Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Neurological disorders present a formidable challenge in healthcare, necessitating the continuous exploration of innovative therapeutic avenues. This review delves into the burgeoning field of natural diterpenoid derivatives and their promising role in addressing neurological disorders. Derived from natural sources, these compounds exhibit a diverse range of pharmacological properties, positioning them as potential agents for treating conditions such as Alzheimer's and Parkinson's disease. The review highlights recent advancements, shedding light on the multifaceted mechanisms through which diterpenoid derivatives exert their effects, from anti-inflammatory to neuroprotective actions. As the scientific community navigates the translational journey from bench to bedside, integrating these natural compounds into neurotherapeutics emerges as a compelling prospect. This exploration of the therapeutic frontiers of natural diterpenoid derivatives signifies a significant step towards innovative and effective strategies in the management of neurological disorders. It highlights the potential of natural compounds to revolutionize neurotherapeutics.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304266240507050825
2024-05-17
2025-12-09
Loading full text...

Full text loading...

References

  1. KennedyD.P. AdolphsR. The social brain in psychiatric and neurological disorders.Trends Cogn. Sci.2012161155957210.1016/j.tics.2012.09.006 23047070
    [Google Scholar]
  2. GautamR. SharmaM. Prevalence and diagnosis of neurological disorders using different deep learning techniques: A meta-analysis.J. Med. Syst.20204424910.1007/s10916‑019‑1519‑7 31902041
    [Google Scholar]
  3. RaghavendraU. AcharyaU.R. AdeliH. Artificial intelligence techniques for automated diagnosis of neurological disorders.Eur. Neurol.2019821-3416410.1159/000504292 31743905
    [Google Scholar]
  4. FeiginV.L. NicholsE. AlamT. BannickM.S. BeghiE. BlakeN. CulpepperW.J. DorseyE.R. ElbazA. EllenbogenR.G. FisherJ.L. FitzmauriceC. GiussaniG. GlennieL. JamesS.L. JohnsonC.O. KassebaumN.J. LogroscinoG. MarinB. Mountjoy-VenningW.C. NguyenM. Ofori-AsensoR. PatelA.P. PiccininniM. RothG.A. SteinerT.J. StovnerL.J. SzoekeC.E.I. TheadomA. VollsetS.E. WallinM.T. WrightC. ZuntJ.R. AbbasiN. Abd-AllahF. AbdelalimA. AbdollahpourI. AboyansV. AbrahaH.N. AcharyaD. AdamuA.A. AdebayoO.M. AdeoyeA.M. AdsuarJ.C. AfaridehM. AgrawalS. AhmadiA. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemiR.O. AkseerN. Al-EyadhyA. Al-Shahi SalmanR. AlahdabF. AleneK.A. AljunidS.M. AltirkawiK. Alvis-GuzmanN. AnberN.H. AntonioC.A.T. ArablooJ. AremuO. ÄrnlövJ. AsayeshH. AsgharR.J. AtalayH.T. AwasthiA. Ayala QuintanillaB.P. AyukT.B. BadawiA. BanachM. BanoubJ.A.M. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BauneB.T. BediN. BehzadifarM. BehzadifarM. BéjotY. BekeleB.B. BelachewA.B. BennettD.A. BensenorI.M. BerhaneA. BeuranM. BhattacharyyaK. BhuttaZ.A. BiadgoB. BijaniA. BililignN. Bin SayeedM.S. BlazesC.K. BrayneC. ButtZ.A. Campos-NonatoI.R. Cantu-BritoC. CarM. CárdenasR. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. CastroF. Catalá-LópezF. CerinE. ChaiahY. ChangJ-C. ChatziralliI. ChiangP.P-C. ChristensenH. ChristopherD.J. CooperC. CortesiP.A. CostaV.M. CriquiM.H. CroweC.S. DamascenoA.A.M. DaryaniA. De la Cruz-GóngoraV. De la HozF.P. De LeoD. DemozG.T. DeribeK. DharmaratneS.D. DiazD. DinberuM.T. DjalaliniaS. DokuD.T. DubeyM. DubljaninE. DukenE.E. EdvardssonD. El-KhatibZ. EndresM. EndriesA.Y. EskandariehS. EsteghamatiA. EsteghamatiS. FarhadiF. FaroA. FarzadfarF. FarzaeiM.H. FatimaB. FereshtehnejadS-M. FernandesE. FeyissaG.T. FilipI. FischerF. FukumotoT. GanjiM. GankpeF.G. Garcia-GordilloM.A. GebreA.K. GebremichaelT.G. GelawB.K. GeleijnseJ.M. GeremewD. GezaeK.E. Ghasemi-KasmanM. GideyM.Y. GillP.S. GillT.K. GirmaE.T. GnedovskayaE.V. GoulartA.C. GradaA. GrossoG. GuoY. GuptaR. GuptaR. HaagsmaJ.A. HagosT.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HankeyG.J. HaoY. HaroJ.M. HassankhaniH. HassenH.Y. HavmoellerR. HayS.I. HegazyM.I. HeidariB. HenokA. HeydarpourF. HoangC.L. HoleM.K. Homaie RadE. HosseiniS.M. HuG. IgumborE.U. IlesanmiO.S. IrvaniS.S.N. IslamS.M.S. JakovljevicM. JavanbakhtM. JhaR.P. JobanputraY.B. JonasJ.B. JozwiakJ.J. JürissonM. KahsayA. KalaniR. KalkondeY. KamilT.A. KanchanT. KaramiM. KarchA. KarimiN. KasaeianA. KassaT.D. KassaZ.Y. KaulA. KefaleA.T. KeiyoroP.N. KhaderY.S. KhafaieM.A. KhalilI.A. KhanE.A. KhangY-H. KhazaieH. KiadaliriA.A. KiirithioD.N. KimA.S. KimD. KimY-E. KimY.J. KisaA. KokuboY. KoyanagiA. KrishnamurthiR.V. Kuate DefoB. Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mohammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X 30879893
    [Google Scholar]
  5. 2016 Alzheimer’s disease facts and figures.Alzheimers Dement.201612445950910.1016/j.jalz.2016.03.001 27570871
    [Google Scholar]
  6. AnandR GillKD Mahdi,AA Therapeutics of Alzheimer’s disease: Past, present and future of Alzheimerʼs disease.Neuropharmacology201476Pt A275010.1016/j.neuropharm.2013.07.004
    [Google Scholar]
  7. GandhiS. VaarmannA. YaoZ. DuchenM.R. WoodN.W. AbramovA.Y. Dopamine induced neurodegeneration in a PINK1 model of Parkinson’s disease.PLoS One201275e3756410.1371/journal.pone.0037564 22662171
    [Google Scholar]
  8. ElbazA. CarcaillonL. KabS. MoisanF. Epidemiology of Parkinson’s disease.Rev. Neurol.20161721142610.1016/j.neurol.2015.09.012 26718594
    [Google Scholar]
  9. LevinLA CroweME QuigleyHA Lasker/IRRF initiative on astrocytes and glaucomatous neurodegeneration participants. Neuroprotection for glaucoma: Requirements for clinical translation.Exp Eye Res. Lasker/IRRF2017157343710.1016/j.exer.2016.12.005
    [Google Scholar]
  10. AlmasiehM. LevinL.A. Neuroprotection in glaucoma: Animal models and clinical trials.Annu. Rev. Vis. Sci.2017319112010.1146/annurev‑vision‑102016‑061422 28731838
    [Google Scholar]
  11. Available from: https://www.paho.org/en/enlacrden-neurological-conditions#:~:text=In%202019%2C%20regionwide%20Neurological%20conditions,per%20100%2C000%20population%20in%20women
  12. RadiE. FormichiP. BattistiC. FedericoA. Apoptosis and oxidative stress in neurodegenerative diseases.J. Alzheimers Dis.201442s3Suppl. 3S125S15210.3233/JAD‑132738 25056458
    [Google Scholar]
  13. MainoB. PaparoneS. SeveriniC. CiottiM.T. D’agataV. CalissanoP. CavallaroS. Drug target identification at the crossroad of neuronal apoptosis and survival.Expert Opin. Drug Discov.201712324925910.1080/17460441.2017.1280023 28067072
    [Google Scholar]
  14. ChenW.W. ZhangX. HuangW.J. Role of neuroinflammation in neurodegenerative diseases (Review).Mol. Med. Rep.20161343391339610.3892/mmr.2016.4948 26935478
    [Google Scholar]
  15. YusteJ.E. TarragonE. CampuzanoC.M. Ros-BernalF. Implications of glial nitric oxide in neurodegenerative diseases.Front. Cell. Neurosci.2015932210.3389/fncel.2015.00322 26347610
    [Google Scholar]
  16. MarigaA. MitreM. ChaoM.V. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease.Neurobiol. Dis.201797737910.1016/j.nbd.2016.03.009
    [Google Scholar]
  17. BankstonA.N. MandlerM.D. FengY. Oligodendroglia and neurotrophic factors in neurodegeneration.Neurosci. Bull.201329221622810.1007/s12264‑013‑1321‑3 23558590
    [Google Scholar]
  18. HansonJ.R. Diterpenoids of terrestrial origin.Nat. Prod. Rep.201532121654166310.1039/C5NP00087D 26514379
    [Google Scholar]
  19. GonzálezM.A. Aromatic abietane diterpenoids: Their biological activity and synthesis.Nat. Prod. Rep.201532568470410.1039/C4NP00110A 25643290
    [Google Scholar]
  20. VasasA. HohmannJ. Euphorbia diterpenes: Isolation, structure, biological activity, and synthesis (2008-2012).Chem. Rev.2014114178579861210.1021/cr400541j 25036812
    [Google Scholar]
  21. CraggG.M. Paclitaxel (Taxol®): A success story with valuable lessons for natural product drug discovery and development.Med. Res. Rev.199818531533110.1002/(SICI)1098‑1128(199809)18:5<315:AID‑MED3>3.0.CO;2‑W 9735872
    [Google Scholar]
  22. RothB.L. BanerK. WestkaemperR. SiebertD. RiceK.C. SteinbergS. ErnsbergerP. RothmanR.B. SalvinorinA. A potent naturally occurring nonnitrogenous κ opioid selective agonist.Proc. Natl. Acad. Sci. USA20029918119341193910.1073/pnas.182234399 12192085
    [Google Scholar]
  23. SiebertD.J. Salvia divinorum and salvinorin A: new pharmacologic findings.J. Ethnopharmacol.1994431535610.1016/0378‑8741(94)90116‑3 7526076
    [Google Scholar]
  24. LiR. Morris-NatschkeS.L. LeeK.H. Clerodane diterpenes: Sources, structures, and biological activities.Nat. Prod. Rep.201633101166122610.1039/C5NP00137D 27433555
    [Google Scholar]
  25. WuH. WangS. XuZ. SunS. LiuH. WangJ. Two new clerodane diterpene from Tinospora sagitatta.Molecules201520183984510.3390/molecules20010839 25574824
    [Google Scholar]
  26. MonteiroA.F. BatistaJ.M. MachadoM.A. SeverinoR.P. BlanchE.W. BolzaniV.S. Diterpenoids of terrestrial origin.J. Nat. Prod.20157861451145510.1021/acs.jnatprod.5b00166 26039872
    [Google Scholar]
  27. LeandroL.F. CardosoM.J.O. SilvaS.D.C. SouzaM.G.M. VenezianiR.C.S. AmbrosioS.R. MartinsC.H.G. Antibacterial activity of Pinus elliottii and its major compound, dehydroabietic acid, against multidrug-resistant strains.J. Med. Microbiol.201463121649165310.1099/jmm.0.081711‑0 25261060
    [Google Scholar]
  28. ChangS.T. ChenP.F. WangS.Y. WuH.H. Antimite activity of essential oils and their constituents from Taiwania cryptomerioides.J. Med. Entomol.200138345545710.1603/0022‑2585‑38.3.455 11372974
    [Google Scholar]
  29. MuhammadI. MossaJ.S. El-FeralyF.S. Antibacterial diterpenes from the leaves and seeds of Juniperus excelsa M.Bieb. Phytother. Res.19926526126410.1002/ptr.2650060508
    [Google Scholar]
  30. OnoM. YamamotoM. MasuokaC. ItoY. YamashitaM. NoharaT. Diterpenes from the fruits of Vitex rotundifolia.J. Nat. Prod.199962111532153710.1021/np990204x 10579867
    [Google Scholar]
  31. UlubelenA. BirmanH. ÖksüzS. TopçuG. KolakU. BarlaA. VoelterW. Cardioactive diterpenes from the roots of Salvia eriophora.Planta Med.200268981882110.1055/s‑2002‑34408 12357394
    [Google Scholar]
  32. Bispo de JesusM. ZambuzziW.F. Ruela de SousaR.R. ArecheC. Santos de SouzaA.C. AoyamaH. Schmeda-HirschmannG. RodríguezJ.A. Monteiro de Souza BritoA.R. PeppelenboschM.P. den HertogJ. de PaulaE. FerreiraC.V. Ferruginol suppresses survival signaling pathways in androgen-independent human prostate cancer cells.Biochimie200890684385410.1016/j.biochi.2008.01.011 18294971
    [Google Scholar]
  33. ArecheC. TheodulozC. YáñezT. Souza-BritoA.R.M. BarbastefanoV. de PaulaD. FerreiraA.L. Schmeda-HirschmannG. RodríguezJ.A. Gastroprotective activity of ferruginol in mice and rats: effects on gastric secretion, endogenous prostaglandins and non-protein sulfhydryls.J. Pharm. Pharmacol.201060224525110.1211/jpp.60.2.0014 18237473
    [Google Scholar]
  34. KoendersM.I. van den BergW.B. Novel therapeutic targets in rheumatoid arthritis.Trends Pharmacol. Sci.201536418919510.1016/j.tips.2015.02.001 25732812
    [Google Scholar]
  35. AlmutairiK. NossentJ. PreenD. KeenH. InderjeethC. The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review.Rheumatol. Int.202141586387710.1007/s00296‑020‑04731‑0 33175207
    [Google Scholar]
  36. Ruyssen-WitrandA. FautrelB. SarauxA. Le-LoëtX. PhamT. Infections induced by low-dose corticosteroids in rheumatoid arthritis: A systematic literature review.Joint Bone Spine201077324625110.1016/j.jbspin.2010.02.009 20451437
    [Google Scholar]
  37. SimonR.A. NamazyJ. Adverse reactions to aspirin and nonsteroidal antiinflammatory drugs (NSAIDs).Clin. Rev. Allergy Immunol.200324323925210.1385/CRIAI:24:3:239 12721395
    [Google Scholar]
  38. GilaniS.T. KhanD.A. KhanF.A. AhmedM. Adverse effects of low dose methotrexate in rheumatoid arthritis patients.J. Coll. Physicians Surg. Pak.2012222101104 22313647
    [Google Scholar]
  39. Bustos-BritoC. Sánchez-CastellanosM. EsquivelB. CalderónJ.S. CalzadaF. Yépez-MuliaL. Joseph-NathanP. CuevasG. QuijanoL. ent-kaurene glycosides from ageratina cylindrica.J. Nat. Prod.201578112580258710.1021/acs.jnatprod.5b00488 26517282
    [Google Scholar]
  40. TudzynskiB. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology.Appl. Microbiol. Biotechnol.200566659761110.1007/s00253‑004‑1805‑1 15578178
    [Google Scholar]
  41. KirbyJ. KeaslingJ.D. Biosynthesis of plant isoprenoids: Perspectives for microbial engineering.Annu. Rev. Plant Biol.200960133535510.1146/annurev.arplant.043008.091955 19575586
    [Google Scholar]
  42. ChristiansonD.W. Structural biology and chemistry of the terpenoid cyclases.Chem. Rev.200610683412344210.1021/cr050286w 16895335
    [Google Scholar]
  43. de BoerA.H. LeeuwenI.J.V. Fusicoccanes: Diterpenes with surprising biological functions.Trends Plant Sci.201217636036810.1016/j.tplants.2012.02.007 22465041
    [Google Scholar]
  44. PetersR.J. Two rings in them all: The labdane-related diterpenoids.Nat. Prod. Rep.201027111521153010.1039/c0np00019a 20890488
    [Google Scholar]
  45. WildermanP.R. PetersR.J. A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase.J. Am. Chem. Soc.200712951157361573710.1021/ja074977g 18052062
    [Google Scholar]
  46. YangC.H. YenT.L. HsuC.Y. ThomasP.A. SheuJ.R. JayakumarT. Multi-targeting andrographolide, a novel NF-kappaB inhibitor, as a potential therapeutic agent for stroke.Int. J. Mol. Sci.2017188163810.3390/ijms18081638 28749412
    [Google Scholar]
  47. KishoreV. YarlaN. BishayeeA. PuttaS. MallaR. NeelapuN. ChallaS. DasS. ShiralgiY. HegdeG. DhananjayaB. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents.Curr. Top. Med. Chem.201717884585710.2174/1568026616666160927150452 27697058
    [Google Scholar]
  48. TaoL. ZhangL. GaoR. JiangF. CaoJ. LiuH. Andrographolide alleviates acute brain injury in a rat model of traumatic brain injury: Possible involvement of inflammatory signaling.Front. Neurosci.20181265710.3389/fnins.2018.00657 30294256
    [Google Scholar]
  49. ChernC.M. LiouK.T. WangY.H. LiaoJ.F. YenJ.C. ShenY.C. Andrographolide inhibits PI3K/AKT-dependent NOX2 and iNOS expression protecting mice against hypoxia/ischemia-induced oxidative brain injury.Planta Med.201177151669167910.1055/s‑0030‑1271019 21512969
    [Google Scholar]
  50. YenT.L. ChenR.J. JayakumarT. LuW.J. HsiehC.Y. HsuM.J. YangC.H. ChangC.C. LinY.K. LinK.H. SheuJ.R. Andrographolide stimulates p38 mitogen-activated protein kinase–nuclear factor erythroid-2-related factor 2–heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.Transl. Res.2016170577210.1016/j.trsl.2015.12.002 26746802
    [Google Scholar]
  51. WongS.Y. TanM.G.K. WongP.T.H. HerrD.R. LaiM.K.P. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK.J. Neuroinflammation201613125110.1186/s12974‑016‑0723‑3 27663973
    [Google Scholar]
  52. RiveraD.S. LindsayC. CodocedoJ.F. MorelI. PintoC. CisternasP. BozinovicF. InestrosaN.C. Andrographolide recovers cognitive impairment in a natural model of Alzheimer’s disease (Octodon degus).Neurobiol. Aging20164620422010.1016/j.neurobiolaging.2016.06.021 27505720
    [Google Scholar]
  53. SerranoF.G. Tapia-RojasC. CarvajalF.J. HanckeJ. CerpaW. InestrosaN.C. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice.Mol. Neurodegener.2014916110.1186/1750‑1326‑9‑61 25524173
    [Google Scholar]
  54. WangT. LiuB. ZhangW. WilsonB. HongJ.S. Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron-glia cultures by inhibiting microglial activation.J. Pharmacol. Exp. Ther.2004308397598310.1124/jpet.103.059683 14718612
    [Google Scholar]
  55. Varela-NallarL. ArredondoS.B. Tapia-RojasC. HanckeJ. InestrosaN.C. Andrographolide stimulates neurogenesis in the adult hippocampus.Neural Plast.2015201511310.1155/2015/935403 26798521
    [Google Scholar]
  56. ZhouZ.L. YangY.X. DingJ. LiY.C. MiaoZ.H. Triptolide: Structural modifications, structure–activity relationships, bioactivities, clinical development and mechanisms.Nat. Prod. Rep.201229445747510.1039/c2np00088a 22270059
    [Google Scholar]
  57. ZhengY. ZhangW.J. WangX.M. Triptolide with potential medicinal value for diseases of the central nervous system.CNS Neurosci. Ther.2013192768210.1111/cns.12039 23253124
    [Google Scholar]
  58. ZhangB. CunfengS. FengB. FangW. Neuroprotection by triptolide against cerebral ischemia/reperfusion injury through the inhibition of NF-KB/PUMA signal in rats.Ther. Clin. Risk Manag.20161281782410.2147/TCRM.S106012 27307742
    [Google Scholar]
  59. XuP. LiZ. WangH. ZhangX. YangZ. Triptolide inhibited cytotoxicity of differentiated PC12 cells induced by amyloid-beta25–35 via the autophagy pathway.PLoS One20151011e014271910.1371/journal.pone.0142719 26554937
    [Google Scholar]
  60. HuG. GongX. WangL. LiuM. LiuY. FuX. WangW. ZhangT. WangX. Triptolide promotes the clearance of alpha-synuclein by enhancing autophagy in neuronal cells.Mol. Neurobiol.20175432361237210.1007/s12035‑016‑9808‑3 26957304
    [Google Scholar]
  61. WanB. HuX. NieJ. ZhouM. YangB. LiY. WenW. LüC. Effects of triptolide on degeneration of dendritic spines induced by Aβ1–40 injection in rat hippocampus.Neurol. Sci.2014351354010.1007/s10072‑013‑1463‑0 23715750
    [Google Scholar]
  62. GaoJ.P. SunS. LiW.W. ChenY.P. CaiD.F. Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: Implication for immunosuppressive therapy in Parkinson’s disease.Neurosci. Bull.200824313314210.1007/s12264‑008‑1225‑9 18500385
    [Google Scholar]
  63. YangF. WuL. LiY. WangD. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma.Drug Des. Devel. Ther.201596095610710.2147/DDDT.S92022 26604697
    [Google Scholar]
  64. XuJ. WoldE. DingY. ShenQ. ZhouJ. Therapeutic potential of oridonin and its analogs: From anticancer and antiinflammation to neuroprotection.Molecules201823247410.3390/molecules23020474 29470395
    [Google Scholar]
  65. OwonaB.A. SchluesenerH.J. Molecular insight in the multifunctional effects of oridonin.Drugs R D.201515323324410.1007/s40268‑015‑0102‑z 26290464
    [Google Scholar]
  66. JavedS. TariqA. AhmedT. BudzyńskaB. TejadaS. DagliaM. NabaviS.F. Sobarzo-SánchezE. NabaviS.M. Tanshinones and mental diseases: From chemistry to medicine.Rev. Neurosci.201627877779110.1515/revneuro‑2016‑0012 27487490
    [Google Scholar]
  67. DaiC. LiuY. DongZ. Tanshinone I alleviates motor and cognitive impairments via suppressing oxidative stress in the neonatal rats after hypoxic-ischemic brain damage.Mol. Brain20171015210.1186/s13041‑017‑0332‑9 29137683
    [Google Scholar]
  68. ParkJ.H. ParkO. ChoJ.H. ChenB.H. KimI.H. AhnJ.H. LeeJ.C. YanB.C. YooK.Y. LeeC.H. HwangI.K. KwonS.H. LeeY.L. WonM.H. ChoiJ.H. Anti-inflammatory effect of tanshinone I in neuroprotection against cerebral ischemia-reperfusion injury in the gerbil hippocampus.Neurochem. Res.20143971300131210.1007/s11064‑014‑1312‑4 24760430
    [Google Scholar]
  69. JingX. WeiX. RenM. WangL. ZhangX. LouH. Neuroprotective effects of tanshinone I against 6-OHDA-induced oxidative stress in cellular and mouse model of parkinson’s disease through upregulating Nrf2 of Parkinsonʼs disease through upregulating Nrf2.Neurochem. Res.201641477978610.1007/s11064‑015‑1751‑6 26537816
    [Google Scholar]
  70. WangS. JingH. YangH. LiuZ. GuoH. ChaiL. HuL. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson׳s disease.J. Ethnopharmacol.201516424725510.1016/j.jep.2015.01.042 25666429
    [Google Scholar]
  71. YaoN.W. LuY. ShiL.Q. XuF. CaiX.H. Neuroprotective effect of combining tanshinone IIA with low-dose methylprednisolone following acute spinal cord injury in rats.Exp. Ther. Med.20171352193220210.3892/etm.2017.4271 28565827
    [Google Scholar]
  72. MaioneF. PiccoloM. De VitaS. ChiniM.G. CristianoC. De CaroC. LippielloP. MiniaciM.C. SantamariaR. IraceC. De FeoV. CalignanoA. MascoloN. BifulcoG. Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease.Pharmacol. Res.201812948249010.1016/j.phrs.2017.11.018 29158049
    [Google Scholar]
  73. RenB. ZhangY. ZhouH. SunF. ZhangZ. WeiZ. ZhangC. SiD. Tanshinone IIA prevents the loss of nigrostriatal dopaminergic neurons by inhibiting NADPH oxidase and iNOS in the MPTP model of Parkinson’s disease.J. Neurol. Sci.20153481-214215210.1016/j.jns.2014.11.026 25491263
    [Google Scholar]
  74. de OliveiraM.R. The dietary components carnosic acid and carnosol as neuroprotective agents: A mechanistic view.Mol. Neurobiol.20165396155616810.1007/s12035‑015‑9519‑1 26553346
    [Google Scholar]
  75. WuC.R. TsaiC.W. ChangS.W. LinC.Y. HuangL.C. TsaiC.W. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes induction.Chem. Biol. Interact.2015225404610.1016/j.cbi.2014.11.011 25446857
    [Google Scholar]
  76. RahaP. DasA.K. AdityachaudhuriN. MajumderP.L. Cleroinermin, aneo-clerodane diterpenoid from Clerodendron inermi.Phytochemistry199130113812381410.1016/0031‑9422(91)80120‑P
    [Google Scholar]
  77. XiaonaF.A.N. LinS. ZhuC. HuJ. LiuY. ChenX. ChenN. WangW. ShiJ. Terpenoids of Heteroplexis micocephala and their bioactivities.Zhongguo Zhongyao Zazhi201035331532210.4268/cjcmm20100313 20422996
    [Google Scholar]
  78. GreenwoodS.M. ConnollyC.N. Dendritic and mitochondrial changes during glutamate excitotoxicity.Neuropharmacology200753889189810.1016/j.neuropharm.2007.10.003 18031769
    [Google Scholar]
  79. TobabenS. GrohmJ. SeilerA. ConradM. PlesnilaN. CulmseeC. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons.Cell Death Differ.201118228229210.1038/cdd.2010.92 20689558
    [Google Scholar]
  80. YangE.J. SongK.S. Andrographolide, a major component of Andrographis paniculata leaves, has the neuroprotective effects on glutamate-induced HT22 cell death.J. Funct. Foods2014916217210.1016/j.jff.2014.04.023
    [Google Scholar]
  81. GomesN.G.M. CamposM.G. ÓrfãoJ.M.C. RibeiroC.A.F. Plants with neurobiological activity as potential targets for drug discovery.Prog. Neuropsychopharmacol. Biol. Psychiatry20093381372138910.1016/j.pnpbp.2009.07.033 19666075
    [Google Scholar]
  82. SchrammA. EbrahimiS.N. RaithM. ZauggJ. RuedaD.C. HeringS. HamburgerM. Phytochemical profiling of Curcuma kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABAA receptor modulators.Phytochemistry20139631832910.1016/j.phytochem.2013.08.004 24011802
    [Google Scholar]
  83. XuJ. LiuC. GuoP. GuoY. JinD.Q. SongX. SunZ. GuiL. MaY. Neuroprotective labdane diterpenes from Fritillaria ebeiensis.Fitoterapia201182577277610.1016/j.fitote.2011.03.009 21513776
    [Google Scholar]
  84. HeF. LindqvistC. HardingW.W. Leonurenones A–C: Labdane diterpenes from Leonotis leonurus.Phytochemistry20128316817210.1016/j.phytochem.2012.07.014 22892215
    [Google Scholar]
  85. AzadN. RasoolijaziH. JoghataieM.T. SoleimaniS. Neuroprotective effects of carnosic Acid in an experimental model of Alzheimer’s disease in rats.Cell J.20111313944 23671826
    [Google Scholar]
  86. BirtićS. DussortP. PierreF.X. BilyA.C. RollerM. Carnosic acid.Phytochemistry201511591910.1016/j.phytochem.2014.12.026 25639596
    [Google Scholar]
  87. CostaJ.P. FerreiraP.B. De SousaD.P. JordanJ. FreitasR.M. Anticonvulsant effect of phytol in a pilocarpine model in mice.Neurosci. Lett.2012523211511810.1016/j.neulet.2012.06.055 22750154
    [Google Scholar]
  88. CostaJ.P. de OliveiraG.A.L. de AlmeidaA.A.C. IslamM.T. de SousaD.P. de FreitasR.M. Anxiolytic-like effects of phytol: Possible involvement of GABAergic transmission.Brain Res.20141547344210.1016/j.brainres.2013.12.003 24333358
    [Google Scholar]
  89. ZhangX.S. HaS. WangX.L. ShiY.L. DuanS.S. LiZ.A. Tanshinone IIA protects dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity through miR-153/NF-E2-related factor 2/antioxidant response element signaling pathway.Neuroscience201530348950210.1016/j.neuroscience.2015.06.030 26116522
    [Google Scholar]
  90. WuX. ZhouC. DuF. LuY. PengB. ChenL. ZhuL. Ginkgolide B preconditioning on astrocytes promotes neuronal survival in ischemic injury via up-regulating erythropoietin secretion.Neurochem. Int.201362215716410.1016/j.neuint.2012.11.007 23201340
    [Google Scholar]
  91. HuJ.Y. LiC.L. WangY.W. Intrathecal administration of triptolide, a T lymphocyte inhibitor, attenuates chronic constriction injury-induced neuropathic pain in rats.Brain Res.2012143612212910.1016/j.brainres.2011.11.051 22189457
    [Google Scholar]
  92. KawachiI. WillettW.C. ColditzG.A. StampferM.J. SpeizerF.E. A prospective study of coffee drinking and suicide in women.Arch. Intern. Med.1996156552152510.1001/archinte.1996.00440050067008 8604958
    [Google Scholar]
  93. ObaraY. HoshinoT. MarcotullioM.C. PagiottiR. NakahataN. A novel cyathane diterpene, cyrneine A, induces neurite outgrowth in a Rac1-dependent mechanism in PC12 cells.Life Sci.200780181669167710.1016/j.lfs.2007.01.057 17337280
    [Google Scholar]
  94. KimB. NamY. KimJ. ChoiH. WonC. Coffee consumption and stroke risk: A meta analysis of epidemiologic studies.Korean J. Fam. Med.201233635636510.4082/kjfm.2012.33.6.356 23267421
    [Google Scholar]
  95. LiuY. WangQ. ZhengD.K. ZhangD. XieZ. HuJ.W. XieX.H. LiJ. JiangS.P. Abietane diterpenoids with neuroprotective activities from Phlegmariurus carinatus.Nat. Prod. Res.202236236006601110.1080/14786419.2022.2059662 35369804
    [Google Scholar]
  96. QiX.L. ZhangY.Y. ZhaoP. ZhouL. WangX.B. HuangX.X. LinB. SongS.J. ent-Kaurane diterpenoids with neuroprotective properties from corn silk (Zea mays).J. Nat. Prod.20188151225123410.1021/acs.jnatprod.7b01017 29762032
    [Google Scholar]
  97. González-BurgosE. CarreteroM.E. Gómez-SerranillosM.P. Nrf2-dependent neuroprotective activity of diterpenoids isolated from Sideritis spp.J. Ethnopharmacol.2013147364565210.1016/j.jep.2013.03.062 23548583
    [Google Scholar]
  98. Campos-EsparzaM.R. Sánchez-GómezM.V. MatuteC. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols.Cell Calcium200945435836810.1016/j.ceca.2008.12.007 19201465
    [Google Scholar]
  99. EbrahimiA. SchluesenerH. Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls.Ageing Res. Rev.201211232934510.1016/j.arr.2012.01.006 22336470
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304266240507050825
Loading
/content/journals/cpb/10.2174/0113892010304266240507050825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test