Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

This comprehensive review of Spirulina encompasses biotechnology, phycocyanin production, and purification. Bioactive compounds and vital nutrients were investigated during the study. The literature examines the potential therapeutic advantages and clinical applications of Spirulina. This analysis assesses Spirulina consumption and its associated health risks.

The current review offers a comprehensive synthesis of the therapeutic applications as well as technologies utilized for the extraction and purification of phycocyanin. Moreover, this discourse delves into the examination of various advantageous techniques for extracting and purifying phycocyanin, encompassing physical, chemical, and enzymatic methods. The data derived from a multitude of studies strongly indicate the potential therapeutic applications of phycocyanin, encompassing its notable attributes as an antioxidant, anti-inflammatory agent, anticancer agent, antiviral agent, antimicrobial agent, antiallergic agent, anti-obesity agent, antihypertensive agent, and an immunological agent.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304524240514023735
2024-05-27
2025-10-08
Loading full text...

Full text loading...

References

  1. SoniR.A. SudhakarK. RanaR.S. Spirulina – From growth to nutritional product: A review.Trends Food Sci. Technol.20176915717110.1016/j.tifs.2017.09.010
    [Google Scholar]
  2. GromekW. KołdejN. KurowskiM. MajsiakE. Spirulina (Arthrospira platensis): Antiallergic agent or hidden allergen? A literature review.Foods2024137105210.3390/foods13071052 38611357
    [Google Scholar]
  3. CiferriO. Spirulina, the edible microorganism.Microbiol. Rev.198347455157810.1128/mr.47.4.551‑578.1983 6420655
    [Google Scholar]
  4. AlFadhlyN.K.Z. AlhelfiN. AltemimiA.B. VermaD.K. CacciolaF. NarayanankuttyA. Trends and technological advancements in the possible food applications of spirulina and their health benefits: A review.Molecules20222717558410.3390/molecules27175584 36080350
    [Google Scholar]
  5. HamedI. The evolution and versatility of microalgal biotechnology: A review.Compr. Rev. Food Sci. Food Saf.20161561104112310.1111/1541‑4337.12227 33401835
    [Google Scholar]
  6. GershwinM.E. BelayA. Eds.; Spirulina in Human Nutrition and Health.CRC Press200710.1201/9781420052572
    [Google Scholar]
  7. SinghM.P. SoniK. BhamraR. MittalR.K. Superfood: Value and need.Curr. Nutr. Food Sci.2022181656810.2174/1573401317666210420123013
    [Google Scholar]
  8. MittalR.K. MishraR. SharmaV. PurohitP. Bioactive exploration in functional foods: Unlocking nature’s treasures.Curr. Pharm. Biotechnol.202325 38031768
    [Google Scholar]
  9. MarlesR.J. BarrettM.L. BarnesJ. ChavezM.L. GardinerP. KoR. MahadyG.B. DogT.L. SarmaN.D. GiancasproG.I. SharafM. GriffithsJ. United States pharmacopeia safety evaluation of spirulina.Crit. Rev. Food Sci. Nutr.201151759360410.1080/10408391003721719 21793723
    [Google Scholar]
  10. Agency Response Letter GRASS Notice NoGRN 000127.2003Available from: https://www.algbiotek.com/spirulina-sertifikalar/spirulina-gras-2012.pdf
    [Google Scholar]
  11. MoorheadK. CapelliB. CysewskiG.R. SPIRULINA Nature’s Superfood.Kailua-Kona, HI, USACyanotech Corporation2013Vol. 53https://www.terapiaclark.es/Docs/spirulina_book.pdf
    [Google Scholar]
  12. SotiroudisT. SotiroudisG. Health aspects of Spirulina (Arthrospira) microalga food supplement.J. Serb. Chem. Soc.201378339540510.2298/JSC121020152S
    [Google Scholar]
  13. MiliaM. CorriasF. AddisP. Chini ZitelliG. CicchiB. TorzilloG. AndreottiV. AngioniA. Influence of different light sources on the biochemical composition of Arthrospira spp. grown in model systems.Foods202211339910.3390/foods11030399 35159549
    [Google Scholar]
  14. ÇelekliA. YavuzatmacaM. BozkurtH. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes.Bioresour. Technol.2009100143625362910.1016/j.biortech.2009.02.055 19329296
    [Google Scholar]
  15. FernandesR. CamposJ. SerraM. FidalgoJ. AlmeidaH. CasasA. ToubarroD. BarrosA.I.R.N.A. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications.Pharmaceuticals202316459210.3390/ph16040592 37111349
    [Google Scholar]
  16. Anosh Intikhab Saira Zafar Umar Farooq Sajeela Akram Juweria Abid Zehra Parveen Sehar Iqbal ParveenZ. IqbalS. Spirulina, an FDA-approved functional food: Worth the hype?Cell. Mol. Biol.202369113714410.14715/cmb/2022.69.1.24 37213142
    [Google Scholar]
  17. Scientific Opinion on the Substantiation of Health Claims Related to Various Food(s)/Food Constituent(s) Claiming Maintenance of Normal Blood Glucose Concentrations (ID 1987, 2091, 2135, 2179, 2335, 2461, 2642, 3145, 3230, 3244, 3258, 3291, 3345, 3375, 3408, 3438, 3457, 3471, 3528, 3534, 3540, 3554, 3557, 3583, 3625, 3628, 3730, 3782, 3851, 3971, 4034, 4043) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006.EFSA J.201082
    [Google Scholar]
  18. State of Technology ReviewAlgae Bioenergy.2017Available from: https://www.ieabioenergy.com/blog/publications/state-of-technology-review-algae-bioenergy/#:~:text=Even%20though%20algae%20remain%20an,of%20cultivating%20and%20harvesting%20algae
    [Google Scholar]
  19. Spirulina Market by Product Type(Powder, Tablets, Capsules, Flakes, Phycocyanin), Distribution Channel (Business Channel, Consumer Channel), Application (Nutraceuticals, Food and Beverages, Animal Feed, Cosmetics, Agriculture) - Global Forecast to 2030.2023Available from: https://www.giiresearch.com/report/meti1266319-spirulina-market-by-product-type-powder-tablets.html
    [Google Scholar]
  20. YuanB. LiZ. ShanH. DashnyamB. XuX. McClementsD.J. ZhangB. TanM. WangZ. CaoC. A review of recent strategies to improve the physical stability of phycocyanin.Current Research in Food Science202252329233710.1016/j.crfs.2022.11.019 36467748
    [Google Scholar]
  21. PortilloF.V.L. Sierra-IbarraE. Vera-EstrellaR. RevahS. RamírezO.T. CaspetaL. MartinezA. Growth and phycocyanin production with Galdieria sulphuraria UTEX 2919 using xylose, glucose, and corn stover hydrolysates under heterotrophy and mixotrophy.Algal Res.20226510275210.1016/j.algal.2022.102752
    [Google Scholar]
  22. KuddusM. SinghP. ThomasG. Al-HazimiA. Recent developments in production and biotechnological applications of C-phycocyanin.BioMed Res. Int.201320131910.1155/2013/742859 24063013
    [Google Scholar]
  23. EriksenN.T. Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine.Appl. Microbiol. Biotechnol.200880111410.1007/s00253‑008‑1542‑y 18563408
    [Google Scholar]
  24. LiuJ. ZhangX. SuiZ. ZhangX. MaoY. Cloning and characterization of c-phycocyanin operon from the cyanobacterium Arthrospira platensis FACHB341.J. Appl. Phycol.200517218118510.1007/s10811‑005‑6418‑2
    [Google Scholar]
  25. Pez JaeschkeD. Rocha TeixeiraI. Damasceno Ferreira MarczakL. Domeneghini MercaliG. Phycocyanin from Spirulina: A review of extraction methods and stability.Food Res. Int.202114311031410.1016/j.foodres.2021.110314 33992333
    [Google Scholar]
  26. İlterI. AkyılS. DemirelZ. KoçM. Conk-DalayM. Kaymak-ErtekinF. Optimization of phycocyanin extraction from Spirulina platensis using different techniques.J. Food Compos. Anal.201870788810.1016/j.jfca.2018.04.007
    [Google Scholar]
  27. Pan-utaiW. IamthamS. Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis.Process Biochem.20198218919810.1016/j.procbio.2019.04.014
    [Google Scholar]
  28. NazarR. YousuffM.I. NooruddinT. DharumaduraiD. Small-Scale Production and Business Plan for Phycocyanin from Cyanobacteria.Food Microbiology Based Entrepreneurship: Making Money from Microbes1st ed AmaresanN. DharumaduraiD. BabalolaO.O. Springer Nature Singapore: Singapore202325327710.1007/978‑981‑19‑5041‑4_14
    [Google Scholar]
  29. NiuJ.F. WangG.C. LinX. ZhouB.C. Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078501-226727610.1016/j.jchromb.2006.11.043 17178463
    [Google Scholar]
  30. LauceriR. Chini ZittelliG. TorzilloG. A simple method for rapid purification of phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass.Algal Res.20194410168510.1016/j.algal.2019.101685
    [Google Scholar]
  31. TavanandiH.A. MittalR. ChandrasekharJ. RaghavaraoK.S.M.S. Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis.Algal Res.20183123925110.1016/j.algal.2018.02.008
    [Google Scholar]
  32. GiannoglouM. AndreouV. ThanouI. MarkouG. KatsarosG. High pressure assisted extraction of proteins from wet biomass of Arthrospira platensis (spirulina) – A kinetic approach.Innov. Food Sci. Emerg. Technol.20228110313810.1016/j.ifset.2022.103138
    [Google Scholar]
  33. AkaberiS. KrustD. MüllerG. FreyW. GusbethC. Impact of incubation conditions on protein and C-Phycocyanin recovery from Arthrospira platensis post- pulsed electric field treatment.Bioresour. Technol.202030612309910.1016/j.biortech.2020.123099 32163865
    [Google Scholar]
  34. JiangL. YuS. PeiH. Seawater-cultured Spirulina subsalsa as a more promising host for phycocyanin production than Arthrospira platensis.Algal Res.20216010254510.1016/j.algal.2021.102545
    [Google Scholar]
  35. PatilG. RaghavaraoK.S.M.S. Aqueous two phase extraction for purification of C-phycocyanin.Biochem. Eng. J.200734215616410.1016/j.bej.2006.11.026
    [Google Scholar]
  36. JespersenL. StrmdahlL.D. OlsenK. SkibstedL.H. Heat and Light Stability of Three Natural Blue Colorants for Use in Confectionery and Beverages.Eur. Food Res. Technol.20042203–4261266
    [Google Scholar]
  37. Ruiz-DomínguezM.C. JáureguiM. MedinaE. JaimeC. CerezalP. Rapid Green Extractions of C-Phycocyanin from Arthrospira maxima for Functional Applications.Appl. Sci. (Basel)2019910198710.3390/app9101987
    [Google Scholar]
  38. VernèsL. Abert-VianM. El MaâtaouiM. TaoY. BornardI. ChematF. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects.Ultrason. Sonochem.201954486010.1016/j.ultsonch.2019.02.016 30827903
    [Google Scholar]
  39. C.-W.; BAEG. Y. BAES.-H. SUHH. J. JOK. Increased Thermal Stability of Phycocyanin Extracted from Spirulina Platensis by Cysteine Addition during Enzyme Extraction.Food Sci. Technol.202242
    [Google Scholar]
  40. RahmanD.Y. SarianF.D. van der MaarelM.J.E.C. Biomass and phycocyanin content of heterotrophic Galdieria sulphuraria 074G under maltodextrin and granular starches–feeding conditions.J. Appl. Phycol.2020321515710.1007/s10811‑019‑01957‑9
    [Google Scholar]
  41. MartínezJ.M. LuengoE. SaldañaG. ÁlvarezI. RasoJ. C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis.Food Res. Int.201799Pt 31042104710.1016/j.foodres.2016.09.029 28865615
    [Google Scholar]
  42. MoraesC.C. SalaL. CerveiraG.P. KalilS.J. C-phycocyanin extraction from Spirulina platensis wet biomass.Braz. J. Chem. Eng.2011281454910.1590/S0104‑66322011000100006
    [Google Scholar]
  43. KäferböckA. SmetanaS. de VosR. SchwarzC. ToepflS. ParniakovO. Sustainable extraction of valuable components from Spirulina assisted by pulsed electric fields technology.Algal Res.20204810191410.1016/j.algal.2020.101914
    [Google Scholar]
  44. PottR.W.M. The release of the blue biological pigment C‐phycocyanin through calcium‐aided cytolysis of live Spirulina sp.Color. Technol.20191351172110.1111/cote.12373
    [Google Scholar]
  45. Soto-SierraL. StoykovaP. NikolovZ.L. Extraction and fractionation of microalgae-based protein products.Algal Res.20183617519210.1016/j.algal.2018.10.023
    [Google Scholar]
  46. NiuJ.F. WangG.C. TsengC.K. Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev.Protein Expr. Purif.2006491233110.1016/j.pep.2006.02.001 16569506
    [Google Scholar]
  47. SongW. ZhaoC. WangS. A Large-Scale Preparation Method of High Purity C-Phycocyanin.Int. J. Biosci. Biochem. Bioinform.20133293297
    [Google Scholar]
  48. MarzoratiS. SchievanoA. IdàA. VerottaL. Carotenoids, chlorophylls and phycocyanin from Spirulina: supercritical CO 2 and water extraction methods for added value products cascade.Green Chem.202022118719610.1039/C9GC03292D
    [Google Scholar]
  49. ThevarajahB. NishshankaG.K.S.H. PremaratneM. NimarshanaP.H.V. NagarajanD. ChangJ.S. AriyadasaT.U. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach.Biochem. Eng. J.202218510854110.1016/j.bej.2022.108541
    [Google Scholar]
  50. GorgichM. PassosM.L.C. MataT.M. MartinsA.A. SaraivaM.L.M.F.S. CaetanoN.S. Enhancing extraction and purification of phycocyanin from Arthrospira sp. with lower energy consumption.Energy Rep.2020631231810.1016/j.egyr.2020.11.151
    [Google Scholar]
  51. YanS.G. ZhuL.P. SuH.N. ZhangX.Y. ChenX.L. ZhouB.C. ZhangY.Z. Single-step chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis.J. Appl. Phycol.20112311610.1007/s10811‑010‑9525‑7
    [Google Scholar]
  52. MinicS.L. Stanic-VucinicD. MihailovicJ. KrsticM. NikolicM.R. Cirkovic VelickovicT. Digestion by pepsin releases biologically active chromopeptides from C-phycocyanin, a blue-colored biliprotein of microalga Spirulina.J. Proteomics201614713213910.1016/j.jprot.2016.03.043 27084687
    [Google Scholar]
  53. ChenK.H. WangS.S.S. ShowP.L. HsuS.L. ChangY.K. Rapid and efficient recovery of C-phycocyanin from highly turbid Spirulina platensis algae using stirred fluidized bed ion exchange chromatography.Separ. Purif. Tech.201920963664510.1016/j.seppur.2018.08.057
    [Google Scholar]
  54. AmaranteM.C.A. Corrêa JúniorL.C.S. SalaL. KalilS. J. Analytical grade C-phycocyanin obtained by a single-step purification process.Process Biochem.20209021522210.1016/j.procbio.2019.11.020
    [Google Scholar]
  55. PrabakaranG. SampathkumarP. KavisriM. MoovendhanM. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect.Int. J. Biol. Macromol.202015325626310.1016/j.ijbiomac.2020.03.009 32142842
    [Google Scholar]
  56. WangY.Y. XuB.L. DongC.M. SunY.Y. The nutritional value of Spirulina and utilization research.Life Research2023631510.53388/LR20230015
    [Google Scholar]
  57. SeyidogluN. InanS. AydinC. A prominent superfood: Spirulina platensis.Superfood and Functional Food the Development of Superfoods and Their Roles as Medicine.London, UKIntechOpen2017Vol. 2212710.5772/66118
    [Google Scholar]
  58. WalterP. Effects of vegetarian diets on aging and longevity.Nutr. Rev.1997551S61S6510.1111/j.1753‑4887.1997.tb06106.x 9155227
    [Google Scholar]
  59. MishraP. SinghV.P. PrasadS.M. Spirulina and its nutritional importance: a possible approach for development of functional food.Biochem. Pharmacol.20143e171
    [Google Scholar]
  60. RachidiF. BenhimaR. KasmiY. SbabouL. ArroussiH.E. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches.Sci. Rep.202111193010.1038/s41598‑020‑78820‑2 33441599
    [Google Scholar]
  61. MadkourF.F. KamilA.E.W. NasrH.S. Production and nutritive value of Spirulina platensis in reduced cost media.Egypt. J. Aquat. Res.2012381515710.1016/j.ejar.2012.09.003
    [Google Scholar]
  62. HaoujarI. HaoujarM. AltemimiA.B. EssafiA. CacciolaF. Nutritional, sustainable source of aqua feed and food from microalgae: A mini review.Int. Aquatic Research20221419
    [Google Scholar]
  63. FalquetJ. HurniJ.P. The Nutritional Aspects of Spirulina.1997Available from: https://cryooh.com/wp-content/uploads/2023/03/SCIENTIFIC-REFERENCE-spirulina-ENERGYbits-amino-acid-profile-and-nutrients.pdf
    [Google Scholar]
  64. HosseiniS. ShahbazizadehS. Khosravi-DaraniK. MozafariM. Spirulina paltensis: Food and Function.Curr. Nutr. Food Sci.20139318919310.2174/1573401311309030003
    [Google Scholar]
  65. JamilA.B.M. AkandaM. RahmanM. HossainM. IslamM. Prebiotic competence of spirulina on the production performance of broiler chickens.J. Adv. Vet. Anim. Res.20152330430910.5455/javar.2015.b94
    [Google Scholar]
  66. Siva KiranR.R. MadhuG.M. SatyanarayanaS.V. Spirulina in combating protein energy malnutrition (PEM) and protein energy wasting (PEW)—A review.J. Nutr. Res.201516279
    [Google Scholar]
  67. SalmeánG.G. CastilloL.H.F. Chamorro-CevallosG. Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutr. Hosp. Organo Of. Soc. Española Nutr.Parenter. Enter.2015323440
    [Google Scholar]
  68. NakibD.M.E. IbrahimM.M. MahmoudN.S. RahmanE.N.A.E. GhalyA.E. Incorporation of Spirulina (Athrospira platensis) in traditional Egyptian cookies as a source of natural bioactive molecules and functional ingredients: Preparation and sensory evaluation of nutrition snack for school children.Eur. J. Nutr. Food Saf.2019937239710.9734/ejnfs/2019/v9i430084
    [Google Scholar]
  69. MahmoudA. SabaeS.A. HelalA.M. Culture and Biorefinary of Two Freshwater Microalgae; Spirulina platensis and Chlorella vulgaris As Vitamins Sources.Biosci. Res.20181545844589
    [Google Scholar]
  70. UsharaniG. SaranrajP. KanchanaD. Spirulina cultivation: A review.Int. J. Pharm. Biol. Arch.2012313271341
    [Google Scholar]
  71. GiriS.U. HadapadN.G. AkhadeA. BhilareP. Algae as Superfood.InBiomass and Bioenergy Solutions for Climate Change Mitigation and Sustainability2023129147
    [Google Scholar]
  72. LiestiantyD. RodianawatiI. Andi ArfahR. Asma AssaA. 2018
  73. VisoA.C. MartyJ.C. Fatty acids from 28 marine microalgae.Phytochemistry19933461521153310.1016/S0031‑9422(00)90839‑2
    [Google Scholar]
  74. CottinS.C. SandersT.A. HallW.L. The differential effects of EPA and DHA on cardiovascular risk factors.Proc. Nutr. Soc.201170221523110.1017/S0029665111000061 21349231
    [Google Scholar]
  75. SaadS. HussienM.H. Abou-ElWafaG.S. AldesuquyH.S. EltanahyE. Filter cake extract from the beet sugar industry as an economic growth medium for the production of Spirulina platensis as a microbial cell factory for protein.Microb. Cell Fact.202322113610.1186/s12934‑023‑02146‑7 37488525
    [Google Scholar]
  76. AlyasiriT. AlchalabiS. AlMayalyI. In vitro and In vivo antioxidant effect of Spirulina platensis against Lead induced toxicity in rats.Asian J. Agric. Biol.201866677
    [Google Scholar]
  77. AljobairM.O. AlbaridiN.A. AlkuraieefA.N. AlKehayezN.M. Physicochemical properties, nutritional value, and sensory attributes of a nectar developed using date palm puree and spirulina.Int. J. Food Prop.202124184585810.1080/10942912.2021.1938604
    [Google Scholar]
  78. AndradeL.M. AndradeC.J. DiasM. NascimentoC. MendesM.A. Chlorella and spirulina microalgae as sources of functional foods.Nutraceuticals Food Suppl.201864558
    [Google Scholar]
  79. AroraN. PhilippidisG.P. The Prospects of Algae-Derived Vitamins and Their Precursors for Sustainable Cosmeceuticals.Processes (Basel)202311258710.3390/pr11020587
    [Google Scholar]
  80. GognaS. KaurJ. SharmaK. PrasadR. SinghJ. BhadariyaV. KumarP. JarialS. Spirulina- An Edible Cyanobacterium with Potential Therapeutic Health Benefits and Toxicological Consequences.Journal of the American Nutrition Association202342655957210.1080/27697061.2022.2103852 35916491
    [Google Scholar]
  81. ScheerH. ZhaoK.H. Biliprotein maturation: the chromophore attachment.Mol. Microbiol.200868226327610.1111/j.1365‑2958.2008.06160.x 18284595
    [Google Scholar]
  82. MartelliF. CirliniM. LazziC. NevianiE. BerniniV. Edible seaweeds and spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria.Foods2020910144210.3390/foods9101442 33053649
    [Google Scholar]
  83. GarcíaJ.L. de VicenteM. GalánB. Microalgae, old sustainable food and fashion nutraceuticals.Microb. Biotechnol.20171051017102410.1111/1751‑7915.12800 28809450
    [Google Scholar]
  84. LafargaT. Fernández-SevillaJ.M. González-LópezC. Acién-FernándezF.G. Spirulina for the food and functional food industries.Food Res. Int.202013710935610.1016/j.foodres.2020.109356 33233059
    [Google Scholar]
  85. MachuL. MisurcovaL. Vavra AmbrozovaJ. OrsavovaJ. MlcekJ. SochorJ. JurikovaT. Phenolic content and antioxidant capacity in algal food products.Molecules20152011118113310.3390/molecules20011118 25587787
    [Google Scholar]
  86. HidayatiJ.R. YudiatiE. PringgeniesD. OktaviyantiD.T. KusumaA.P. Comparative study on antioxidant activities, total phenolic compound and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and Ulva lactuca extracted in different solvents polarity.E3S Web Conf.202014703012
    [Google Scholar]
  87. El-ChaghabyG.A. RashadS. Abdel-KaderS.F. RawashE.S.A. Abdul MoneemM. Assessment of phytochemical components, proximate composition and antioxidant properties of Scenedesmus obliquus, Chlorella vulgaris and Spirulina platensis algae extracts.Egypt. J. Aquat. Biol. Fish.20192352152610.21608/ejabf.2019.57884
    [Google Scholar]
  88. AngelinaM. MargarethS.K. MaternS.M. CharlesV.L. Antioxidants activity of the cyanobacterium, Arthrospira (Spirulina) fusiformis cultivated in a low-cost medium.Afr. J. Food Sci.201812818819510.5897/AJFS2018.1688
    [Google Scholar]
  89. GabrG.A. El-SayedS.M. HikalM.S. Antioxidant activities of phycocyanin: A bioactive compound from Spirulina platensis.J. Pharm. Res. Int.202032738510.9734/jpri/2020/v32i230407
    [Google Scholar]
  90. El-BeltagiH.S. DhawiF. AshoushI.S. RamadanK. Antioxidant, anti-cancer and ameliorative activities of Spirulina platensis and pomegranate juice against hepatic damage induced by CCl4.Not. Bot. Horti Agrobot. Cluj-Napoca20204841941195610.15835/nbha48412151
    [Google Scholar]
  91. DranseikienėD. Balčiūnaitė-MurzienėG. KarosienėJ. MorudovD. JuodžiukynienėN. HudzN. GerbutavičienėR.J. SavickienėN. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine.Plants2022119124910.3390/plants11091249 35567250
    [Google Scholar]
  92. MittalR.K. PurohitP. Quinoline-3-Carboxylic Acids: A Step Toward Highly Selective Antiproliferative Agent.Anticancer. Agents Med. Chem.202121131708171610.2174/1871520620999201124214112 33238852
    [Google Scholar]
  93. MittalR.K. PurohitP. Quinoline-3-carboxylate Derivatives: A New Hope as an Antiproliferative Agent.Anticancer. Agents Med. Chem.202020161981199110.2174/1871520620666200619175906 32560612
    [Google Scholar]
  94. PurohitP. MittalR.K. KhatanaK. Quinoline-3-Carboxylic Acids “DNA Minor Groove-Binding Agent”.Anticancer. Agents Med. Chem.202222234434810.2174/1871520621666210513160714 33992065
    [Google Scholar]
  95. BiswasT. MittalR.K. SharmaV. Nitrogen-Fused Heterocycles: Empowering Anticancer Drug Discovery.Med. Chem.202420
    [Google Scholar]
  96. JiangL. WangY. LiuG. LiuH. ZhuF. JiH. LiB. C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells.Cancer Cell Int.20181811210.1186/s12935‑018‑0511‑5 29416441
    [Google Scholar]
  97. MahmoudY.I. ShehataA.M.M. FaresN.H. MahmoudA.A. Spirulina inhibits hepatocellular carcinoma through activating p53 and apoptosis and suppressing oxidative stress and angiogenesis.Life Sci.202126511882710.1016/j.lfs.2020.118827 33253720
    [Google Scholar]
  98. JeongY. ChoiW.Y. ParkA. LeeY.J. LeeY. ParkG.H. LeeS.J. LeeW.K. RyuY.K. KangD.H. Marine cyanobacterium Spirulina maxima as an alternate to the animal cell culture medium supplement.Sci. Rep.2021111490610.1038/s41598‑021‑84558‑2 33649424
    [Google Scholar]
  99. CzerwonkaA. KaławajK. Sławińska-BrychA. LemieszekM.K. BartnikM. WojtanowskiK.K. ZdzisińskaB. RzeskiW. Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line.Biomed. Pharmacother.201810629230210.1016/j.biopha.2018.06.116 29966973
    [Google Scholar]
  100. LiuY. XuL. ChengN. LinL. ZhangC. Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells.J. Appl. Phycol.200012212513010.1023/A:1008132210772
    [Google Scholar]
  101. SchwartzJ. ShklarG. Regression of experimental hamster cancer by beta carotene and algae extracts.J. Oral Maxillofac. Surg.198745651051510.1016/S0278‑2391(87)80011‑3 3108474
    [Google Scholar]
  102. SchwartzJ. ShklarG. ReidS. TrickierD. Prevention of experimental oral cancer by extracts of Spirulina‐Dunaliella algae.Nutr. Cancer198811212713410.1080/01635588809513979 3129701
    [Google Scholar]
  103. MathewB. SankaranarayananR. NairP.P. VargheseC. SomanathanT. AmmaB.P. AmmaN.S. NairM.K. Evaluation of chemoprevention of oral cancer with spirulina fusiformis.Nutr. Cancer199524219720210.1080/01635589509514407 8584455
    [Google Scholar]
  104. Mazur-MarzecH. CegłowskaM. KonkelR. PyrćK. Antiviral Cyanometabolites—A Review.Biomolecules202111347410.3390/biom11030474 33810129
    [Google Scholar]
  105. MittalR.K. PurohitP. SankaranarayananM. Muzaffar-Ur-RehmanM. TaramelliD. SignoriniL. DolciM. BasilicoN. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate.Mol. Divers.202310.1007/s11030‑023‑10703‑w 37480422
    [Google Scholar]
  106. MittalR.K. PurohitP. AggarwalM. An Eco-Friendly Synthetic Approach through C(sp3)-H Functionalization of the Viral Fusion “Spike Protein” Inhibitors.Biointerface Res. Appl. Chem.202213216910.33263/BRIAC132.169
    [Google Scholar]
  107. PurohitP. MittalR.K. SharmaV. A Synergistic Broad-Spectrum Viral Entry Blocker: In-Silico Approach.Biointerface Res. Appl. Chem.2022131710.33263/BRIAC131.007
    [Google Scholar]
  108. KanupriyaP. MittalR.K. SharmaV.V. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.2024202420
    [Google Scholar]
  109. Abd El-BakyH.H. El-BarotyG.S. Spirulina maxima L-asparaginase: Immobilization, Antiviral and Antiproliferation Activities.Recent Pat. Biotechnol.202014215416310.2174/1872208313666191114151344 31724520
    [Google Scholar]
  110. HernándezcoronaA. NievesI. MeckesM. ChamorroG. BarronB. Antiviral activity of Spirulina maxima against herpes simplex virus type 2.Antiviral Res.200256327928510.1016/S0166‑3542(02)00132‑8 12406511
    [Google Scholar]
  111. TzachorA. RozenO. KhatibS. JensenS. AvniD. Photosynthetically controlled spirulina, but not solar spirulina, inhibits tnf-α secretion: potential implications for COVID-19-related cytokine storm therapy.Mar. Biotechnol. (NY)202123114915510.1007/s10126‑021‑10020‑z 33566210
    [Google Scholar]
  112. Azabji-KenfackM. DikossoS.E. LoniE.G. OnanaE.A. SobngwiE. GbaguidiE. KanaA.L.N. Nguefack-TsagueG. Von der WeidD. NjoyaO. NgogangJ. Potential of Spirulina platensis as a nutritional supplement in Malnourished HIV-infected adults in sub-saharan Africa: A randomized, single-blind study.Nutr. Metab. Insights20114NMI.S586210.4137/NMI.S5862 23946659
    [Google Scholar]
  113. Ngo-MatipM.E. PiemeC.A. Azabji-KenfackM. MouketteB.M. KoroskyE. StefaniniP. NgogangJ.Y. MbofungC.M. Impact of daily supplementation of Spirulina platensis on the immune system of naïve HIV-1 patients in Cameroon: a 12-months single blind, randomized, multicenter trial.Nutr. J.20151417010.1186/s12937‑015‑0058‑4 26195001
    [Google Scholar]
  114. MaderJ. GalloA. SchommartzT. HandkeW. NagelC.H. GüntherP. BruneW. ReichK. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis.J. Allergy Clin. Immunol.20161371197203.e310.1016/j.jaci.2015.07.027 26341274
    [Google Scholar]
  115. SaydaM.A. MonaH.H. WaleedM.E.S. RawheyaA. SalahE.D. GamilaH.A. Antiviral activity of fresh water algae.J. Appl. Pharm. Sci.201222125
    [Google Scholar]
  116. KokouF. MakridisP. KentouriM. DivanachP. Antibacterial activity in microalgae cultures.Aquacult. Res.201243101520152710.1111/j.1365‑2109.2011.02955.x
    [Google Scholar]
  117. El-SheekhM.M. DaboorS.M. SwelimM.A. MohamedS. Production and characterization of antimicrobial active substance from Spirulina platensis.Iran. J. Microbiol.201462112119 25705362
    [Google Scholar]
  118. GhedaS.F. IsmailG.A. Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities.An. Acad. Bras. Cienc.2020922e2019093410.1590/0001‑3765202020190934 32785444
    [Google Scholar]
  119. Abdel-MoneimA.M.E. El-SaadonyM.T. ShehataA.M. SaadA.M. AldhumriS.A. OudaS.M. MesalamN.M. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi.Saudi J. Biol. Sci.20222921197120910.1016/j.sjbs.2021.09.046 35197787
    [Google Scholar]
  120. AlshuniaberM.A. KrishnamoorthyR. AlQhtaniW.H. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens.Saudi J. Biol. Sci.202128145946410.1016/j.sjbs.2020.10.029 33424328
    [Google Scholar]
  121. MaoT.K. WaterJ.V. GershwinM.E. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients.J. Med. Food200581273010.1089/jmf.2005.8.27 15857205
    [Google Scholar]
  122. VoT.S. NgoD.H. KangK.H. ParkS.J. KimS.K. The role of peptides derived from Spirulina maxima in downregulation of FcεRI‐mediated allergic responses.Mol. Nutr. Food Res.201458112226223410.1002/mnfr.201400329 25164681
    [Google Scholar]
  123. CingiC. Conk-DalayM. CakliH. BalC. The effects of spirulina on allergic rhinitis.Eur. Arch. Otorhinolaryngol.2008265101219122310.1007/s00405‑008‑0642‑8 18343939
    [Google Scholar]
  124. Pentón-RolG. Marín-PridaJ. McCartyM.F. C-Phycocyanin-derived Phycocyanobilin as a Potential Nutraceutical Approach for Major Neurodegenerative Disorders and COVID-19- induced Damage to the Nervous System.Curr. Neuropharmacol.202119122250227510.2174/1570159X19666210408123807 33829974
    [Google Scholar]
  125. ManiU.V. DesaiS. IyerU. Studies on the long-term effect of Spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients.J. Nutraceut. Funct. Med. Foods200023253210.1300/J133v02n03_03
    [Google Scholar]
  126. DiNicolantonioJ.J. BhatA.G. OKeefe, J. Effects of spirulina on weight loss and blood lipids: a review.Open Heart202071e00100310.1136/openhrt‑2018‑001003
    [Google Scholar]
  127. KatoT. TakemotoK. KatayamaH. KuwabaraY. J. Jpn. Soc. Nutr. Food Sci.198437432333210.4327/jsnfs.37.323
    [Google Scholar]
  128. NayakaN. HommaY. GotoY. Cholesterol lowering effect of Spirulina.Nutr. Rep. Int.19883713291337
    [Google Scholar]
  129. MiczkeA. SzulińskaM. Hansdorfer-KorzonR. Kręgielska-NarożnaM. SuliburskaJ. WalkowiakJ. BogdańskiP. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial.Eur. Rev. Med. Pharmacol. Sci.2016201150156 26813468
    [Google Scholar]
  130. HanL.K. LiD.X. XiangL. GongX.J. KondoY. SuzukiI. OkudaH. [Isolation of pancreatic lipase activity-inhibitory component of spirulina platensis and it reduce postprandial triacylglycerolemia].Yakugaku Zasshi20061261434910.1248/yakushi.126.43 16394649
    [Google Scholar]
  131. Arthur-AtaamJ. BideauxP. CharrabiA. SicardP. FromyB. LiuK. EddahibiS. PasqualinC. JouyN. RichardS. VirsolvyA. Dietary supplementation with silicon-enriched spirulina improves arterial remodeling and function in hypertensive rats.Nutrients20191111257410.3390/nu11112574 31731463
    [Google Scholar]
  132. Martín-RiobóoE. Turégano-YedroM. BanegasJ.R. Evidence on the Use of Alternative Substances and Therapies in Hypertension.Hipertens. Riesgo Vasc.202310.1016/j.hipert.2023.11.001 38123388
    [Google Scholar]
  133. KaushikP. ChauhanA. In vitro antibacterial activity of laboratory grown culture of Spirulina platensis.Indian J. Microbiol.200848334835210.1007/s12088‑008‑0043‑0 23100733
    [Google Scholar]
  134. SchaferF.Q. WangH.P. KelleyE.E. CuenoK.L. BuettnerS.M.M.G.R. BuettnerG.R. Comparing beta-carotene, vitamin E and nitric oxide as membrane antioxidants.Biol. Chem.20023833-467168110.1515/BC.2002.069 12033456
    [Google Scholar]
  135. GrosshagauerS. KraemerK. SomozaV. The True Value of Spirulina.J. Agric. Food Chem.202068144109411510.1021/acs.jafc.9b08251 32133854
    [Google Scholar]
  136. WuQ. LiuL. MironA. KlímováB. WanD. KučaK. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview.Arch. Toxicol.20169081817184010.1007/s00204‑016‑1744‑5 27259333
    [Google Scholar]
  137. YousefiR. SaidpourA. MottaghiA. The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review.Complement. Ther. Med.20194213714410.1016/j.ctim.2018.11.013 30670232
    [Google Scholar]
  138. WangZ.K. YangY.S. ChenY. YuanJ. SunG. PengL.H. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease.World J. Gastroenterol.20142040148051482010.3748/wjg.v20.i40.14805 25356041
    [Google Scholar]
  139. IbanezE. HerreroM. MendiolaJ.A. Castro-PuyanaM. Extractiona and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates.Marine Bioactive Compounds. HayesM. New York, NY, USASpringer2012559810.1007/978‑1‑4614‑1247‑2_2
    [Google Scholar]
  140. KameshwariV. SelvarajS. SundaramoorthyS. Single Cell Protein Spirulina-A Nutrient Treasure.Research Journal of Pharmacology and Pharmacodynamics2020122495410.5958/2321‑5836.2020.00010.5
    [Google Scholar]
  141. OkamotoT. KawashimaH. OsadaH. TodaE. HommaK. NagaiN. ImaiY. TsubotaK. OzawaY. Dietary spirulina supplementation protects visual function from photostress by suppressing retinal neurodegeneration in mice.Transl. Vis. Sci. Technol.2019862010.1167/tvst.8.6.20 31788349
    [Google Scholar]
  142. ChoH.M. JoY.D. ChoungS.Y. Protective effects of Spirulina maxima against blue light-induced retinal damages in A2E-laden ARPE-19 Cells and Balb/c mice.Nutrients202214340110.3390/nu14030401 35276761
    [Google Scholar]
  143. AtilganH.I. AkbulutA. YazihanN. YumusakN. SingarE. KocaG. KorkmazM. The cytokines-directed roles of spirulina for radioprotection of lacrimal gland.Ocul. Immunol. Inflamm.2022202216 35050831
    [Google Scholar]
  144. DesaiK. SivakamiS. Spirulina: The wonder food of the 21st century.Asia Pac. Biotech. News20048231298130210.1142/S021903030400223X
    [Google Scholar]
  145. Martínez-SámanoJ. Torres-Montes de OcaA. Luqueño-BocardoO. Torres-DuránP. Juárez-OropezaM. Spirulina maxima decreases endothelial damage and oxidative stress indicators in patients with systemic arterial hypertension: Results from exploratory controlled clinical trial.Mar. Drugs2018161249610.3390/md16120496 30544795
    [Google Scholar]
  146. BritoA.F. SilvaA.S. de OliveiraC.V.C. de SouzaA.A. FerreiraP.B. de SouzaI.L.L. da Cunha AraujoL.C. da Silva FélixG. de Souza SampaioR. TavaresR.L. de Andrade PereiraR. NetoM.M. da SilvaB.A. Spirulina platensis prevents oxidative stress and inflammation promoted by strength training in rats: dose-response relation study.Sci. Rep.2020101638210.1038/s41598‑020‑63272‑5
    [Google Scholar]
  147. SharmaM.K. SharmaA. KumarA. KumarM. Spirulina fusiformis provides protection against mercuric chloride induced oxidative stress in Swiss albino mice.Food Chem. Toxicol.200745122412241910.1016/j.fct.2007.06.023 17706852
    [Google Scholar]
  148. ElshazlyM.O. Abd El-RahmanS.S. MorganA.M. AliM.E. The Remedial Efficacy of Spirulina platensis versus chromium-induced nephrotoxicity in male sprague-dawley Rats.PLoS One2015106e012678010.1371/journal.pone.0126780 26029926
    [Google Scholar]
  149. El-TantawyW.H. Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats.J. Tradit. Complement. Med.20166432733110.1016/j.jtcme.2015.02.001 27774414
    [Google Scholar]
  150. Ponce-CanchihuamánJ.C. Pérez-MéndezO. Hernández-MuñozR. Torres-DuránP.V. Juárez-OropezaM.A. Protective effects of Spirulina maxima on hyperlipidemia and oxidative-stress induced by lead acetate in the liver and kidney.Lipids Health Dis.2010913510.1186/1476‑511X‑9‑35 20353607
    [Google Scholar]
  151. QureshiM.A. GarlichJ.D. KiddM.T. Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens.Immunopharmacol. Immunotoxicol.199618346547610.3109/08923979609052748 8872497
    [Google Scholar]
  152. HirahashiT. MatsumotoM. HazekiK. SaekiY. UiM. SeyaT. Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis.Int. Immunopharmacol.20022442343410.1016/S1567‑5769(01)00166‑7 11962722
    [Google Scholar]
  153. BalachandranP. PughN.D. MaG. PascoD.S. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice.Int. Immunopharmacol.20066121808181410.1016/j.intimp.2006.08.001 17052671
    [Google Scholar]
  154. KawanishiY. TominagaA. OkuyamaH. FukuokaS. TaguchiT. KusumotoY. YawataT. FujimotoY. OnoS. ShimizuK. Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV‐M glioma cells through Toll‐like receptor 4.Microbiol. Immunol.2013571637310.1111/1348‑0421.12001 23134155
    [Google Scholar]
  155. MaoT.K. Van De WaterJ. GershwinM.E. Effect of spirulina on the secretion of cytokines from peripheral blood mononuclear cells.J. Med. Food20003313514010.1089/jmf.2000.3.135 19281334
    [Google Scholar]
  156. El SheikhS.M. ShalabyM.A.M. HafezR.A. MetwallyW.S.A. El-AyotyY.M. The immunomodulatory effects of probiotic bacteria on peripheral blood mononuclear cells (pbmcs) of allergic patients.Am. J. Immunol.201410311613010.3844/ajisp.2014.116.130
    [Google Scholar]
  157. ParkH.J. LeeY.J. RyuH.K. KimM.H. ChungH.W. KimW.Y. A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans.Ann. Nutr. Metab.200852432232810.1159/000151486 18714150
    [Google Scholar]
  158. Al-DerinyS.H. DawoodM.A.O. ZaidA.A.A. El-TrasW.F. ParayB.A. Van DoanH. MohamedR.A. The synergistic effects of Spirulina platensis and Bacillus amyloliquefaciens on the growth performance, intestinal histomorphology, and immune response of Nile tilapia (Oreochromis niloticus).Aquacult. Rep.20201710039010039010.1016/j.aqrep.2020.100390
    [Google Scholar]
  159. ChenJ.C. LiuK.S. YangT.J. HwangJ.H. ChanY.C. LeeI.T. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells.Nutr. Neurosci.201215625225610.1179/1476830512Y.0000000020 22687570
    [Google Scholar]
  160. de MattosB.O. López-OlmedaJ.F. Guerra-SantosB. RuizC.E. García-BeltránJ.M. Ángeles-EstebanM. Sánchez-VázquezF.J. Fortes-SilvaR. Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer’s yeast (Saccharomyces cerevisiae).Fish Physiol. Biochem.20194561801181210.1007/s10695‑019‑00677‑8 31273480
    [Google Scholar]
  161. ArdicliS. SeyidogluN. KoseliE. GurbanliR. AydinC. Dietary intake of Spirulina platensis alters HSP70 gene expression profiles in the brain of rats in an experimental model of mixed stress.J. Genet.202210124910.1007/s12041‑022‑01388‑5 36330789
    [Google Scholar]
  162. ZahranW.E. EmamM.A. Renoprotective effect of Spirulina platensis extract against nicotine-induced oxidative stress-mediated inflammation in rats.Phytomedicine20184910611010.1016/j.phymed.2018.06.042 30217256
    [Google Scholar]
  163. HajatiH. ZaghariM. OliveiraH.C. Arthrospira (Spirulina) platensis can be considered as a probiotic alternative to reduce heat stress in laying japanese quails.Brazilian J. Poul. Sci2020221eRBCA-2018-097710.1590/1806‑9061‑2018‑0977
    [Google Scholar]
  164. GuldasM. GurbuzO. CakmakI. YildizE. SenH. Effects of honey enrichment with Spirulina platensis on phenolics, bioaccessibility, antioxidant capacity and fatty acids.Lebensm. Wiss. Technol.202215311246110.1016/j.lwt.2021.112461
    [Google Scholar]
  165. ZhouJ. WangM. BäuerlC. Cortés-MacíasE. Calvo-LermaJ. Carmen ColladoM. BarbaF.J. The impact of liquid-pressurized extracts of Spirulina, Chlorella and Phaedactylum tricornutum on in vitro antioxidant, antiinflammatory and bacterial growth effects and gut microbiota modulation.Food Chem.202340113408310.1016/j.foodchem.2022.134083 36099816
    [Google Scholar]
  166. NiccolaiA. BažecK. RodolfiL. BiondiN. ZlatićE. JamnikP. TrediciM.R. Lactic acid fermentation of Arthrospira platensis (Spirulina) in a vegetal soybean drink for developing new functional lactose-free beverages.Front. Microbiol.20201156068410.3389/fmicb.2020.560684 33193143
    [Google Scholar]
  167. CamachoF. MacedoA. MalcataF. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review.Mar. Drugs201917631210.3390/md17060312 31141887
    [Google Scholar]
  168. OmarH.H. DighririK.A. GashgaryR.M. The benefit roles of micro and macro algae in probiotics.Nat. Sci.201917258279
    [Google Scholar]
  169. MerchantR.E. AndreC.A. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis.Altern. Ther. Health Med.2001737991 11347287
    [Google Scholar]
  170. GyenisB. SzigetiJ. MolnárN. VargaL. Use of dried microalgal biomasses to stimulate acid production and growth of Lactobacillus plantarum and Enterococcus faecium in milk.Acta Agrar. Kvár.200595359
    [Google Scholar]
  171. KoyandeA.K. ChewK.W. RambabuK. TaoY. ChuD.T. ShowP.L. Microalgae: A potential alternative to health supplementation for humans.Food Sci. Hum. Wellness201981162410.1016/j.fshw.2019.03.001
    [Google Scholar]
  172. SathasivamR. RadhakrishnanR. HashemA. Abd AllahE.F. Microalgae metabolites: A rich source for food and medicine.Saudi J. Biol. Sci.201926470972210.1016/j.sjbs.2017.11.003 31048995
    [Google Scholar]
  173. ParikhP. ManiU. IyerU. Role of Spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus.J. Med. Food20014419319910.1089/10966200152744463 12639401
    [Google Scholar]
  174. MazokopakisE.E. StarakisI.K. PapadomanolakiM.G. MavroeidiN.G. GanotakisE.S. The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective study.J. Sci. Food Agric.201494343243710.1002/jsfa.6261 23754631
    [Google Scholar]
  175. Torres-DuranP.V. Ferreira-HermosilloA. Juarez-OropezaM.A. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of mexican population: a preliminary report.Lipids Health Dis.2007613310.1186/1476‑511X‑6‑33 18039384
    [Google Scholar]
  176. SelmiC. LeungP.S.C. FischerL. GermanB. YangC.Y. KennyT.P. CysewskiG.R. GershwinM.E. The effects of Spirulina on anemia and immune function in senior citizens.Cell. Mol. Immunol.20118324825410.1038/cmi.2010.76 21278762
    [Google Scholar]
  177. FinamoreA. PalmeryM. BensehailaS. PelusoI. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly Spirulina.Oxid. Med. Cell. Longev.2017201711410.1155/2017/3247528 28182098
    [Google Scholar]
  178. GuptaC. GuptaC. GargA.B. PrakashD. Prebiotic efficiency of blue green algae on probiotics microorganisms.J. Microbiol. Exp.2017440012010.15406/jmen.2017.04.00120
    [Google Scholar]
  179. KarkosP.D. LeongS.C. KarkosC.D. SivajiN. AssimakopoulosD.A. Spirulina in clinical practice: evidence-based human applications.Evid. Based Complement. Alternat. Med.201120111410.1093/ecam/nen058 18955364
    [Google Scholar]
  180. BhowmikD. DubeyJ. MehraS. Probiotic efficiency of Spirulina platensis-stimulating growth of lactic acid bacteria.World J. Dairy Food Sci.20094160163
    [Google Scholar]
  181. DiramanH. KoruE. DibekliogluH. Fatty acid profile of Spirulina platensis used as a food supplement.Isr. J. Aquacult. Bamidgeh20096113414210.46989/001c.20548
    [Google Scholar]
  182. BallotA. DadheechK. KrienitzL. Phylogenetic relations of arthrospira, phormidium and spirulina strains from Kenyan and Indian waterbodies.Algol. Stud.20041133756
    [Google Scholar]
  183. DevlinJ.P. EdwardsO.E. GorhamP.R. HunterN.R. PikeR.K. StavricB. Anatoxin a, a toxic alkaloid from Anabaena flosaquae NRC-44h.Can. J. Chem.19775581367137110.1139/v77‑189
    [Google Scholar]
  184. SivaR.R. MadhuG.M. SatyanarayanaS.V. KalpanaP. BindiyaP. SubbaG. Equilibrium and kinetic studies of lead biosorption by three Spirulina (Arthrospira) species in open raceway ponds.J. Biochem. Technol.20156894909
    [Google Scholar]
  185. MoryaS. Kumar ChattuV. KhalidW. Zubair KhalidM. SiddeegA. Potential protein phycocyanin: an overview on its properties, extraction, and utilization.Int. J. Food Prop.20232623160317610.1080/10942912.2023.2271686
    [Google Scholar]
  186. CamachoE.M. Mesa-PereiraB. MedinaC. FloresA. SanteroE. Engineering Salmonella as intracellular factory for effective killing of tumour cells.Sci. Rep.2016613059110.1038/srep30591 27464652
    [Google Scholar]
  187. BalasubramaniamV. GunasegavanR.D.N. MustarS. LeeJ.C. Mohd NohM.F. Isolation of industrial important bioactive compounds from microalgae.Molecules202126494310.3390/molecules26040943 33579001
    [Google Scholar]
  188. ZhuangD. HeN. KhooK.S. NgE.P. ChewK.W. LingT.C. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics.Chemosphere2022291Pt 213293210.1016/j.chemosphere.2021.132932 34798100
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304524240514023735
Loading
/content/journals/cpb/10.2174/0113892010304524240514023735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test