Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Curcumin, as an anti-tumor agent, is not widely used in cancer treatment due to the lack of effective levels of its metabolites in cancerous tissue. Addressing the barriers to the carrier and delivery of drugs to the specific sites of therapeutic action while reducing side effects is a priority. Folate receptor expression is high in malignant and low in normal cells. Folate as a targeted ligand could selectively target cancer cells. Thus, this narrative review aimed to provide an overview of the studies that have investigated the different types of folate-modified curcumin as a carrier and deliverer and their structural properties that enhance therapeutic drug efficacy. A literature search was performed using PubMed, Scopus, Web of Science, and Google Scholar databases. Thirty-eight preclinical studies addressing this topic were identified. The findings of the current review have shown that folate-modified nanoparticles containing curcumin as a promising therapeutic approach can be effective in improving different types of cancers. studies have shown a higher cellular uptake and cytotoxicity effect, higher cell inhibition, and anti-proliferation with a lower dosage of curcumin. studies have shown more tumor suppression and smaller tumor volume without toxicity after the administration of folate-modified nanoparticles containing curcumin. Future clinical trials are needed to confirm the beneficial effect of folate-modified curcumin as a new drug delivery platform for cancer treatment.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010299290240531101441
2024-06-24
2025-10-30
Loading full text...

Full text loading...

References

  1. MoghaddamN.S.A. OskouieM.N. ButlerA.E. PetitP.X. BarretoG.E. SahebkarA. Hormetic effects of curcumin: What is the evidence?J. Cell. Physiol.20192347100601007110.1002/jcp.27880 30515809
    [Google Scholar]
  2. Nosrati-OskouieM. Aghili-MoghaddamN.S. SathyapalanT. SahebkarA. Impact of curcumin on fatty acid metabolism.Phytother. Res.20213594748476210.1002/ptr.7105 33825246
    [Google Scholar]
  3. BagheriH. GhasemiF. BarretoG.E. RafieeR. SathyapalanT. SahebkarA. Effects of curcumin on mitochondria in neurodegenerative diseases.Biofactors202046152010.1002/biof.1566 31580521
    [Google Scholar]
  4. CiceroA.F.G. SahebkarA. FogacciF. BoveM. GiovanniniM. BorghiC. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial.Eur. J. Nutr.202059247748310.1007/s00394‑019‑01916‑7 30796508
    [Google Scholar]
  5. KeihanianF. SaeidiniaA. BagheriR.K. JohnstonT.P. SahebkarA. Curcumin, hemostasis, thrombosis, and coagulation.J. Cell. Physiol.201823364497451110.1002/jcp.26249 29052850
    [Google Scholar]
  6. Mokhtari-ZaerA. MarefatiN. AtkinS.L. ButlerA.E. SahebkarA. The protective role of curcumin in myocardial ischemia–reperfusion injury.J. Cell. Physiol.2019234121422210.1002/jcp.26848 29968913
    [Google Scholar]
  7. PanahiY. FazlolahzadehO. AtkinS.L. MajeedM. ButlerA.E. JohnstonT.P. SahebkarA. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review.J. Cell. Physiol.201923421165117810.1002/jcp.27096 30073647
    [Google Scholar]
  8. HeidariH. BagherniyaM. MajeedM. SathyapalanT. JamialahmadiT. SahebkarA. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies.Phytother. Res.20233741462148710.1002/ptr.7737 36720711
    [Google Scholar]
  9. SalemM. XiaY. AllanA. RohaniS. GilliesE.R. Curcumin-loaded, folic acid-functionalized magnetite particles for targeted drug delivery.RSC Adv.2015547375213753210.1039/C5RA01811K
    [Google Scholar]
  10. GhaffariS.B. SarrafzadehM.H. FakhroueianZ. KhorramizadehM.R. Flower-like curcumin-loaded folic acid-conjugated ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer activity and cellular uptake of curcumin in breast cancer cells.Mater. Sci. Eng. C201910310982710.1016/j.msec.2019.109827 31349522
    [Google Scholar]
  11. FereydouniN. DarroudiM. MovaffaghJ. ShahroodiA. ButlerA.E. GanjaliS. SahebkarA. Curcumin nanofibers for the purpose of wound healing.J. Cell. Physiol.2019234555375554Epub 2018 Oct 28.10.1002/jcp.27362 30370528
    [Google Scholar]
  12. Nosrati-OskouieM. Aghili-MoghaddamN.S. Tavakoli-RouzbehaniO.M. JamialahmadiT. JohnstonT.P. SahebkarA. Curcumin: A dietary phytochemical for boosting exercise performance and recovery.Food Sci. Nutr.202210113531354310.1002/fsn3.2983 36348809
    [Google Scholar]
  13. Tarighat-EsfanjaniA. SahebkarA. Nosrati-OskouieM. SalavatizadehM. Ghorban SabbaghM. sadat Aghili-Moghaddam, N. Current evidence on dietary factors and kidney allograft function in kidney transplant recipients: A systematic review.Curr. Med. Chem.20233010.2174/0929867330666230515140454 37190815
    [Google Scholar]
  14. AhmadiA. JamialahmadiT. SahebkarA. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation.Pharmacol. Res.202218410641410.1016/j.phrs.2022.106414 36028188
    [Google Scholar]
  15. KahkhaieK.R. MirhosseiniA. AliabadiA. MohammadiA. MousaviM.J. HaftcheshmehS.M. SathyapalanT. SahebkarA. Curcumin: A modulator of inflammatory signaling pathways in the immune system.Inflammopharmacology201927588590010.1007/s10787‑019‑00607‑3 31140036
    [Google Scholar]
  16. MohammadiA. BlessoC.N. BarretoG.E. BanachM. MajeedM. SahebkarA. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent.J. Nutr. Biochem.20196611610.1016/j.jnutbio.2018.12.005 30660832
    [Google Scholar]
  17. ShafabakhshR. PourhanifehM.H. MirzaeiH.R. SahebkarA. AsemiZ. MirzaeiH. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy.Pharmacol. Res.201914710435310.1016/j.phrs.2019.104353 31306775
    [Google Scholar]
  18. HamzehzadehL. AtkinS.L. MajeedM. ButlerA.E. SahebkarA. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway.J. Cell. Physiol.20182331065306537Epub 2018 Apr 25.10.1002/jcp.26620 29693253
    [Google Scholar]
  19. HuL. PangS. HuQ. GuD. KongD. XiongX. SuJ. Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin.Biomed. Pharmacother.201575263210.1016/j.biopha.2015.08.036 26463628
    [Google Scholar]
  20. WangR. ZhangX. ChenC. ChenG. ZhongQ. ZhangQ. ZhengS. WangG. ChenQ.H. Synthesis and evaluation of 1,7-diheteroarylhepta-1,4,6-trien-3-ones as curcumin-based anticancer agents.Eur. J. Med. Chem.201611016418010.1016/j.ejmech.2016.01.017 26827161
    [Google Scholar]
  21. NabaviS.M. RussoG.L. TedescoI. DagliaM. OrhanI.E. NabaviS.F. BishayeeA. Nagulapalli VenkataK.C. AbdollahiM. HajheydariZ. Curcumin and Melanoma: From chemistry to medicine.Nutr. Cancer201870216417510.1080/01635581.2018.1412485 29300102
    [Google Scholar]
  22. Pimentel-GutiérrezH.J. Bobadilla-MoralesL. Barba-BarbaC.C. Ortega-De-La-TorreC. Sánchez-ZubietaF.A. Corona-RiveraJ.R. González-QuezadaB.A. Armendáriz-BorundaJ.S. Silva-CruzR. Corona-RiveraA. Curcumin potentiates the effect of chemotherapy against acute lymphoblastic leukemia cells via downregulation of NF-κB.Oncol. Lett.20161254117412410.3892/ol.2016.5217 27895780
    [Google Scholar]
  23. WangJ.Q. WangX. WangY. TangW.J. ShiJ.B. LiuX.H. Novel curcumin analogue hybrids: Synthesis and anticancer activity.Eur. J. Med. Chem.201815649350910.1016/j.ejmech.2018.07.013 30025345
    [Google Scholar]
  24. MarjanehR.M. RahmaniF. HassanianS.M. RezaeiN. HashemzehiM. BahramiA. AriakiaF. FiujiH. SahebkarA. AvanA. KhazaeiM. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.26538 29737515
    [Google Scholar]
  25. MehtaH.J. PatelV. SadikotR.T. Curcumin and lung cancer—a review.Target. Oncol.20149429531010.1007/s11523‑014‑0321‑1 24840628
    [Google Scholar]
  26. MohajeriM. BianconiV. Ávila-RodriguezM.F. BarretoG.E. JamialahmadiT. PirroM. SahebkarA. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system.Pharmacol. Res.202015610476510.1016/j.phrs.2020.104765 32217147
    [Google Scholar]
  27. BanikU. ParasuramanS. AdhikaryA.K. OthmanN.H. Curcumin: The spicy modulator of breast carcinogenesis.J. Exp. Clin. Cancer Res.20173619810.1186/s13046‑017‑0566‑5 28724427
    [Google Scholar]
  28. MohajeriM. SahebkarA. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review.Crit. Rev. Oncol. Hematol.2018122305110.1016/j.critrevonc.2017.12.005 29458788
    [Google Scholar]
  29. RezaeeR. MomtaziA.A. MonemiA. SahebkarA. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity.Pharmacol. Res.201711721822710.1016/j.phrs.2016.12.037 28042086
    [Google Scholar]
  30. OskouieM.N. Aghili MoghaddamN.S. ButlerA.E. ZamaniP. SahebkarA. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes.J. Cell. Physiol.201923468182819110.1002/jcp.27615 30317632
    [Google Scholar]
  31. de WaureC. BertolaC. BaccariniG. ChiavariniM. MancusoC. Exploring the contribution of curcumin to cancer therapy: A systematic review of randomized controlled trials.Pharmaceutics2023154127510.3390/pharmaceutics15041275 37111761
    [Google Scholar]
  32. KuriakoseM.A. RamdasK. DeyB. IyerS. RajanG. ElangoK.K. SureshA. RavindranD. KumarR.R. R, P.; Ramachandran, S.; Kumar, N.A.; Thomas, G.; Somanathan, T.; Ravindran, H.K.; Ranganathan, K.; Katakam, S.B.; Parashuram, S.; Jayaprakash, V.; Pillai, M.R. A randomized double-blind placebo-controlled phase IIB trial of curcumin in oral leukoplakia.Cancer Prev. Res. (Phila.)20169868369110.1158/1940‑6207.CAPR‑15‑0390 27267893
    [Google Scholar]
  33. SantosaD. SuhartiC. RiwantoI. DharmanaE. PangarsaE.A. SetiawanB. SuyonoS. TobingM.L. SuhartonoS. HadisapurtoS. Curcumin as adjuvant therapy to improve remission in myeloma patients: A pilot randomized clinical trial.Caspian J. Intern. Med.202213237538410.22088/cjim.13.2.9 35919637
    [Google Scholar]
  34. SaghatelyanT. TananyanA. JanoyanN. TadevosyanA. PetrosyanH. HovhannisyanA. HayrapetyanL. ArustamyanM. ArnholdJ. RotmannA.R. HovhannisyanA. PanossianA. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial.Phytomedicine20207015321810.1016/j.phymed.2020.153218 32335356
    [Google Scholar]
  35. ChiuG. TanB.J. DasS. ChiuG.N. Increased ERK activation and cellular drug accumulation in the enhanced cytotoxicity of folate receptor-targeted liposomal carboplatin.Int. J. Oncol.201140370371010.3892/ijo.2011.1262 22086152
    [Google Scholar]
  36. MaitaniY. KanekoM. Watanabe, Functional coating of liposomes using a folate–polymer conjugate to target folate receptors.Int. J. Nanomedicine201273679368810.2147/IJN.S32853 22888227
    [Google Scholar]
  37. LiuY. XuS. TengL. YungB. ZhuJ. DingH. LeeR.J. Synthesis and evaluation of a novel lipophilic folate receptor targeting ligand.Anticancer Res.201131515211525 21617205
    [Google Scholar]
  38. LuY. DingN. YangC. HuangL. LiuJ. XiangG. Preparation and in vitro evaluation of a folate-linked liposomal curcumin formulation.J. Liposome Res.201222211011910.3109/08982104.2011.627514 22372871
    [Google Scholar]
  39. SabharanjakS. MayorS. Folate receptor endocytosis and trafficking.Adv. Drug Deliv. Rev.20045681099110910.1016/j.addr.2004.01.010 15094209
    [Google Scholar]
  40. LuongD. KesharwaniP. AlsaabH.O. SauS. PadhyeS. SarkarF.H. IyerA.K. Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers.Colloids Surf. B Biointerfaces201715749050210.1016/j.colsurfb.2017.06.025 28658642
    [Google Scholar]
  41. ThulasidasanA.K.T. RetnakumariA.P. ShankarM. VijayakurupV. AnwarS. ThankachanS. PillaiK.S. PillaiJ.J. NandanC.D. AlexV.V. ChirayilT.J. SundaramS. KumarG.S.V. AntoR.J. Folic acid conjugation improves the bioavailability and chemosensitizing efficacy of curcumin-encapsulated PLGA-PEG nanoparticles towards paclitaxel chemotherapy.Oncotarget201786410737410738910.18632/oncotarget.22376 29296172
    [Google Scholar]
  42. LahaD. PalK. ChowdhuriA.R. ParidaP.K. SahuS.K. JanaK. KarmakarP. Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems.New J. Chem.201943121722910.1039/C8NJ03350A
    [Google Scholar]
  43. SonekarS MishraMK PatelAK NairSK SinghCS SinghAK Formulation and evaluation of folic acid conjugated gliadin nanoparticles of curcumin for targeting colon cancer cells.J Appl Pharmaceut Sci201661006807410.7324/JAPS.2016.601009
    [Google Scholar]
  44. LiC. LiY. GaoY. WeiN. ZhaoX. WangC. LiY. XiuX. CuiJ. Direct comparison of two albumin-based paclitaxel-loaded nanoparticle formulations: Is the crosslinked version more advantageous?Int. J. Pharm.20144681-2152510.1016/j.ijpharm.2014.04.010 24709221
    [Google Scholar]
  45. DongC. song lu zhang wang han. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: Characterization and in vitro/vivo evaluation.Drug Des. Devel. Ther.2016102643264910.2147/DDDT.S112039 27574403
    [Google Scholar]
  46. KhatikR. DwivediP. UpadhyayM. PatelV.K. PaliwalS.K. DwivediA.K. Toxicological evaluation and targeting tumor cells through folic acid modified guar gum nanoparticles of curcumin.J. Biomater. Tissue Eng.20144214314910.1166/jbt.2014.1147
    [Google Scholar]
  47. ZhaiG.X. Zhang Guo Yu Ji Gao Sun SunM. ZhaiG. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting.Int. J. Nanomedicine2012715116210.2147/IJN.S27639 22275831
    [Google Scholar]
  48. BorahP.K. DasA.S. MukhopadhyayR. SarkarA. DuaryR.K. Macromolecular design of folic acid functionalized amylopectin–albumin core–shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin.J. Colloid Interface Sci.202058056157210.1016/j.jcis.2020.07.056 32711206
    [Google Scholar]
  49. HuY. HeY. JiJ. ZhengS. ChengY. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy.Int. J. Nanomedicine2020151239125210.2147/IJN.S232777 32110020
    [Google Scholar]
  50. BardaniaH. JafariF. BaneshiM. MahmoudiR. ArdakaniM.T. SafariF. BarmakM.J. Folic acid-functionalized albumin/graphene oxide nanocomposite to simultaneously deliver curcumin and 5-fluorouracil into human colorectal cancer cells: An in vitro study.BioMed Res. Int.2023202311110.1155/2023/8334102 37304465
    [Google Scholar]
  51. MatsueH. RothbergK.G. TakashimaA. KamenB.A. AndersonR.G. LaceyS.W. Folate receptor allows cells to grow in low concentrations of 5-methyltetrahydrofolate.Proc. Natl. Acad. Sci. USA199289136006600910.1073/pnas.89.13.6006 1631087
    [Google Scholar]
  52. DhanasekaranS. Augmented cytotoxic effects of paclitaxel by curcumin induced overexpression of folate receptor-α for enhanced targeted drug delivery in HeLa cells.Phytomedicine20195627928510.1016/j.phymed.2018.06.019 30668349
    [Google Scholar]
  53. WangW.Y. CaoY.X. ZhouX. WeiB. Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy.Drug Des. Devel. Ther.2019132205221310.2147/DDDT.S205787 31308632
    [Google Scholar]
  54. GawdeK.A. KesharwaniP. SauS. SarkarF.H. PadhyeS. KashawS.K. IyerA.K. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue.J. Colloid Interface Sci.201749629029910.1016/j.jcis.2017.01.092 28236692
    [Google Scholar]
  55. Ramezani FaraniM. AzarianM. Heydari Sheikh HosseinH. AbdolvahabiZ. Mohammadi AbgarmiZ. MoradiA. MousaviS.M. AshrafizadehM. MakvandiP. SaebM.R. RabieeN. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer.ACS Appl. Bio Mater.2022531305131810.1021/acsabm.1c01311 35201760
    [Google Scholar]
  56. MontazerabadiA. BeikJ. IrajiradR. AttaranN. KhalediS. GhaznaviH. Shakeri-ZadehA. Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells.Artif. Cells Nanomed. Biotechnol.201947133034010.1080/21691401.2018.1557670 30688084
    [Google Scholar]
  57. KumarS. Balasubramanian RavindranGirija NagaokaY. Iwai Suzuki Kizhikkilot Yasuhiko MaekawaT. Curcumin and 5-Fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: A synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia.Int. J. Nanomedicine2014943745910.2147/IJN.S49882 24531392
    [Google Scholar]
  58. PurushothamanB.K. MaheswariP.U. BegumK.M.S. Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier.J. Drug Deliv. Sci. Technol.20195250952010.1016/j.jddst.2019.05.010
    [Google Scholar]
  59. PalK. RoyS. ParidaP.K. DuttaA. BardhanS. DasS. JanaK. KarmakarP. Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in in vitro and in vivo model.Mater. Sci. Eng. C20199520421610.1016/j.msec.2018.10.071 30573243
    [Google Scholar]
  60. MalekmohammadiS. HadadzadehH. FarrokhpourH. AmirghofranZ. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: A new nanoplatform for curcumin pH-controlled and targeted delivery.Soft Matter201814122400241010.1039/C7SM02248D 29512668
    [Google Scholar]
  61. PalK. LahaD. ParidaP.K. RoyS. BardhanS. DuttaA. An in vivo study for targeted delivery of curcumin in human triple negative breast carcinoma cells using biocompatible PLGA microspheres conjugated with folic acid.Nanosci Nanotechnol.20181811410.1166/jnn.2019.16292 30764928
    [Google Scholar]
  62. Esfandiarpour-BoroujeniS. Bagheri-KhoulenjaniS. MirzadehH. AmanpourS. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application.Carbohydr. Polym.2017168142110.1016/j.carbpol.2017.03.031 28457434
    [Google Scholar]
  63. DingL. LiJ. HuangR. LiuZ. LiC. YaoS. WangJ. QiD. LiN. PiJ. Salvianolic acid B protects against myocardial damage caused by nanocarrier TiO2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO2 nanoparticles.Int. J. Nanomedicine2016115709572710.2147/IJN.S107767 27843313
    [Google Scholar]
  64. PawarH. SurapaneniS.K. TikooK. SinghC. BurmanR. GillM.S. SureshS. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: In vitro evaluation, pharmacokinetic and biodistribution in rats.Drug Deliv.20162341453146810.3109/10717544.2016.1138339 26878325
    [Google Scholar]
  65. YangC. ChenH. ZhaoJ. PangX. XiY. ZhaiG. Development of a folate-modified curcumin loaded micelle delivery system for cancer targeting.Colloids Surf. B Biointerfaces201412120621310.1016/j.colsurfb.2014.05.005 24984268
    [Google Scholar]
  66. GuoF. YuN. JiaoY. HongW. ZhouK. JiX. YuanH. WangH. LiA. WangG. YangG. Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin co-delivery to combat multidrug-resistant breast cancer.Drug Deliv.20212811709172110.1080/10717544.2021.1960926 34463174
    [Google Scholar]
  67. MukhopadhyayR. SenR. PaulB. KaziJ. GangulyS. DebnathM.C. Gemcitabine co-encapsulated with curcumin in folate decorated PLGA nanoparticles; a novel approach to treat breast adenocarcinoma.Pharm. Res.20203735610.1007/s11095‑020‑2758‑5 32072346
    [Google Scholar]
  68. HonarvariB. KarimifardS. AkhtariN. MehraryaM. MoghaddamZ.S. AnsariM.J. JalilA.T. MatencioA. TrottaF. YeganehF.E. Farasati FarB. ArkiM.K. Naimi-JamalM.R. NoorbazarganH. LalamiZ.A. ChianiM. Folate-targeted curcumin-loaded niosomes for site-specific delivery in breast cancer treatment: In silico and in vitro study.Molecules20222714463410.3390/molecules27144634 35889513
    [Google Scholar]
  69. FaghfuriE. SaghaM. FaghfouriA.H. The cytotoxicity effect of curcumin loaded folic acid conjugated-nanoparticles on breast cancer cells and its association with inhibition of STAT3 phosphorylation.J. Cluster Sci.20223352037204410.1007/s10876‑021‑02125‑1
    [Google Scholar]
  70. GholibeglooE. MortezazadehT. SalehianF. ForootanfarH. FiroozpourL. ForoumadiA. RamazaniA. KhoobiM. Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging.J. Colloid Interface Sci.201955612813910.1016/j.jcis.2019.08.046 31437658
    [Google Scholar]
  71. DoH.D. ThiH.L. ThiT.H.L. NguyenH.N. BuiV.K. ThiM.N.H. HaP.T. Folate-modified, curcumin and paclitaxel co-loaded PLA-TPGS nanoparticles: Preparation, optimization and in vitro cytotoxicity assays.Adv Nat Sci: Nanosci Nanotechnol20189202500410.1088/2043‑6254/aabb5c
    [Google Scholar]
  72. AlsaabH. AlzhraniR. KesharwaniP. SauS. BodduS. IyerA. Folate decorated nanomicelles loaded with a potent curcumin analogue for targeting retinoblastoma.Pharmaceutics2017941510.3390/pharmaceutics9020015 28420213
    [Google Scholar]
  73. DasM. SahooS.K. Folate decorated dual drug loaded nanoparticle: Role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance.PLoS One201273e3292010.1371/journal.pone.0032920 22470431
    [Google Scholar]
  74. PriyaP. Mohan RajR. VasanthakumarV. RajV. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer.Arab. J. Chem.202013169470810.1016/j.arabjc.2017.07.010
    [Google Scholar]
  75. SongS. LiM. GongX. HanH. ZhouY. WangL. ShuangS. DongC. Controlled release of curcumin via folic acid conjugated magnetic drug delivery system.Chem. Res. Chin. Univ.201834220321110.1007/s40242‑018‑7293‑0
    [Google Scholar]
  76. FelenjiH. JohariB. MoradiM. GharbaviM. DanafarH. Folic acid-conjugated iron oxide magnetic nanoparticles based on Bovine Serum Albumin (BSA) for targeted delivery of curcumin to suppress liver cancer cells.Chem Africa2022551627163910.1007/s42250‑022‑00425‑1
    [Google Scholar]
  77. Thu HuongL.T. NamN.H. DoanD.H. My NhungH.T. QuangB.T. NamP.H. ThongP.Q. PhucN.X. ThuH.P. Folate attached, curcumin loaded Fe3O4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment.Mater. Chem. Phys.20161729810410.1016/j.matchemphys.2015.12.065
    [Google Scholar]
  78. GaoG. ZhouW. JiangX. MaJ. Bovine serum albumin and folic acid-modified aurum nanoparticles loaded with paclitaxel and curcumin enhance radiotherapy sensitization for esophageal cancer.Int. J. Radiat. Biol.2024100341141910.1080/09553002.2023.2281524 37934908
    [Google Scholar]
  79. HeY. WuC. DuanJ. MiaoJ. RenH. LiuJ. Anti-glioma effect with targeting therapy using folate modified nano-micelles delivery curcumin.J. Biomed. Nanotechnol.202016111310.1166/jbn.2020.2878 31996281
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010299290240531101441
Loading
/content/journals/cpb/10.2174/0113892010299290240531101441
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antioxidant; antitumor; Curcuma longa; drug transport; malignant; turmeric
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test