0c03279 32965124
    [Google Scholar]
  74. LeeE.S. SulJ.H. ShinJ.M. ShinS. LeeJ.A. KimH.K. ChoY. KoH. SonS. LeeJ. ParkS. JoD.G. ParkJ.H. Reactive oxygen species-responsive dendritic cell-derived exosomes for rheumatoid arthritis.Acta Biomater.202112846247310.1016/j.actbio.2021.04.026 33878476
    [Google Scholar]
  75. SongY. IsmailM. ShanQ. ZhaoJ. ZhuY. ZhangL. DuY. LingL. ROS-mediated liposomal dexamethasone: a new FA-targeted nanoformulation to combat rheumatoid arthritis via inhibiting iRhom2/TNF-α/BAFF pathways.Nanoscale20211347201702018510.1039/D1NR05518F 34846489
    [Google Scholar]
  76. FanX. XuM. LeungE.L.H. JunC. YuanZ. LiuL. ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria.Nano-Micro Lett.20201217610.1007/s40820‑020‑0410‑x 34138288
    [Google Scholar]
  77. NiR. SongG. FuX. SongR. LiL. PuW. GaoJ. HuJ. LiuQ. HeF. ZhangD. HuangG. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway.Biomaterials202023211973010.1016/j.biomaterials.2019.119730 31918224
    [Google Scholar]
  78. FengN. YangM. FengX. WangY. ChangF. DingJ. Reduction-responsive polypeptide nanogel for intracellular drug delivery in relieving collagen-induced arthritis.ACS Biomater. Sci. Eng.20184124154416210.1021/acsbiomaterials.8b00738 33418814
    [Google Scholar]
  79. LiX. HouY. MengX. LiG. XuF. TengL. SunF. LiY. Folate receptor-targeting mesoporous silica-coated gold nanorod nanoparticles for the synergistic photothermal therapy and chemotherapy of rheumatoid arthritis.RSC Advances20211163567357410.1039/D0RA08689D 35424296
    [Google Scholar]
  80. LuY. LiL. LinZ. WangL. LinL. LiM. ZhangY. YinQ. LiQ. XiaH. A new treatment modality for rheumatoid arthritis: combined photothermal and photodynamic therapy using Cu7.2S4 nanoparticles.Adv. Healthc. Mater.2018714180001310.1002/adhm.201800013
    [Google Scholar]
  81. ChenX. ZhuX. MaL. LinA. GongY. YuanG. LiuJ. A core–shell structure QRu-PLGA-RES-DS NP nanocomposite with photothermal response-induced M2 macrophage polarization for rheumatoid arthritis therapy.Nanoscale20191139182091822310.1039/C9NR05922A 31560010
    [Google Scholar]
  82. LiX. ZhangS. ZhangX. HouY. MengX. LiG. XuF. TengL. QiY. SunF. LiY. Folate receptor-targeting semiconducting polymer dots hybrid mesoporous silica nanoparticles against rheumatoid arthritis through synergistic photothermal therapy, photodynamic therapy, and chemotherapy.Int. J. Pharm.202160712094710.1016/j.ijpharm.2021.120947 34358541
    [Google Scholar]
  83. ChenZ. NiuM. ChenG. WuQ. TanL. FuC. RenX. ZhongH. XuK. MengX. Oxygen production of modified core-shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy.ACS Nano20181212127211273210.1021/acsnano.8b07749 30512923
    [Google Scholar]
  84. PentazosG. LaskariK. PrekasK. RaftakisJ. SfikakisP.P. SioresE. Microwave radiometry-derived thermal changes of small joints as additional potential biomarker in rheumatoid arthritis a prospective pilot study.J. Clin. Rheumatol.201824525926310.1097/RHU.0000000000000719 29652702
    [Google Scholar]
  85. ShenQ. HuQ. TangT. YingX. ShuG. ShenJ. TengC. DuY. ICAM-1 targeted thermal-sensitive micelles loaded with tofacitinib for enhanced treatment of rheumatoid arthritis via microwave assistance.Biomaterials Advances202213821294010.1016/j.bioadv.2022.212940 35913238
    [Google Scholar]
  86. KneidlB. PellerM. WinterG. LindnerL.H. HossannM. Thermosensitive liposomal drug delivery systems: state of the art review.Int. J. Nanomedicine2014943874398 25258529
    [Google Scholar]
  87. Vallejo-FernandezG. WhearO. RocaA.G. HussainS. TimmisJ. PatelV. O’GradyK. Mechanisms of hyperthermia in magnetic nanoparticles.J. Phys. D Appl. Phys.2013463131200110.1088/0022‑3727/46/31/312001
    [Google Scholar]
  88. PrabuC. LathaS. SelvamaniP. AhrentorpF. JohanssonC. TakedaR. TakemuraY. OtaS. Layer-by-layer assembled magnetic prednisolone microcapsules (MPC) for controlled and targeted drug release at rheumatoid arthritic joints.J. Magn. Magn. Mater.201742725826710.1016/j.jmmm.2016.11.030
    [Google Scholar]
  89. HetlandM.L. ØstergaardM. EjbjergB. JacobsenS. Stengaard-PedersenK. JunkerP. LottenburgerT. HansenI. AndersenL.S. TarpU. SvendsenA. PedersenJ.K. SkjødtH. EllingsenT. LindegaardH. PødenphantJ. Hørslev-PetersenK. Short- and long-term efficacy of intra-articular injections with betamethasone as part of a treat-to-target strategy in early rheumatoid arthritis: impact of joint area, repeated injections, MRI findings, anti-CCP, IgM-RF and CRP.Ann. Rheum. Dis.201271685185610.1136/annrheumdis‑2011‑200632 22302316
    [Google Scholar]
  90. ButoescuN. JordanO. DoelkerE. Intra-articular drug delivery systems for the treatment of rheumatic diseases: A review of the factors influencing their performance.Eur. J. Pharm. Biopharm.200973220521810.1016/j.ejpb.2009.06.009 19545624
    [Google Scholar]
  91. ParkJ.H. ParkS.H. LeeH.Y. LeeJ.W. LeeB.K. LeeB.Y. KimJ.H. KimM.S. An injectable, electrostatically interacting drug depot for the treatment of rheumatoid arthritis.Biomaterials2018154869810.1016/j.biomaterials.2017.10.055 29120821
    [Google Scholar]
  92. YinN. TanX. LiuH. HeF. DingN. GouJ. YinT. HeH. ZhangY. TangX. A novel indomethacin/methotrexate/MMP-9 siRNA in situ hydrogel with dual effects of anti-inflammatory activity and reversal of cartilage disruption for the synergistic treatment of rheumatoid arthritis.Nanoscale2020121585468562b10.1039/D0NR00454E 32243486
    [Google Scholar]
  93. SeoJ. ParkS.H. KimM.J. JuH.J. YinX.Y. MinB.H. KimM.S. Injectable click-crosslinked hyaluronic acid depot to prolong therapeutic activity in articular joints affected by rheumatoid arthritis.ACS Appl. Mater. Interfaces20191128249842499810.1021/acsami.9b04979 31264830
    [Google Scholar]
  94. YeoJ. LeeY.M. LeeJ. ParkD. KimK. KimJ. ParkJ. KimW.J. Nitric oxide-scavenging nanogel for treating rheumatoid arthritis.Nano Lett.201919106716672410.1021/acs.nanolett.9b00496 31082252
    [Google Scholar]
  95. JoshiN. YanJ. LevyS. BhagchandaniS. SlaughterK.V. ShermanN.E. AmiraultJ. WangY. RiegelL. HeX. RuiT.S. ValicM. VemulaP.K. MirandaO.R. LevyO. GravalleseE.M. AliprantisA.O. ErmannJ. KarpJ.M. Towards an arthritis flare-responsive drug delivery system.Nat. Commun.201891127510.1038/s41467‑018‑03691‑1 29615615
    [Google Scholar]
  96. MohammadiM. LiY. AbebeD.G. XieY. KandilR. KrausT. Gomez-LopezN. FujiwaraT. MerkelO.M. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages.J. Control. Release2016244Pt B26927910.1016/j.jconrel.2016.08.020 27565213
    [Google Scholar]
  97. WangS. ChenR. YuQ. HuangW. LaiP. TangJ. NieL. Nearinfrared plasmon-boosted heat/oxygen enrichment for reversing rheumatoid arthritis with metal/semiconductor composites.ACS Appl. Mater. Interfaces202012414579645806b10.1021/acsami.0c13261 32931233
    [Google Scholar]
  98. KimJ. KimH.Y. SongS.Y. GoS. SohnH.S. BaikS. SohM. KimK. KimD. KimH.C. LeeN. KimB.S. HyeonT. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for Rheumatoid Arthritis Treatment.ACS Nano20191333206321710.1021/acsnano.8b08785 30830763
    [Google Scholar]
  99. HongS.S. MarotteH. CourbonG. FiresteinG.S. BoulangerP. MiossecP. PUMA gene delivery to synoviocytes reduces inflammation and degeneration of arthritic joints.Nat. Commun.20178114610.1038/s41467‑017‑00142‑1 28747638
    [Google Scholar]
  100. LiJ. ChenL. XuX. FanY. XueX. ShenM. ShiX. Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform.Small20201649200566110.1002/smll.202005661 33205596
    [Google Scholar]
  101. KapoorB. GulatiM. SinghS.K. KhatikG.L. GuptaR. KumarR. KumarR. GowthamarajanK. MahajanS. GuptaS. Fail-safe nano-formulation of prodrug of sulfapyridine: Preparation and evaluation for treatment of rheumatoid arthritis.Mater. Sci. Eng. C202111811133210.1016/j.msec.2020.111332 33254964
    [Google Scholar]
  102. NagyG. KonczA. TelaricoT. FernandezD. ÉrsekB. BuzásE. PerlA. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and sysemic lupus erythematosus.Arthritis Res. Ther.201012321010.1186/ar3045 20609263
    [Google Scholar]
  103. PrausnitzM.R. LangerR. Transdermal drug delivery.Nat. Biotechnol.200826111261126810.1038/nbt.1504 18997767
    [Google Scholar]
  104. GargN.K. TyagiR.K. SinghB. SharmaG. NirbhavaneP. KushwahV. JainS. KatareO.P. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1.Int. J. Pharm.20164991-230132010.1016/j.ijpharm.2015.12.061 26768725
    [Google Scholar]
  105. QindeelM. KhanD. AhmedN. KhanS. Asim UrR. Surfactant-free, selfassembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis.ACS Nano20201444662468110.1021/acsnano.0c00364 32207921
    [Google Scholar]
  106. KhanD. QindeelM. AhmedN. AsadM.I. ShahK. Asim UrR. Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis.Int. J. Pharm.202161012124210.1016/j.ijpharm.2021.121242 34737113
    [Google Scholar]
  107. ShenQ. TangT. HuQ. YingX. ShuG. TengC. DuY. Microwave hyperthermia-responsible flexible liposomal gel as a novel transdermal delivery of methotrexate for enhanced rheumatoid arthritis therapy.Biomater. Sci.20219248386839510.1039/D1BM01438B 34787601
    [Google Scholar]
  108. RojekarS. VoraL.K. TekkoI.A. Volpe-ZanuttoF. McCarthyH.O. VaviaP.R. DonnellyR.F. Etravirine-loaded dissolving microneedle arrays for long-acting delivery.Eur. J. Pharm. Biopharm.2021165415110.1016/j.ejpb.2021.04.024 33971273
    [Google Scholar]
  109. KulkarniD. DamiriF. RojekarS. ZehraviM. RamproshadS. DhokeD. MusaleS. MulaniA.A. ModakP. ParadhiR. VitoreJ. RahmanM.H. BerradaM. GiramP.S. CavaluS. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications.Pharmaceutics2022145109710.3390/pharmaceutics14051097 35631683
    [Google Scholar]
  110. VitoreJ.G. PagarS. SinghN. KarunakaranB. SalveS. HatvateN. RojekarS. BenivalD. A comprehensive review of nanosuspension loaded microneedles: fabrication methods, applications, and recent developments.J. Pharm. Investig.202353447550410.1007/s40005‑023‑00622‑1
    [Google Scholar]
  111. WuC. ChengJ. LiW. YangL. DongH. ZhangX. Programmable polymeric microneedles for combined chemotherapy and antioxidative treatment of rheumatoid arthritis.ACS Appl. Mater. Interfaces20211346555595556810.1021/acsami.1c17375 34783244
    [Google Scholar]
  112. NornbergA.B. MartinsC.C. CerviV.F. SariM.H.M. CruzL. LucheseC. WilhelmE.A. FajardoA.R. Transdermal release of methotrexate by cationic starch/poly(vinyl alcohol)-based films as an approach for rheumatoid arthritis treatment.Int. J. Pharm.202261112128510.1016/j.ijpharm.2021.121285 34774696
    [Google Scholar]
  113. ZhaoY. GaoC. LiuH. LiuH. FengY. LiZ. LiuH. WangJ. YangB. LinQ. Infliximab-based self-healing hydrogel composite scaffold enhances stem cell survival, engraftment, and function in rheumatoid arthritis treatment.Acta Biomater.202112165366410.1016/j.actbio.2020.12.005 33290912
    [Google Scholar]
  114. El-SetouhyD.A. AbdelmalakN.S. AnisS.E. LouisD. Leflunomide biodegradable microspheres intended for intra-articular administration: Development, anti-inflammatory activity and histopathological studies.Int. J. Pharm.2015495266467010.1016/j.ijpharm.2015.09.040 26392248
    [Google Scholar]
  115. BeloquiA. del Pozo-RodríguezA. IslaA. Rodríguez-GascónA. SolinísM.Á. Nanostructured lipid carriers as oral delivery systems for poorly soluble drugs.J. Drug Deliv. Sci. Technol.20174214415410.1016/j.jddst.2017.06.013
    [Google Scholar]
  116. ZewailM. NafeeN. HelmyM.W. BoraieN. Coated nanostructured lipid carriers targeting the joints – An effective and safe approach for the oral management of rheumatoid arthritis.Int. J. Pharm.201956711844710.1016/j.ijpharm.2019.118447 31226475
    [Google Scholar]
  117. OliveiraI.M. GonçalvesC. ReisR.L. OliveiraJ.M. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends.Nano Res.20181194489450610.1007/s12274‑018‑2071‑3
    [Google Scholar]
  118. XieW. YangX. HuangH. GaoD. JiL. ZhangZ. Risk of malignancy with non-TNFi biologic or tofacitinib therapy in rheumatoid arthritis: A meta-analysis of observational studies.Semin. Arthritis Rheum.202050593093710.1016/j.semarthrit.2020.08.007 32906027
    [Google Scholar]
  119. XieY. TuguntaevR.G. MaoC. ChenH. TaoY. WangS. YangB. GuoW. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy.Biophys. Rep.20206519321010.1007/s41048‑020‑00117‑8 37288306
    [Google Scholar]
  120. BhardwajS. BhatiaS. Development and Characterization of Niosomal Gel System using Lallementia royaleana Benth. mucilage for the treatment of Rheumatoid Arthritis.Iran. J. Pharm. Res.2020193465482 33680045
    [Google Scholar]
  121. BhallaN. JollyP. FormisanoN. EstrelaP. Introduction to biosensors.Essays Biochem.20166011810.1042/EBC20150001 27365030
    [Google Scholar]
  122. George KerryR. UkhureborK.E. KumariS. MauryaG.K. PatraS. PanigrahiB. MajhiS. RoutJ.R. Rodriguez-TorresM.P. DasG. ShinH.S. PatraJ.K. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection.Biomater. Sci.20219103576360210.1039/D0BM02164D 34008586
    [Google Scholar]
  123. GhorbaniF. AbbaszadehH. MehdizadehA. Ebrahimi-WarkianiM. RashidiM.R. YousefiM. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review.Mikrochim. Acta20191861283810.1007/s00604‑019‑3844‑4 31760523
    [Google Scholar]
  124. HaiZ. LiangG. Intracellular self-assembly of nanoprobes for molecular imaging.Adv. Biosyst.201828180010810.1002/adbi.201800108
    [Google Scholar]
  125. ChouS.W. ShauY.H. WuP.C. YangY.S. ShiehD.B. ChenC.C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging.J. Am. Chem. Soc.201013238132701327810.1021/ja1035013 20572667
    [Google Scholar]
  126. ZhaoJ. ChenX. HoK.H. CaiC. LiC.W. YangM. YiC. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches.Chin. Chem. Lett.2021321668610.1016/j.cclet.2020.11.048
    [Google Scholar]
  127. PrasadL.K. O’MaryH. CuiZ. Nanomedicine delivers promising treatments for rheumatoid arthritis.Nanomedicine201510132063207410.2217/nnm.15.45 26084368
    [Google Scholar]
  128. ChenM. DaddyJ.C. K.A.; Xiao, Y.; Ping, Q.; Zong, L. Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting.Expert Opin. Drug Deliv.201714101141114410.1080/17425247.2017.1372746 28847165
    [Google Scholar]
  129. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  130. GasparN. ZambitoG. LöwikC.M.W.G. MezzanotteL. Active nano-targeting of macrophages.Curr. Pharm. Des.201925171951196110.2174/1381612825666190710114108 31291874
    [Google Scholar]
  131. ZhaoJ. ZhaoM. YuC. ZhangX. LiuJ. ChengX. LeeR.J. SunF. TengL. LiY. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis.Int. J. Nanomedicine2017126735674610.2147/IJN.S140992 28932117
    [Google Scholar]
  132. JainS. TranT.H. AmijiM. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis.Biomaterials20156116217710.1016/j.biomaterials.2015.05.028 26004232
    [Google Scholar]
  133. VermaA. JainA. TiwariA. SarafS. PandaP.K. AgrawalG.P. JainS.K. Folate conjugated double liposomes bearing prednisolone and methotrexate for targeting rheumatoid arthritis.Pharm. Res.201936812310.1007/s11095‑019‑2653‑0 31218557
    [Google Scholar]
  134. SultanaF. NeogM.K. RasoolM. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats.Colloids Surf. B Biointerfaces201715534936510.1016/j.colsurfb.2017.04.046 28454064
    [Google Scholar]
  135. HuL. LuoX. ZhouS. ZhuJ. XiaoM. LiC. ZhengH. QiuQ. LaiC. LiuX. DengY. SongY. Neutrophil-mediated delivery of dexamethasone palmitate-loaded liposomes decorated with a sialic acid conjugate for rheumatoid arthritis treatment.Pharm. Res.20193679710.1007/s11095‑019‑2609‑4 31076925
    [Google Scholar]
  136. KumarV. LeekhaA. KaulA. MishraA.K. VermaA.K. Role of folate-conjugated glycol-chitosan nanoparticles in modulating the activated macrophages to ameliorate inflammatory arthritis: in vitro and in vivo activities.Drug Deliv. Transl. Res.20201041057107510.1007/s13346‑020‑00765‑w 32363539
    [Google Scholar]
  137. VanniasingheA.S. ManoliosN. SchibeciS. LakhianiC. Kamali-SarvestaniE. SharmaR. KumarV. MoghaddamM. AliM. BenderV. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis.Clin. Immunol.20141511435410.1016/j.clim.2014.01.005 24513809
    [Google Scholar]
  138. HeY. LiR. LiangJ. ZhuY. ZhangS. ZhengZ. QinJ. PangZ. WangJ. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis.Nano Res.201811116086610110.1007/s12274‑018‑2126‑5
    [Google Scholar]
  139. LiuL. HuF. WangH. WuX. EltahanA.S. StanfordS. BottiniN. XiaoH. BottiniM. GuoW. LiangX.J. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy.ACS Nano20191355036504810.1021/acsnano.9b01710 30978282
    [Google Scholar]
  140. ZhangN. XuC. LiN. ZhangS. FuL. ChuX. HuaH. ZengX. ZhaoY. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation.Drug Deliv.20182511182119110.1080/10717544.2018.1472677 29790372
    [Google Scholar]
  141. KooO.M.Y. RubinsteinI. ÖnyükselH. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis.Pharm. Res.201128477678710.1007/s11095‑010‑0330‑4 21132352
    [Google Scholar]
  142. ShiY. XieF. RaoP. QianH. ChenR. ChenH. LiD. MuD. ZhangL. LvP. ShiG. ZhengL. LiuG. TRAIL-expressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis therapy.J. Control. Release202032030431310.1016/j.jconrel.2020.01.054 32004586
    [Google Scholar]
  143. ClemonsT.D. SinghR. SorollaA. ChaudhariN. HubbardA. IyerK.S. Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy.Langmuir20183450153431534910.1021/acs.langmuir.8b02946 30441895
    [Google Scholar]
  144. WilliamsA. GoodfellowR. TopleyN. AmosN. WilliamsB. The suppression of rat collagen-induced arthritis and inhibition of macrophage derived mediator release by liposomal methotrexate formulations.Inflamm. Res.200049415516110.1007/s000110050575 10858015
    [Google Scholar]
  145. WilliamsA.S. TopleyN. DojcinovS. RichardsP.J. WilliamsB.D. Amelioration of rat antigen-induced arthritis by liposomally conjugated methotrexate is accompanied by down-regulation of cytokine mRNA expression.Br. J. Rheumatol.200140437538310.1093/rheumatology/40.4.375 11312373
    [Google Scholar]
  146. PrabhuP. ShettyR. KolandM. BhatV.K. VijayalakshmiK.K. NairyH.M. ShettyN.G. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity.Int. J. Nanomedicine2012717718610.2147/IJN.S25310 22275833
    [Google Scholar]
  147. GargN.K. SinghB. TyagiR.K. SharmaG. KatareO.P. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model.Colloids Surf. B Biointerfaces2016147172410.1016/j.colsurfb.2016.07.046 27478959
    [Google Scholar]
  148. MetselaarJ.M. WaubenM.H.M. Wagenaar-HilbersJ.P.A. BoermanO.C. StormG. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long‐circulating liposomes.Arthritis Rheum.20034872059206610.1002/art.11140 12847701
    [Google Scholar]
  149. HofkensW. van den HovenJ.M. PesmanG.J. NabbeK.C. SweepF.C. StormG. van den BergW.B. van LentP.L. Safety of glucocorticoids can be improved by lower yet still effective dosages of liposomal steroid formulations in murine antigen-induced arthritis: Comparison of prednisolone with budesonide.Int. J. Pharm.2011416249349810.1016/j.ijpharm.2011.02.062 21382459
    [Google Scholar]
  150. ZhangJ.X. LiS.H. LiX.H. QiuL.Y. LiX.D. LiX.J. JinY. ZhuK.J. Physicochemical characterization, in vitro, and in vivo evaluation of indomethacin‐loaded nanocarriers self‐assembled by amphiphilic polyphosphazene.J. Biomed. Mater. Res. A200886A491492510.1002/jbm.a.31560 18067189
    [Google Scholar]
  151. KimM.J. ParkJ.S. LeeS.J. JangJ. ParkJ.S. BackS.H. BahnG. ParkJ.H. KangY.M. KimS.H. KwonI.C. JoD.G. KimK. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy.J. Control. Release201521614014810.1016/j.jconrel.2015.08.025 26282098
    [Google Scholar]
  152. KimH.J. LeeS.M. ParkK.H. MunC.H. ParkY.B. YooK.H. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis.Biomaterials2015619510210.1016/j.biomaterials.2015.05.018 26001074
    [Google Scholar]
  153. ZhaoG. LiuA. ZhangY. ZuoZ.Q. CaoZ.T. ZhangH.B. XuC.F. WangJ. Nanoparticle-delivered siRNA targeting Bruton’s tyrosine kinase for rheumatoid arthritis therapy.Biomater. Sci.20197114698470710.1039/C9BM01025D 31495833
    [Google Scholar]
  154. GokhaleJ.P. MahajanH.S. SuranaS.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies.Biomed. Pharmacother.201911210862210.1016/j.biopha.2019.108622 30797146
    [Google Scholar]
  155. RussoE. GaglianoneN. BaldassariS. ParodiB. CroceI. BassiA.M. VernazzaS. CaviglioliG. Chitosan-clodronate nanoparticles loaded in poloxamer gel for intra-articular administration.Colloids Surf. B Biointerfaces2016143889610.1016/j.colsurfb.2016.03.028 26998870
    [Google Scholar]
  156. BhalekarM.R. UpadhayaP.G. MadgulkarA.R. Fabrication and efficacy evaluation of chloroquine nanoparticles in CFA-induced arthritic rats using TNF-α ELISA.Eur. J. Pharm. Sci.2016841810.1016/j.ejps.2016.01.009 26776969
    [Google Scholar]
  157. LeeH. LeeM.Y. BhangS.H. KimB.S. KimY.S. JuJ.H. KimK.S. HahnS.K. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis.ACS Nano2014854790479810.1021/nn500685h 24730974
    [Google Scholar]
  158. KannanK. OrtmannR.A. KimpelD. Animal models of rheumatoid arthritis and their relevance to human disease.Pathophysiology200512316718110.1016/j.pathophys.2005.07.011 16171986
    [Google Scholar]
  159. KimE.Y. MoudgilK.D. The determinants of susceptibility/resistance to adjuvant arthritis in rats.Arthritis Res. Ther.200911423910.1186/ar2755 19678912
    [Google Scholar]
  160. TrenthamD.E. TownesA.S. KangA.H. Autoimmunity to type II collagen an experimental model of arthritis.J. Exp. Med.1977146385786810.1084/jem.146.3.857 894190
    [Google Scholar]
  161. FifeR.S. Identification of cartilage matrix glycoprotein in synovial fluid in human osteoarthritis.Arthritis Rheum.198831455355610.1002/art.1780310414 3358813
    [Google Scholar]
  162. HolmdahlR. LorentzenJ.C. LuS. OlofssonP. WesterL. HolmbergJ. PetterssonU. Arthritis induced in rats with non‐immunogenic adjuvants as models for rheumatoid arthritis.Immunol. Rev.2001184118420210.1034/j.1600‑065x.2001.1840117.x 12086312
    [Google Scholar]
  163. BrackertzD. MitchellG.F. MackayI.R. Antigen‐induced arthritis in mice.Arthritis Rheum.197720384185010.1002/art.1780200314 857805
    [Google Scholar]
  164. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium Glipizide for the treatment of hypertension diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  165. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for Toxicity and Improved Therapeutic Effectiveness of Natural Polymer Co-administered Along with Venocin in Acetic Acid-Induced Colitis Using Rat Model BT - Advances in Biomedical Engineering and Technology.SingaporeSpringer Singapore2021207220
    [Google Scholar]
  166. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets20242024122
    [Google Scholar]
  167. RojekarS. PallapatiA.R. Gimenez-RoigJ. KorkmazF. SultanaF. SantD. Development and biophysical characterization of a humanized FSH-blocking monoclonal antibody therapeutic formulated at an ultra-high concentration.Elife202312e8889810.7554/eLife.88898
    [Google Scholar]
  168. GeraS. KuoT.C. GumerovaA.A. KorkmazF. SantD. DeMambroV. FSH-blocking therapeutic for osteoporosis.Elife202211e7802210.7554/eLife.78022
    [Google Scholar]
  169. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and Antioxidant Activities of a Combination of Terminalia Arjuna and Commiphora Mukul on Experimental Animals BT - Advances in Biomedical Engineering and Technology.SingaporeSpringer Singapore2021175188
    [Google Scholar]
  170. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin, Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/1567201820666230112170035 36644864
    [Google Scholar]
  171. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
  172. SinghR. PrasadJ. SatapathyT. JainP. SinghS. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian J. Biochem. Biophys.2021584156161
    [Google Scholar]
  173. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  174. JainP. SatapathyT. PandeyR.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves.Vet. Parasitol.2021296June10950810.1016/j.vetpar.2021.109508 34218174
    [Google Scholar]
  175. RamadonD. McCruddenM.T.C. CourtenayA.J. DonnellyR.F. Enhancement strategies for transdermal drug delivery systems: current trends and applications.Drug Deliv. Transl. Res.202212475879110.1007/s13346‑021‑00909‑6 33474709
    [Google Scholar]
  176. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics7040438 26506371
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010306005240605072550
Loading
/content/journals/cpb/10.2174/0113892010306005240605072550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test