Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

This academic review examines the latest biotechnology methods for resveratrol synthesis. We aim to study the health advantages of resveratrol consumption beyond synthesis and demonstrate its potential as a therapeutic agent. An extensive examination of the current state of literature was performed, employing a diverse range of scholarly databases with the purpose of collating pertinent information and conducting in-depth research on the subject matter. The main goal was to find and assess research on resveratrol's health effects and the latest biotechnology methods for synthesizing it. This review paper discusses resveratrol synthesis methods, including their efficacy and current advances. The findings highlight the significant potential of biotechnological methods in improving both the synthesis of resveratrol and its beneficial effects on health. Our comprehensive analysis substantiates the importance of biotechnological methodologies in synthesizing resveratrol. The literature review highlights resveratrol's therapeutic properties, which have been scientifically approved for the prevention and treatment of various ailments, such as cardiovascular disease, metabolic illnesses, cancer, aging, and immunomodulation.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010297228240612112520
2024-06-27
2025-10-08
Loading full text...

Full text loading...

References

  1. CrozierA. JaganathI.B. CliffordM.N. Dietary phenolics: Chemistry, bioavailability and effects on health.Nat. Prod. Rep.20092681001104310.1039/b802662a 19636448
    [Google Scholar]
  2. Del RioD. Rodriguez-MateosA. SpencerJ.P.E. TognoliniM. BorgesG. CrozierA. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases.Antioxid. Redox Signal.201318141818189210.1089/ars.2012.4581 22794138
    [Google Scholar]
  3. MittalR.K. PurohitP. SankaranarayananM. Muzaffar-Ur-RehmanM. TaramelliD. SignoriniL. DolciM. BasilicoN. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate.Mol. Divers.202310.1007/s11030‑023‑10703‑w 37480422
    [Google Scholar]
  4. BiswasT. MittalR.K. SharmaV. Kanupriya; Mishra, I. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.20242010.2174/0115734064278334231211054053 38192143
    [Google Scholar]
  5. Kanupriya; Mittal, R.K.; Sharma, V.; Biswas, T.; Mishra, I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.20242010.2174/0115734064280150231212113012
    [Google Scholar]
  6. PurohitP. MittalR.K. KhatanaK. Quinoline-3-Carboxylic Acids “DNA Minor Groove-Binding Agent”.Anticancer. Agents Med. Chem.202222234434810.2174/1871520621666210513160714 33992065
    [Google Scholar]
  7. MittalR.K. PurohitP. AggarwalM. An Eco-Friendly Synthetic Approach through C(sp3)-H Functionalization of the Viral Fusion “Spike Protein” Inhibitors.Biointerface Res. Appl. Chem.202213216910.33263/BRIAC132.169
    [Google Scholar]
  8. MittalR.K. MishraR. UddinR. SharmaV. Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications.Curr. Pharm. Biotechnol.202425111436145110.2174/0113892010281021231229100228 38288792
    [Google Scholar]
  9. PurohitP. MittalR.K. SharmaV. A synergistic broad-spectrum viral entry blocker: In-silico approach.Biointerface Res. Appl. Chem.2022131710.33263/BRIAC131.007
    [Google Scholar]
  10. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.202421540041310.2174/0115701786274678231124101033
    [Google Scholar]
  11. MittalR.K. MishraR. SharmaV. PurohitP. Bioactive exploration in functional foods: Unlocking nature’s treasures.Curr. Pharm. Biotechnol.202425111419143510.2174/0113892010282580231120041659 38031768
    [Google Scholar]
  12. StockleyC. TeissedreP.L. BobanM. Di LorenzoC. RestaniP. Bioavailability of wine-derived phenolic compounds in humans: A review.Food Funct.2012310995100710.1039/c2fo10208k 22728778
    [Google Scholar]
  13. Martínez-HuélamoM. Vallverdú-QueraltA. Di LecceG. Valderas-MartínezP. TulipaniS. JáureguiO. Escribano-FerrerE. EstruchR. IllanM. Lamuela-RaventósR.M. Bioavailability of tomato polyphenols is enhanced by processing and fat addition: Evidence from a randomized feeding trial.Mol. Nutr. Food Res.20166071578158910.1002/mnfr.201500820 26887966
    [Google Scholar]
  14. ShresthaA. PandeyR.P. SohngJ.K. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: Achievements and perspectives.Appl. Microbiol. Biotechnol.201910372959297210.1007/s00253‑019‑09672‑8 30798357
    [Google Scholar]
  15. JeandetP. Douillet-BreuilA.C. BessisR. DebordS. SbaghiM. AdrianM. Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism.J. Agric. Food Chem.200250102731274110.1021/jf011429s 11982391
    [Google Scholar]
  16. CaiY-J. WeiQ-Y. FangJ-G. YangL. LiuZ-L. WycheJ.H. HanZ. The 3,4-dihydroxyl groups are important for trans-resveratrol analogs to exhibit enhanced antioxidant and apoptotic activities.Anticancer Res.2004242B9991002 15161055
    [Google Scholar]
  17. ColinD. LanconA. DelmasD. LizardG. AbrossinowJ. KahnE. JanninB. LatruffeN. Antiproliferative activities of resveratrol and related compounds in human hepatocyte derived HepG2 cells are associated with biochemical cell disturbance revealed by fluorescence analyses.Biochimie20089011-121674168410.1016/j.biochi.2008.06.006 18627786
    [Google Scholar]
  18. MoranB.W. AndersonF.P. DeveryA. CloonanS. ButlerW.E. VarugheseS. DraperS.M. KennyP.T.M. Synthesis, structural characterisation and biological evaluation of fluorinated analogues of resveratrol.Bioorg. Med. Chem.200917134510452210.1016/j.bmc.2009.05.007 19481462
    [Google Scholar]
  19. SalehiB. MishraA. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  20. AlrafasH.R. BusbeeP.B. NagarkattiM. NagarkattiP.S. Resveratrol downregulates miR-31 to promote T regulatory cells during prevention of TNBS-induced colitis.Mol. Nutr. Food Res.2020641190063310.1002/mnfr.201900633 31730734
    [Google Scholar]
  21. TongW. ChenX. SongX. ChenY. JiaR. ZouY. LiL. YinL. HeC. LiangX. YeG. LvC. LinJ. YinZ. Resveratrol inhibits LPS induced inflammation through suppressing the signaling cascades of TLR4 NF κB/MAPKs/IRF3.Exp. Ther. Med.20191931824183410.3892/etm.2019.8396 32104238
    [Google Scholar]
  22. AvtanskiD. PoretskyL. Phyto-polyphenols as potential inhibitors of breast cancer metastasis.Mol. Med.20182412910.1186/s10020‑018‑0032‑7 30134816
    [Google Scholar]
  23. Cosín-TomàsM. SenserrichJ. Arumí-PlanasM. AlquézarC. PallàsM. Martín-RequeroÁ. SuñolC. KalimanP. SanfeliuC. Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from alzheimer’s disease patients.Nutrients2019118176410.3390/nu11081764 31370365
    [Google Scholar]
  24. Sandoval-AvilaS. DiazN.F. Gomez-PinedoU. CanalesA. Gutiérrez-MercadoY.K. PadillaE. 201910.1016/j.nrleng.2016.04.014
  25. ChenW.M. ShawL.H. ChangP.J. TungS.Y. ChangT.S. ShenC.H. HsiehY.Y. WeiK.L. Hepatoprotective effect of resveratrol against ethanol-induced oxidative stress through induction of superoxide dismutase in vivo and in vitro.Exp. Ther. Med.20161141231123810.3892/etm.2016.3077 27073428
    [Google Scholar]
  26. MokniM. ElkahouiS. LimamF. AmriM. AouaniE. Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat.Neurochem. Res.200732698198710.1007/s11064‑006‑9255‑z 17401679
    [Google Scholar]
  27. RobbE.L. WinkelmolenL. VisanjiN. BrotchieJ. StuartJ.A. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain.Biochem. Biophys. Res. Commun.2008372125425910.1016/j.bbrc.2008.05.028 18486604
    [Google Scholar]
  28. KitadaM. KumeS. ImaizumiN. KoyaD. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway.Diabetes201160263464310.2337/db10‑0386 21270273
    [Google Scholar]
  29. BaurJ.A. PearsonK.J. PriceN.L. JamiesonH.A. LerinC. KalraA. PrabhuV.V. AllardJ.S. Lopez-LluchG. LewisK. PistellP.J. PoosalaS. BeckerK.G. BossO. GwinnD. WangM. RamaswamyS. FishbeinK.W. SpencerR.G. LakattaE.G. Le CouteurD. ShawR.J. NavasP. PuigserverP. IngramD.K. de CaboR. SinclairD.A. Resveratrol improves health and survival of mice on a high-calorie diet.Nature2006444711733734210.1038/nature05354 17086191
    [Google Scholar]
  30. HalliwellB. Dietary polyphenols: Good, bad, or indifferent for your health?Cardiovasc. Res.200773234134710.1016/j.cardiores.2006.10.004 17141749
    [Google Scholar]
  31. LagougeM. ArgmannC. Gerhart-HinesZ. MezianeH. LerinC. DaussinF. MessadeqN. MilneJ. LambertP. ElliottP. GenyB. LaaksoM. PuigserverP. AuwerxJ. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.Cell200612761109112210.1016/j.cell.2006.11.013 17112576
    [Google Scholar]
  32. ZangM. XuS. Maitland-ToolanK.A. ZuccolloA. HouX. JiangB. WierzbickiM. VerbeurenT.J. CohenR.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice.Diabetes20065582180219110.2337/db05‑1188 16873680
    [Google Scholar]
  33. BordoneL. CohenD. RobinsonA. MottaM.C. Van VeenE. CzopikA. SteeleA.D. CroweH. MarmorS. LuoJ. GuW. GuarenteL. SIRT1 transgenic mice show phenotypes resembling calorie restriction.Aging Cell20076675976710.1111/j.1474‑9726.2007.00335.x 17877786
    [Google Scholar]
  34. DonnezD. JeandetP. ClémentC. CourotE. Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms.Trends Biotechnol.2009271270671310.1016/j.tibtech.2009.09.005 19875185
    [Google Scholar]
  35. ZhangM. GaoQ. LiuY. FangZ. GongZ. ZhaoZ.K. YangX. Metabolic engineering of Rhodotorula toruloides for resveratrol production.Microb. Cell Fact.202221127010.1186/s12934‑022‑02006‑w 36566171
    [Google Scholar]
  36. FranciosoaA. MastromarinoP. MasciA. d’ErmeM. MoscaL. Chemistry, stability and bioavailability of resveratrol.Med. Chem.201410323724510.2174/15734064113096660053 24329932
    [Google Scholar]
  37. KulkarniS.S. CantóC. The molecular targets of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261114112310.1016/j.bbadis.2014.10.005 25315298
    [Google Scholar]
  38. CichewiczR.H. KouziS.A. Resveratrol oligomers: Structure, chemistry, and biological activity.Studies in Natural Products Chemistry20022650757910.1016/S1572‑5995(02)80014‑X
    [Google Scholar]
  39. Fiod RiccioB.V. Fonseca-SantosB. Colerato FerrariP. ChorilliM. Characteristics, biological properties and analytical methods of trans -resveratrol: A review.Crit. Rev. Anal. Chem.202050433935810.1080/10408347.2019.1637242 31353930
    [Google Scholar]
  40. MeiY.Z. LiuR.X. WangD.P. WangX. DaiC.C. Biocatalysis and biotransformation of resveratrol in microorganisms.Biotechnol. Lett.201537191810.1007/s10529‑014‑1651‑x 25179823
    [Google Scholar]
  41. QuideauS. DeffieuxD. Douat-CasassusC. PouységuL. Plant polyphenols: Chemical properties, biological activities, and synthesis.Angew. Chem. Int. Ed.201150358662110.1002/anie.201000044 21226137
    [Google Scholar]
  42. SolladiéG. Pasturel-JacopéY. MaignanJ. A re-investigation of resveratrol synthesis by Perkins reaction. Application to the synthesis of aryl cinnamic acids.Tetrahedron200359183315332110.1016/S0040‑4020(03)00405‑8
    [Google Scholar]
  43. SaraswatiS. Strategies and methods for the syntheses of natural oligomeric stilbenoids and analogues.Curr. Org. Chem.201216560566210.2174/138527212799859390
    [Google Scholar]
  44. NandagopalK. HalderM. DashB. NayakS. JhaS. Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone.Curr. Med. Chem.201825364693471710.2174/0929867324666170404145656 28393691
    [Google Scholar]
  45. DuJ. ShaoZ. ZhaoH. Engineering microbial factories for synthesis of value-added products.J. Ind. Microbiol. Biotechnol.201138887389010.1007/s10295‑011‑0970‑3 21526386
    [Google Scholar]
  46. HallsC. YuO. Potential for metabolic engineering of resveratrol biosynthesis.Trends Biotechnol.2008262778110.1016/j.tibtech.2007.11.002 18191264
    [Google Scholar]
  47. BeekwilderJ. WolswinkelR. JonkerH. HallR. de VosC.H.R. BovyA. Production of resveratrol in recombinant microorganisms.Appl. Environ. Microbiol.20067285670567210.1128/AEM.00609‑06 16885328
    [Google Scholar]
  48. BeckerJ.V. ArmstrongG.O. van der MerweM.J. LambrechtsM.G. VivierM.A. PretoriusI.S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol.FEMS Yeast Res.200341798510.1016/S1567‑1356(03)00157‑0 14554199
    [Google Scholar]
  49. Sáez-SáezJ. WangG. MarellaE.R. SudarsanS. Cernuda PastorM. BorodinaI. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production.Metab. Eng.202062516110.1016/j.ymben.2020.08.009 32818629
    [Google Scholar]
  50. LimC.G. FowlerZ.L. HuellerT. SchafferS. KoffasM.A.G. High-yield resveratrol production in engineered Escherichia coli.Appl. Environ. Microbiol.201177103451346010.1128/AEM.02186‑10 21441338
    [Google Scholar]
  51. ChoiO. WuC.Z. KangS.Y. AhnJ.S. UhmT.B. HongY.S. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli.J. Ind. Microbiol. Biotechnol.201138101657166510.1007/s10295‑011‑0954‑3 21424580
    [Google Scholar]
  52. ChemlerJ.A. KoffasM.A.G. Metabolic engineering for plant natural product biosynthesis in microbes.Curr. Opin. Biotechnol.200819659760510.1016/j.copbio.2008.10.011 18992815
    [Google Scholar]
  53. TavaresS. VesentiniD. FernandesJ.C. FerreiraR.B. LaureanoO. Ricardo-Da-SilvaJ.M. AmâncioS. Vitis vinifera secondary metabolism as affected by sulfate depletion: Diagnosis through phenylpropanoid pathway genes and metabolites.Plant Physiol. Biochem.20136611812610.1016/j.plaphy.2013.01.022 23500714
    [Google Scholar]
  54. YangH. ZhangX. LiuY. LiuL. LiJ. DuG. ChenJ. Synthetic biology-driven microbial production of folates: Advances and perspectives.Bioresour. Technol.202132412462410.1016/j.biortech.2020.124624 33434873
    [Google Scholar]
  55. DudnikA. GasparP. NevesA.R. ForsterJ. Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial Properties.Curr. Pharm. Des.201824192208222510.2174/1381612824666180515152049 29766793
    [Google Scholar]
  56. CravensA. PayneJ. SmolkeC.D. Synthetic biology strategies for microbial biosynthesis of plant natural products.Nat. Commun.2019101214210.1038/s41467‑019‑09848‑w 31086174
    [Google Scholar]
  57. YuanS.F. YiX. JohnstonT.G. AlperH.S. De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture.Microb. Cell Fact.202019114310.1186/s12934‑020‑01401‑5 32664999
    [Google Scholar]
  58. MaJ. GuY. MarsafariM. XuP. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform.J. Ind. Microbiol. Biotechnol.2020479-1084586210.1007/s10295‑020‑02290‑8 32623653
    [Google Scholar]
  59. MadzakC. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.Mol. Biotechnol.201860862163510.1007/s12033‑018‑0093‑4 29943148
    [Google Scholar]
  60. YesilirmakF. SayersZ. Heterelogous expression of plant genes.Int. J. Plant Genomics2009200911610.1155/2009/296482 19672459
    [Google Scholar]
  61. KrivoruchkoA. NielsenJ. Production of natural products through metabolic engineering of Saccharomyces cerevisiae.Curr. Opin. Biotechnol.20153571510.1016/j.copbio.2014.12.004 25544013
    [Google Scholar]
  62. HuangL.L. XueZ. ZhuQ.Q. Method for the production of resveratrol in a recombinant oleaginous microorganism.U.S. Patent 7772444B22005
  63. GuY. MaJ. ZhuY. DingX. XuP. Engineering yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals.ACS Synth. Biol.2020982096210610.1021/acssynbio.0c00185 32650638
    [Google Scholar]
  64. HeQ. SzczepańskaP. YuzbashevT. LazarZ. Ledesma-AmaroR. De novo production of resveratrol from glycerol by engineering different metabolic pathways in Yarrowia lipolytica.Metab. Eng. Commun.202011e0014610.1016/j.mec.2020.e00146 33014707
    [Google Scholar]
  65. BragaA. FerreiraP. OliveiraJ. RochaI. FariaN. Heterologous production of resveratrol in bacterial hosts: Current status and perspectives.World J. Microbiol. Biotechnol.201834812210.1007/s11274‑018‑2506‑8 30054757
    [Google Scholar]
  66. ZhangW. YangY. LiuX. LiuC. BaiZ. Development of a secretory expression system with high compatibility between expression elements and an optimized host for endoxylanase production in Corynebacterium glutamicum.Microb. Cell Fact.20191817210.1186/s12934‑019‑1116‑y 30995928
    [Google Scholar]
  67. WangY.Y. XuJ.Z. ZhangW.G. Metabolic engineering of L -leucine production in Escherichia coli and Corynebacterium glutamicum: A review.Crit. Rev. Biotechnol.201939563364710.1080/07388551.2019.1577214 31055970
    [Google Scholar]
  68. WangY.Y. ZhangF. XuJ.Z. ZhangW.G. ChenX.L. LiuL.M. Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux.Int. J. Mol. Sci.2019208202010.3390/ijms20082020 31022947
    [Google Scholar]
  69. KallscheuerN. VogtM. StenzelA. GätgensJ. BottM. MarienhagenJ. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones.Metab. Eng.201638475510.1016/j.ymben.2016.06.003 27288926
    [Google Scholar]
  70. CotnerM. ZhanJ. ZhangZ. A computational metabolic model for engineered production of resveratrol in escherichia coli.ACS Synth. Biol.20211081992200110.1021/acssynbio.1c00163 34237218
    [Google Scholar]
  71. KatzM. SmitsH.P. FörsterJ. Bredal NielsenJ. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof.U.S. Patent WO20060898982006
    [Google Scholar]
  72. ParkS.R. YoonJ.A. PaikJ.H. ParkJ.W. JungW.S. BanY.H. KimE.J. YooY.J. HanA.R. YoonY.J. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae.J. Biotechnol.20091413-418118810.1016/j.jbiotec.2009.03.013 19433224
    [Google Scholar]
  73. van Summeren-WesenhagenP.V. MarienhagenJ. Putting bugs to the blush.Bioengineered20134635536210.4161/bioe.23885 23851446
    [Google Scholar]
  74. MilkeL. AschenbrennerJ. MarienhagenJ. KallscheuerN. Production of plant-derived polyphenols in microorganisms: Current state and perspectives.Appl. Microbiol. Biotechnol.201810241575158510.1007/s00253‑018‑8747‑5 29340710
    [Google Scholar]
  75. LiuX. LinJ. HuH. ZhouB. ZhuB. De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli.FEMS Microbiol. Lett.20163638fnw06110.1093/femsle/fnw061 26976851
    [Google Scholar]
  76. WuJ. ZhouP. ZhangX. DongM. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli.J. Ind. Microbiol. Biotechnol.20174471083109510.1007/s10295‑017‑1937‑9 28324236
    [Google Scholar]
  77. WuJ. LiuP. FanY. BaoH. DuG. ZhouJ. ChenJ. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine.J. Biotechnol.2013167440441110.1016/j.jbiotec.2013.07.030 23916948
    [Google Scholar]
  78. KatsuyamaY. FunaN. HorinouchiS. Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli.Biotechnol. J.20072101286129310.1002/biot.200700098 17806099
    [Google Scholar]
  79. SongX. LiY. WuY. CaiM. LiuQ. GaoK. ZhangX. BaiY. XuH. QiaoM. Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae.FEMS Yeast Res.201818810.1093/femsyr/foy090 30107496
    [Google Scholar]
  80. SongX. LiuQ. MaoJ. WuY. LiY. GaoK. ZhangX. BaiY. XuH. QiaoM. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae.FEMS Yeast Res.201717610.1093/femsyr/fox064 28922845
    [Google Scholar]
  81. LianJ. MishraS. ZhaoH. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.Metab. Eng.2018508510810.1016/j.ymben.2018.04.011 29702275
    [Google Scholar]
  82. ZhangE. GuoX. MengZ. WangJ. SunJ. YaoX. XunH. Construction, expression, and characterization of Arabidopsis thaliana 4CL and Arachis hypogaea RS fusion gene 4CL:RS in Escherichia coli.World J. Microbiol. Biotechnol.20153191379138510.1007/s11274‑015‑1889‑z 26092168
    [Google Scholar]
  83. WangY. XueP. CaoM. YuT. LaneS.T. ZhaoH. Directed Evolution: Methodologies and Applications.Chem. Rev.202112120123841244410.1021/acs.chemrev.1c00260 34297541
    [Google Scholar]
  84. XiongD. LuS. WuJ. LiangC. WangW. WangW. JinJ.M. TangS.Y. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor.Metab. Eng.20174011512310.1016/j.ymben.2017.01.006 28111248
    [Google Scholar]
  85. BelhadjA. TelefN. SaigneC. CluzetS. BarrieuF. HamdiS. MérillonJ.M. Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures.Plant Physiol. Biochem.200846449349910.1016/j.plaphy.2007.12.001 18294857
    [Google Scholar]
  86. WangW. TangK. YangH.R. WenP.F. ZhangP. WangH.L. HuangW.D. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation.Plant Physiol. Biochem.2010482-314215210.1016/j.plaphy.2009.12.002 20060310
    [Google Scholar]
  87. LuY. ShaoD. ShiJ. HuangQ. YangH. JinM. Strategies for enhancing resveratrol production and the expression of pathway enzymes.Appl. Microbiol. Biotechnol.2016100177407742110.1007/s00253‑016‑7723‑1 27405437
    [Google Scholar]
  88. BallardT.S. MallikarjunanP. ZhouK. O’KeefeS. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins.Food Chem.201012041185119210.1016/j.foodchem.2009.11.063
    [Google Scholar]
  89. MantegnaS. BinelloA. BoffaL. GiorgisM. CenaC. CravottoG. A one-pot ultrasound-assisted water extraction/cyclodextrin encapsulation of resveratrol from Polygonum cuspidatum.Food Chem.2012130374675010.1016/j.foodchem.2011.07.038
    [Google Scholar]
  90. LuY. YeC. CheJ. XuX. ShaoD. JiangC. LiuY. ShiJ. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1.Microb. Cell Fact.20191811310.1186/s12934‑019‑1063‑7 30678677
    [Google Scholar]
  91. WattsK.T. LeeP.C. Schmidt-DannertC. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli.BMC Biotechnol.2006612210.1186/1472‑6750‑6‑22 16551366
    [Google Scholar]
  92. KatsuyamaY. FunaN. MiyahisaI. HorinouchiS. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli.Chem. Biol.200714661362110.1016/j.chembiol.2007.05.004 17584609
    [Google Scholar]
  93. KiselevK.V. DubrovinaA.S. VeselovaM.V. BulgakovV.P. FedoreyevS.A. ZhuravlevY.N. The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells.J. Biotechnol.2007128368169210.1016/j.jbiotec.2006.11.008 17166613
    [Google Scholar]
  94. DubrovinaA.S. ManyakhinA.Y. ZhuravlevY.N. KiselevK.V. Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis.Appl. Microbiol. Biotechnol.201088372773610.1007/s00253‑010‑2792‑z 20683716
    [Google Scholar]
  95. WangL. WuY. ChenY. ZouJ. LiX. Biotransformation of resveratrol: New prenylated trans-resveratrol synthesized by aspergillus sp. SCSIOW2.Molecules201621788310.3390/molecules21070883 27399656
    [Google Scholar]
  96. VenugopalanA. SrivastavaS. Endophytes as in vitro production platforms of high value plant secondary metabolites.Biotechnol. Adv.201533687388710.1016/j.biotechadv.2015.07.004 26225453
    [Google Scholar]
  97. DwibediV. SaxenaS. Arcopilus aureus, a resveratrol-producing endophyte from vitis vinifera.Appl. Biochem. Biotechnol.2018186247649510.1007/s12010‑018‑2755‑x 29654467
    [Google Scholar]
  98. MengX. ZhouJ. ZhaoC.N. GanR.Y. LiH.B. Health benefits and molecular mechanisms of resveratrol: A narrative review.Foods20209334010.3390/foods9030340 32183376
    [Google Scholar]
  99. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.1263597 28001084
    [Google Scholar]
  100. ChhabraG. SinghC.K. AmiriD. AkulaN. AhmadN. Recent advancements on immunomodulatory mechanisms of resveratrol in tumor microenvironment.Molecules2021265134310.3390/molecules26051343 33802331
    [Google Scholar]
  101. YuX.D. YangJ. ZhangW.L. LiuD.X. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest.Tumour Biol.20163732871287710.1007/s13277‑015‑3793‑4 26409447
    [Google Scholar]
  102. NieP. HuW. ZhangT. YangY. HouB. ZouZ. Synergistic induction of erlotinib-mediated apoptosis by resveratrol in human non-small-cell lung cancer cells by down-regulating survivin and up-regulating PUMA.Cell. Physiol. Biochem.20153562255227110.1159/000374030 25895606
    [Google Scholar]
  103. WuX. XuY. ZhuB. LiuQ. YaoQ. ZhaoG. Resveratrol induces apoptosis in SGC 7901 gastric cancer cells.Oncol. Lett.20181632949295610.3892/ol.2018.9045 30127883
    [Google Scholar]
  104. YangY. HuangX. ChenS. MaG. ZhuM. YanF. YuJ. Resveratrol induced apoptosis in human gastric carcinoma SGC‐7901 cells via activation of mitochondrial pathway.Asia Pac. J. Clin. Oncol.2018145e317e32410.1111/ajco.12841 29316254
    [Google Scholar]
  105. ShengL. AnL. HeY. FanG. YuanY. [Research on resveratrol’s effects on suppressing growth and inducing apoptosis of GBC cells].Zhong Yao Cai2005286489491 16209266
    [Google Scholar]
  106. YanY. ZhouC. LiJ. ChenK. WangG. WeiG. ChenM. LiX. Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1.Mol. Cell. Biochem.20174341-2172410.1007/s11010‑017‑3031‑z 28455791
    [Google Scholar]
  107. YangL. YangL. TianW. LiJ. LiuJ. ZhuM. ZhangY. YangY. LiuF. ZhangQ. LiuQ. ShenY. QiZ. Resveratrol plays dual roles in pancreatic cancer cells.J. Cancer Res. Clin. Oncol.2014140574975510.1007/s00432‑014‑1624‑4 24604347
    [Google Scholar]
  108. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms18122589 29194365
    [Google Scholar]
  109. GluckmanP.D. HansonM.A. The developmental origins of the metabolic syndrome.Trends Endocrinol. Metab.200415418318710.1016/j.tem.2004.03.002 15109618
    [Google Scholar]
  110. ParkS.J. AhmadF. PhilpA. BaarK. WilliamsT. LuoH. KeH. RehmannH. TaussigR. BrownA.L. KimM.K. BeavenM.A. BurginA.B. ManganielloV. ChungJ.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.BMC Proc.20126S37310.1186/1753‑6561‑6‑S3‑P73 22304913
    [Google Scholar]
  111. HuangH. VandekeereS. KaluckaJ. BierhanslL. ZecchinA. BrüningU. VisnagriA. YuldashevaN. GoveiaJ. CruysB. BrepoelsK. WynsS. RayportS. GhesquièreB. VinckierS. SchoonjansL. CubbonR. DewerchinM. EelenG. CarmelietP. Role of glutamine and interlinked asparagine metabolism in vessel formation.EMBO J.201736162334235210.15252/embj.201695518 28659375
    [Google Scholar]
  112. EelenG. de ZeeuwP. SimonsM. CarmelietP. Endothelial cell metabolism in normal and diseased vasculature.Circ. Res.201511671231124410.1161/CIRCRESAHA.116.302855 25814684
    [Google Scholar]
  113. ShiJ. YangY. ChengA. XuG. HeF. Metabolism of vascular smooth muscle cells in vascular diseases.Am. J. Physiol. Heart Circ. Physiol.20203193H613H63110.1152/ajpheart.00220.2020 32762559
    [Google Scholar]
  114. ElgebalyA. RadwanI.A.I. AboElnasM.M. IbrahimH.H. EltoomyM.F.M. AttaA.A. MesalamH.A. SayedA.A. OthmanA.A. Resveratrol supplementation in patients with non-alcoholic fatty liver disease: Systematic review and meta-analysis.J. Gastrointestin. Liver Dis.2017261596710.15403/jgld.2014.1121.261.ely 28338115
    [Google Scholar]
  115. ZhangC. YuanW. FangJ. WangW. HeP. LeiJ. WangC. Efficacy of resveratrol supplementation against non-alcoholic fatty liver disease: A meta-analysis of placebo-controlled clinical trials.PLoS One2016118e016179210.1371/journal.pone.0161792 27560482
    [Google Scholar]
  116. KangL. HengW. YuanA. BaolinL. FangH. Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: Relative to inhibition of inflammatory responses.Biochimie201092778979610.1016/j.biochi.2010.02.024 20188786
    [Google Scholar]
  117. KangW. HongH.J. GuanJ. KimD.G. YangE.J. KohG. ParkD. HanC.H. LeeY.J. LeeD.H. Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents.Metabolism201261342443310.1016/j.metabol.2011.08.003 21945106
    [Google Scholar]
  118. ZhengT. ChenH. Resveratrol ameliorates the glucose uptake and lipid metabolism in gestational diabetes mellitus mice and insulin-resistant adipocytes via miR-23a-3p/NOV axis.Mol. Immunol.202113716317310.1016/j.molimm.2021.06.011 34256324
    [Google Scholar]
  119. HuangX. SunJ. ChenG. NiuC. WangY. ZhaoC. SunJ. HuangH. HuangS. LiangY. ShenY. CongW. JinL. ZhuZ. Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis.Front. Pharmacol.20191042110.3389/fphar.2019.00421 31068817
    [Google Scholar]
  120. TruongV.L. JunM. JeongW.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress.Biofactors2018441364910.1002/biof.1399 29193412
    [Google Scholar]
  121. WangH.L. GaoJ.P. HanY.L. XuX. WuR. GaoY. CuiX.H. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo.Phytomedicine201522555355910.1016/j.phymed.2015.03.014 25981921
    [Google Scholar]
  122. FanD. LiuC. ZhangZ. HuangK. WangT. ChenS. LiZ. Progress in the preclinical and clinical study of resveratrol for vascular metabolic disease.Molecules20222721752410.3390/molecules27217524 36364370
    [Google Scholar]
  123. LaslettL.J. AlagonaP.Jr ClarkB.A.III DrozdaJ.P.Jr SaldivarF. WilsonS.R. PoeC. HartM. The worldwide environment of cardiovascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology.J. Am. Coll. Cardiol.20126025S1S4910.1016/j.jacc.2012.11.002 23257320
    [Google Scholar]
  124. HaskóG. PacherP. Endothelial Nrf2 activation: A new target for resveratrol?Am. J. Physiol. Heart Circ. Physiol.20102991H10H1210.1152/ajpheart.00436.2010 20472762
    [Google Scholar]
  125. ParkD.W. BaekK. KimJ.R. LeeJ.J. RyuS.H. ChinB.R. BaekS.H. Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1.Exp. Mol. Med.200941317117910.3858/emm.2009.41.3.020 19293636
    [Google Scholar]
  126. LatruffeN. LançonA. FrazziR. AiresV. DelmasD. MichailleJ.J. DjouadiF. BastinJ. Cherkaoui-MalkiM. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation.Ann. N. Y. Acad. Sci.2015134819710610.1111/nyas.12819 26190093
    [Google Scholar]
  127. RiveraL. MorónR. ZarzueloA. GalisteoM. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats.Biochem. Pharmacol.20097761053106310.1016/j.bcp.2008.11.027 19100718
    [Google Scholar]
  128. DolinskyV.W. ChakrabartiS. PereiraT.J. OkaT. LevasseurJ. BekerD. ZordokyB.N. MortonJ.S. NagendranJ. LopaschukG.D. DavidgeS.T. DyckJ.R.B. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice.Biochim. Biophys. Acta Mol. Basis Dis.20131832101723173310.1016/j.bbadis.2013.05.018 23707558
    [Google Scholar]
  129. ChanV. FenningA. IyerA. HoeyA. BrownL. Resveratrol improves cardiovascular function in DOCA-salt hypertensive rats.Curr. Pharm. Biotechnol.201112342943610.2174/138920111794480552 20874677
    [Google Scholar]
  130. RimbaudS. RuizM. PiquereauJ. MateoP. FortinD. VekslerV. GarnierA. Ventura-ClapierR. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure.PLoS One2011610e2639110.1371/journal.pone.0026391 22028869
    [Google Scholar]
  131. ZordokyB.N.M. RobertsonI.M. DyckJ.R.B. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases.Biochim. Biophys. Acta Mol. Basis Dis.2015185261155117710.1016/j.bbadis.2014.10.016 25451966
    [Google Scholar]
  132. ShenM. WuR.X. ZhaoL. LiJ. GuoH.T. FanR. CuiY. WangY.M. YueS.Q. PeiJ.M. Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism.PLoS One2012712e5122310.1371/journal.pone.0051223 23284668
    [Google Scholar]
  133. GutlapalliS.D. KondapaneniV. ToulassiI.A. PoudelS. ZebM. ChoudhariJ. CancarevicI. The Effects of Resveratrol on Telomeres and Post Myocardial Infarction Remodeling.Cureus20201211e1148210.7759/cureus.11482 33329978
    [Google Scholar]
  134. FanS. HuY. YouY. XueW. ChaiR. ZhangX. ShouX. ShiJ. Role of resveratrol in inhibiting pathological cardiac remodeling.Front. Pharmacol.20221392447310.3389/fphar.2022.924473 36120366
    [Google Scholar]
  135. McCubreyJ.A. LertpiriyapongK. SteelmanL.S. AbramsS.L. YangL.V. MurataR.M. RosalenP.L. ScalisiA. NeriL.M. CoccoL. RattiS. MartelliA.M. LaidlerP. Dulińska-LitewkaJ. RakusD. GizakA. LombardiP. NicolettiF. CandidoS. LibraM. MontaltoG. CervelloM. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs.Aging (Albany NY)2017961477153610.18632/aging.101250 28611316
    [Google Scholar]
  136. ChenK. WangS. SunQ.W. ZhangB. UllahM. SunZ. Klotho Deficiency Causes Heart Aging via Impairing the Nrf2-GR Pathway.Circ. Res.2021128449250710.1161/CIRCRESAHA.120.317348 33334122
    [Google Scholar]
  137. NiW. ZhangY. YinZ. The protective mechanism of Klotho gene-modified bone marrow mesenchymal stem cells on acute kidney injury induced by rhabdomyolysis.Regen. Ther.20211825526710.1016/j.reth.2021.07.003 34466631
    [Google Scholar]
  138. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. The hallmarks of aging.Cell201315361194121710.1016/j.cell.2013.05.039 23746838
    [Google Scholar]
  139. FernandesG. SilvaG. PavanA. ChibaD. ChinC. Dos SantosJ. Epigenetic regulatory mechanisms induced by resveratrol.Nutrients2017911120110.3390/nu9111201 29104258
    [Google Scholar]
  140. RanG. YingL. LiL. YanQ. YiW. YingC. WuH. YeX. Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebrafish (Danio rerio).PLoS One2017127e018086510.1371/journal.pone.0180865 28686680
    [Google Scholar]
  141. HerskovitsA.Z. GuarenteL. SIRT1 in neurodevelopment and brain senescence.Neuron201481347148310.1016/j.neuron.2014.01.028 24507186
    [Google Scholar]
  142. OmodeiD. FontanaL. Calorie restriction and prevention of age‐associated chronic disease.FEBS Lett.2011585111537154210.1016/j.febslet.2011.03.015 21402069
    [Google Scholar]
  143. LiuJ. CaiG. NingY. WangJ. LvY. GuoY. FuB. HongQ. SunX. ChenX. Caloric restriction alleviates aging-related fibrosis of kidney through downregulation of miR-21 in extracellular vesicles.Aging (Albany NY)20201218180521807210.18632/aging.103591 32963130
    [Google Scholar]
  144. GuoX.F. LiJ.M. TangJ. LiD. Effects of resveratrol supplementation on risk factors of non-communicable diseases: A meta-analysis of randomized controlled trials.Crit. Rev. Food Sci. Nutr.201858173016302910.1080/10408398.2017.1349076 28933578
    [Google Scholar]
  145. TimmersS. KoningsE. BiletL. HoutkooperR.H. van de WeijerT. GoossensG.H. HoeksJ. van der KriekenS. RyuD. KerstenS. Moonen-KornipsE. HesselinkM.K.C. KunzI. Schrauwen-HinderlingV.B. BlaakE.E. AuwerxJ. SchrauwenP. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans.Cell Metab.201114561262210.1016/j.cmet.2011.10.002 22055504
    [Google Scholar]
  146. DolinskyV.W. DyckJ.R.B. Calorie restriction and resveratrol in cardiovascular health and disease.Biochim. Biophys. Acta Mol. Basis Dis.20111812111477148910.1016/j.bbadis.2011.06.010 21749920
    [Google Scholar]
  147. HowitzK.T. BittermanK.J. CohenH.Y. LammingD.W. LavuS. WoodJ.G. ZipkinR.E. ChungP. KisielewskiA. ZhangL.L. SchererB. SinclairD.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.Nature2003425695419119610.1038/nature01960 12939617
    [Google Scholar]
  148. CollinsJ.J. EvasonK. KornfeldK. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans.Exp. Gerontol.200641101032103910.1016/j.exger.2006.06.038 16872777
    [Google Scholar]
  149. GaoX. XuY.X. JanakiramanN. ChapmanR.A. GautamS.C. Immunomodulatory activity of resveratrol: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production11Abbreviations: CTLs, cytotoxic T lymphocytes; LAK cells, lymphokine activated killer cells; IL-2, interleukin-2; IFN-γ, interferon-gamma; TNF-α, tumor necrosis factor-α NF-κB, nuclear factor kappa B; Con A, concanavalin A; HBSS, Hanks’ balanced salt solution; DTT, dithiothreitol; PMSF, phenylmethylsulfonyl fluoride; RT-PCR, reverse transcription-polymerase chain reaction; LPS, lipopolysaccharide; and EMSA, electrophoretic mobility shift assay.Biochem. Pharmacol.20016291299130810.1016/S0006‑2952(01)00775‑4 11705464
    [Google Scholar]
  150. FalchettiR. FuggettaM.P. LanzilliG. TricaricoM. RavagnanG. Effects of resveratrol on human immune cell function.Life Sci.2001701819610.1016/S0024‑3205(01)01367‑4 11764009
    [Google Scholar]
  151. WicińskiM. MalinowskiB. WęclewiczM.M. GrześkE. GrześkG. Anti-atherogenic properties of resveratrol: 4-week resveratrol administration associated with serum concentrations of SIRT1, adiponectin, S100A8/A9 and VSMCs contractility in a rat model.Exp. Ther. Med.20171352071207810.3892/etm.2017.4180 28565810
    [Google Scholar]
  152. WicińskiM. SochaM. WalczakM. WódkiewiczE. MalinowskiB. RewerskiS. GórskiK. Pawlak-OsińskaK. Beneficial effects of resveratrol administration—focus on potential biochemical mechanisms in cardiovascular conditions.Nutrients20181011181310.3390/nu10111813 30469326
    [Google Scholar]
  153. DelmasD. LimagneE. GhiringhelliF. AiresV. Immune Th17 lymphocytes play a critical role in the multiple beneficial properties of resveratrol.Food Chem. Toxicol.202013711109111109110.1016/j.fct.2019.111091 31883989
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010297228240612112520
Loading
/content/journals/cpb/10.2174/0113892010297228240612112520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test