Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Despite advanced clinical treatment, the mortality rate of cancer patients is high. Recent studies have linked the development of cancer to inflammation. Many cancers are exacerbated by the emergence of inflammatory responses, and non-coding RNAs play an important role in inflammation. Non-coding RNAs include microRNAs, circular RNAs, long-chain non-coding RNAs, . The non-coding RNA regulatory network composed of microRNAs, circular RNAs and long-chain non-coding RNAs is involved in the regulatory process of multiple gene expression. They can act on various signaling pathways, such as wnt/β-catenin, nuclear factor-kappa B, phosphatidylinositol 3 kinase/ AKT, mitogen-activated protein kinase, and so on. These signaling pathways can control the occurrence of inflammatory response to some extent, such as regulating the expression of inflammatory cytokines (such as interleukin-6, interferon-gamma, tumor necrosis factor-α, and so on), making them upregulated or down-regulated. Therefore, it is important to study the role of non-coding RNAs in inflammation to contribute to the future of cancer.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010295993240430125552
2024-05-17
2025-09-23
Loading full text...

Full text loading...

References

  1. CucinielloR. FilosaS. CrispiS. Novel approaches in cancer treatment: Preclinical and clinical development of small non-coding RNA therapeutics.J. Exp. Clin. Cancer Res.202140138310.1186/s13046‑021‑02193‑1 34863235
    [Google Scholar]
  2. GrilloneK. RiilloC. SciontiF. RoccaR. TradigoG. GuzziP.H. AlcaroS. Di MartinoM.T. TagliaferriP. TassoneP. Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter”.J. Exp. Clin. Cancer Res.202039111710.1186/s13046‑020‑01622‑x 32563270
    [Google Scholar]
  3. MedzhitovR. HorngT. Transcriptional control of the inflammatory response.Nat. Rev. Immunol.200991069270310.1038/nri2634 19859064
    [Google Scholar]
  4. CostaF.F. Non-coding RNAs: New players in eukaryotic biology.Gene20053572839410.1016/j.gene.2005.06.019 16111837
    [Google Scholar]
  5. LiuY. LiuX. LinC. JiaX. ZhuH. SongJ. ZhangY. Noncoding RNAs regulate alternative splicing in Cancer.J. Exp. Clin. Cancer Res.20214011110.1186/s13046‑020‑01798‑2 33407694
    [Google Scholar]
  6. TodenS. ZumwaltT.J. GoelA. Non-coding RNAs and potential therapeutic targeting in cancer. Biochimica et Biophysica Acta (BBA) -.Revis. Cancer20211875118849110.1016/j.bbcan.2020.188491 33316377
    [Google Scholar]
  7. HuW. Alvarez-DominguezJ.R. LodishH.F. Regulation of mammalian cell differentiation by long non‐coding RNAs.EMBO Rep.2012131197198310.1038/embor.2012.145 23070366
    [Google Scholar]
  8. LingH. FabbriM. CalinG.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development.Nat. Rev. Drug Discov.2013121184786510.1038/nrd4140 24172333
    [Google Scholar]
  9. CalinG.A. DumitruC.D. ShimizuM. BichiR. ZupoS. NochE. AldlerH. RattanS. KeatingM. RaiK. RassentiL. KippsT. NegriniM. BullrichF. CroceC.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci. USA20029924155241552910.1073/pnas.242606799 12434020
    [Google Scholar]
  10. MendellJ.T. OlsonE.N. MicroRNAs in stress signaling and human disease.Cell201214861172118710.1016/j.cell.2012.02.005 22424228
    [Google Scholar]
  11. EstellerM. Non-coding RNAs in human disease.Nat. Rev. Genet.2011121286187410.1038/nrg3074 22094949
    [Google Scholar]
  12. DerrienT. JohnsonR. BussottiG. TanzerA. DjebaliS. TilgnerH. GuernecG. MartinD. MerkelA. KnowlesD.G. LagardeJ. VeeravalliL. RuanX. RuanY. LassmannT. CarninciP. BrownJ.B. LipovichL. GonzalezJ.M. ThomasM. DavisC.A. ShiekhattarR. GingerasT.R. HubbardT.J. NotredameC. HarrowJ. GuigóR. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression.Genome Res.20122291775178910.1101/gr.132159.111 22955988
    [Google Scholar]
  13. FaticaA. BozzoniI. Long non-coding RNAs: New players in cell differentiation and development.Nat. Rev. Genet.201415172110.1038/nrg3606 24296535
    [Google Scholar]
  14. FangW. MuJ. YangY. LiuL. CircRERE confers the resistance of multiple myeloma to bortezomib depending on the regulation of CD47 by exerting the sponge effect on miR-152-3p.J. Bone Oncol.20213010038110.1016/j.jbo.2021.100381 34307012
    [Google Scholar]
  15. JeckW.R. SharplessN.E. Detecting and characterizing circular RNAs.Nat. Biotechnol.201432545346110.1038/nbt.2890 24811520
    [Google Scholar]
  16. HuangA. ZhengH. WuZ. ChenM. HuangY. Circular RNA-protein interactions: Functions, mechanisms, and identification.Theranostics20201083503351710.7150/thno.42174 32206104
    [Google Scholar]
  17. FangY. MaM. WangJ. LiuX. WangY. Circular RNAs play an important role in late-stage gastric cancer: Circular RNA expression profiles and bioinformatics analyses.Tumour Biol.201739610.1177/1010428317705850 28639908
    [Google Scholar]
  18. NathanC. Points of control in inflammation.Nature2002420691784685210.1038/nature01320 12490957
    [Google Scholar]
  19. NallasamyP. ChavaS. VermaS.S. MishraS. GorantlaS. CoulterD.W. ByrareddyS.N. BatraS.K. GuptaS.C. ChallagundlaK.B. PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective.Semin. Cancer Biol.201852P2536510.1016/j.semcancer.2017.11.009 29196189
    [Google Scholar]
  20. Marques-RochaJ.L. SamblasM. MilagroF.I. BressanJ. MartínezJ.A. MartiA. Noncoding RNAs, cytokines, and inflammation-related diseases.FASEB J.20152993595361110.1096/fj.14‑260323 26065857
    [Google Scholar]
  21. ArnoldM. SierraM.S. LaversanneM. SoerjomataramI. JemalA. BrayF. Global patterns and trends in colorectal cancer incidence and mortality.Gut201766468369110.1136/gutjnl‑2015‑310912 26818619
    [Google Scholar]
  22. SiegelR.L. MillerK.D. Goding SauerA. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.21601 32133645
    [Google Scholar]
  23. FeaginsL.A. SouzaR.F. SpechlerS.J. Carcinogenesis in IBD: Potential targets for the prevention of colorectal cancer.Nat. Rev. Gastroenterol. Hepatol.20096529730510.1038/nrgastro.2009.44 19404270
    [Google Scholar]
  24. TerzićJ. GrivennikovS. KarinE. KarinM. Inflammation and colon cancer.Gastroenterology2010138621012114.e510.1053/j.gastro.2010.01.058 20420949
    [Google Scholar]
  25. JessT. RungoeC. Peyrin-BirouletL. Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies.Clin. Gastroenterol. Hepatol.201210663964510.1016/j.egh.2012.01.010 22289873
    [Google Scholar]
  26. XuM. QiP. DuX. Long non-coding RNAs in colorectal cancer: Implications for pathogenesis and clinical application.Mod. Pathol.201427101310132010.1038/modpathol.2014.33 24603586
    [Google Scholar]
  27. MaS. LongT. HuangW.J.M. Noncoding RNAs in inflammation and colorectal cancer.RNA Biol.202017111628163510.1080/15476286.2019.1705610 31847691
    [Google Scholar]
  28. CarpenterS. AielloD. AtianandM.K. RicciE.P. GandhiP. HallL.L. ByronM. MonksB. Henry-BezyM. LawrenceJ.B. O’NeillL.A.J. MooreM.J. CaffreyD.R. FitzgeraldK.A. A long noncoding RNA mediates both activation and repression of immune response genes.Science2013341614778979210.1126/science.1240925 23907535
    [Google Scholar]
  29. ZhangF. WuL. QianJ. QuB. XiaS. LaT. WuY. MaJ. ZengJ. GuoQ. CuiY. YangW. HuangJ. ZhuW. YaoY. ShenN. TangY. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus.J. Autoimmun.2016759610410.1016/j.jaut.2016.07.012 27481557
    [Google Scholar]
  30. DuM. YuanL. TanX. HuangD. WangX. ZhengZ. MaoX. LiX. YangL. HuangK. ZhangF. WangY. LuoX. HuangD. HuangK. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation.Nat. Commun.201781204910.1038/s41467‑017‑02229‑1 29230038
    [Google Scholar]
  31. RayK. Lnc13 and coeliac disease: A link to pathogenesis?Nat. Rev. Gastroenterol. Hepatol.201613631510.1038/nrgastro.2016.69 27095654
    [Google Scholar]
  32. LiZ. ChaoT.C. ChangK.Y. LinN. PatilV.S. ShimizuC. HeadS.R. BurnsJ.C. RanaT.M. The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL.Proc. Natl. Acad. Sci. USA201411131002100710.1073/pnas.1313768111 24371310
    [Google Scholar]
  33. PaduaD. Mahurkar-JoshiS. LawI.K.M. PolytarchouC. VuJ.P. PisegnaJ.R. ShihD. IliopoulosD. PothoulakisC. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation.Am. J. Physiol. Gastrointest. Liver Physiol.20163113G446G45710.1152/ajpgi.00212.2016 27492330
    [Google Scholar]
  34. TiliE. MichailleJ.J. CroceC.M. Micro RNA s play a central role in molecular dysfunctions linking inflammation with cancer.Immunol. Rev.2013253116718410.1111/imr.12050 23550646
    [Google Scholar]
  35. CalinG.A. CroceC.M. MicroRNA signatures in human cancers.Nat. Rev. Cancer200661185786610.1038/nrc1997 17060945
    [Google Scholar]
  36. Martínez-GutierrezA. Carbajal-LopezB. BuiT.M. Mendoza-RodriguezM. Campos-ParraA.D. Calderillo-RuizG. Cantú-De LeonD. Madrigal-SantillánE.O. SumaginR. Pérez-PlasenciaC. Pérez-YépezE.A. A microRNA panel that regulates proinflammatory cytokines as diagnostic and prognosis biomarkers in colon cancer.Biochem. Biophys. Rep.20223010125210.1016/j.bbrep.2022.101252 35313644
    [Google Scholar]
  37. LanF. YueX. HanL. ShiZ. YangY. PuP. YaoZ. KangC. Genome-wide identification of TCF7L2/TCF4 target miRNAs reveals a role for miR-21 in Wnt-driven epithelial cancer.Int. J. Oncol.201240251952610.3892/ijo.2011.1215 21956205
    [Google Scholar]
  38. ShiC. YangY. XiaY. OkugawaY. YangJ. LiangY. ChenH. ZhangP. WangF. HanH. WuW. GaoR. GascheC. QinH. MaY. GoelA. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer.Gut20166591470148110.1136/gutjnl‑2014‑308455 25994220
    [Google Scholar]
  39. LingM. LiY. XuY. PangY. ShenL. JiangR. ZhaoY. YangX. ZhangJ. ZhouJ. WangX. LiuQ. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation.Free Radic. Biol. Med.20125291508151810.1016/j.freeradbiomed.2012.02.020 22387281
    [Google Scholar]
  40. UllmanT.A. ItzkowitzS.H. Intestinal inflammation and cancer.Gastroenterology201114061807181610.1053/j.gastro.2011.01.057 21530747
    [Google Scholar]
  41. SunX. SitA. FeinbergM.W. Role of miR-181 family in regulating vascular inflammation and immunity.Trends Cardiovasc. Med.201424310511210.1016/j.tcm.2013.09.002 24183793
    [Google Scholar]
  42. RezaeiT. AminiM. HashemiZ.S. MansooriB. RezaeiS. KaramiH. MosaferJ. MokhtarzadehA. BaradaranB. microRNA-181 serves as a dual-role regulator in the development of human cancers.Free Radic. Biol. Med.202015243245410.1016/j.freeradbiomed.2019.12.043 31899343
    [Google Scholar]
  43. GaliciaJ.C. NaqviA.R. KoC-C. NaresS. KhanA.A. MiRNA-181a regulates Toll-like receptor agonist-induced inflammatory response in human fibroblasts.Genes Immun.201415533333710.1038/gene.2014.24 24848932
    [Google Scholar]
  44. GuoX. ZhuY. HongX. ZhangM. QiuX. WangZ. QiZ. HongX. miR-181d and c-myc-mediated inhibition of CRY2 and FBXL3 reprograms metabolism in colorectal cancer.Cell Death Dis.201787e2958e295810.1038/cddis.2017.300 28749470
    [Google Scholar]
  45. HuangY. ZhangC. XiongJ. RenH. Emerging important roles of circRNAs in human cancer and other diseases.Genes Dis.20218441242310.1016/j.gendis.2020.07.012 34179306
    [Google Scholar]
  46. ChenN. ZhaoG. YanX. LvZ. YinH. ZhangS. SongW. LiX. LiL. DuZ. JiaL. ZhouL. LiW. HoffmanA.R. HuJ.F. CuiJ. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1.Genome Biol.201819121810.1186/s13059‑018‑1594‑y 30537986
    [Google Scholar]
  47. SmillieC.L. SireyT. PontingC.P. Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk.Crit. Rev. Biochem. Mol. Biol.201853323124510.1080/10409238.2018.1447542 29569941
    [Google Scholar]
  48. WangS. ChengL. WuH. LiG. Mechanisms and prospects of circular RNAs and their interacting signaling pathways in colorectal cancer.Front. Oncol.20221294965610.3389/fonc.2022.949656 35992800
    [Google Scholar]
  49. CuiW. DaiJ. MaJ. GuH. circCDYL/microRNA-150-5p participates in modulating growth and migration of colon cancer cells.Gen. Physiol. Biophys.201938648549510.4149/gpb_2019037 31829306
    [Google Scholar]
  50. ZhangZ.J. ZhangY.H. QinX.J. WangY.X. FuJ. Circular RNA circDENND4C facilitates proliferation, migration and glycolysis of colorectal cancer cells through miR-760/GLUT1 axis.Eur. Rev. Med. Pharmacol. Sci.20202452387240010.26355/eurrev_202003_20506 32196590
    [Google Scholar]
  51. HuangG. ZhuH. ShiY. WuW. CaiH. ChenX. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway.PLoS One2015106e013122510.1371/journal.pone.0131225 26110611
    [Google Scholar]
  52. JingL. WuJ. TangX. MaM. LongF. TianB. LinC. Identification of circular RNA hsa_circ_0044556 and its effect on the progression of colorectal cancer.Cancer Cell Int.202020142710.1186/s12935‑020‑01523‑1 32884449
    [Google Scholar]
  53. XuH. WangC. SongH. XuY. JiG. RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers.Mol. Cancer2019181810.1186/s12943‑018‑0932‑8 30630466
    [Google Scholar]
  54. ChenL.Y. ZhiZ. WangL. ZhaoY.Y. DengM. LiuY.H. QinY. TianM.M. LiuY. ShenT. SunL.N. LiJ.M. NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR‐199b‐5p‐mediated DDR1 and JAG1 signalling.J. Pathol.2019248110311510.1002/path.5238 30666650
    [Google Scholar]
  55. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  56. RazaviZ.S. AsgarpourK. Mahjoubin-TehranM. RasouliS. KhanH. ShahrzadM.K. HamblinM.R. MirzaeiH. Angiogenesis-related non-coding RNAs and gastrointestinal cancer.Mol. Ther. Oncolytics20212122024110.1016/j.omto.2021.04.002 34095461
    [Google Scholar]
  57. LiX.W. YangW.H. XuJ. Circular RNA in gastric cancer.Chin. Med. J.2020133151868187710.1097/CM9.0000000000000908 32649513
    [Google Scholar]
  58. SyrigosK.N. PatsilinakouS. GrapsaD. ChrysanthopoulouE. GkiozosI. KavantzasN. PolitiE. Advanced lung cancer inflammation index: Prognostic value in a retrospective lung cancer cohort.J. Clin. Oncol.20203815_suppl)(Suppl.e21624e2162410.1200/JCO.2020.38.15_suppl.e21624
    [Google Scholar]
  59. ZhouR. WuZ. DengX. ChenH. The long non-coding RNA OLC8 enhances gastric cancer by interaction with IL-11.J. Clin. Lab. Anal.2019338e2296210.1002/jcla.22962 31273847
    [Google Scholar]
  60. SongH. XuY. ShiL. XuT. FanR. CaoM. XuW. SongJ. LncRNA THOR increases the stemness of gastric cancer cells via enhancing SOX9 mRNA stability.Biomed. Pharmacother.201810833834610.1016/j.biopha.2018.09.057 30227327
    [Google Scholar]
  61. HeX. WangJ. ChenJ. HanL. LuX. MiaoD. YinD. GengQ. ZhangE. lncRNA UCA1 predicts a poor prognosis and regulates cell proliferation and migration by repressing p21 and SPRY1 expression in GC.Mol. Ther. Nucleic Acids20191860561610.1016/j.omtn.2019.09.024 31689615
    [Google Scholar]
  62. ZhangF. LiY. XuW. HeL. TanY. XuH. Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis.Biosci. Biotechnol. Biochem.20198371289129910.1080/09168451.2019.1606697 30999814
    [Google Scholar]
  63. LiX. HeM. GuoJ. CaoT. Upregulation of circular RNA circ-ERBB2 predicts unfavorable prognosis and facilitates the progression of gastric cancer via miR-503/CACUL1 and miR-637/MMP-19 signaling.Biochem. Biophys. Res. Commun.2019511492693010.1016/j.bbrc.2019.03.010 30853181
    [Google Scholar]
  64. WuL. LiuD. YangY. Enhanced expression of circular RNA circ-DCAF6 predicts adverse prognosis and promotes cell progression via sponging miR-1231 and miR-1256 in gastric cancer.Exp. Mol. Pathol.201911010427310.1016/j.yexmp.2019.104273 31226266
    [Google Scholar]
  65. OmuroA. DeAngelisL.M. Glioblastoma and other malignant gliomas: A clinical review.JAMA2013310171842185010.1001/jama.2013.280319 24193082
    [Google Scholar]
  66. OstromQ.T. GittlemanH. LiaoP. RouseC. ChenY. DowlingJ. WolinskyY. KruchkoC. Barnholtz-SloanJ. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007-2011.Neuro-oncol.201416Suppl. 416310.1093/neuonc/nou223 25304271
    [Google Scholar]
  67. HamS.W. JeonH.Y. JinX. KimE.J. KimJ.K. ShinY.J. LeeY. KimS.H. LeeS.Y. SeoS. ParkM.G. KimH.M. NamD.H. KimH. TP53 gain-of-function mutation promotes inflammation in glioblastoma.Cell Death Differ.201926340942510.1038/s41418‑018‑0126‑3 29786075
    [Google Scholar]
  68. BalandehE. MohammadshafieK. MahmoudiY. Hossein PourhanifehM. RajabiA. BahabadiZ.R. MohammadiA.H. RahimianN. HamblinM.R. MirzaeiH. Roles of non-coding RNAs and angiogenesis in glioblastoma.Front. Cell Dev. Biol.2021971646210.3389/fcell.2021.716462 34646821
    [Google Scholar]
  69. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2016.CA Cancer J. Clin.201666173010.3322/caac.21332 26742998
    [Google Scholar]
  70. ReddyS.M. WargoJ.A. ReubenA. TetzlaffM.T. RoszikJ. ReubenJ.M. WoodwardW.A. UenoN.T. KrishnamurthyS. MittendorfE.A. Immune and molecular determinants of response to neoadjuvant chemotherapy in inflammatory breast cancer.J. Clin. Oncol.20173515_suppl)(Suppl.115011150110.1200/JCO.2017.35.15_suppl.11501
    [Google Scholar]
  71. ReddyS.M. ReubenA. BaruaS. JiangH. ZhangS. WangL. GopalakrishnanV. HudgensC.W. TetzlaffM.T. ReubenJ.M. TsujikawaT. CoussensL.M. WaniK. HeY. VillarealL. WoodA. RaoA. WoodwardW.A. UenoN.T. KrishnamurthyS. WargoJ.A. MittendorfE.A. Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer.Cancer Immunol. Res.2019761025103510.1158/2326‑6066.CIR‑18‑0619 31043414
    [Google Scholar]
  72. OshimaH. OshimaM. The role of PGE2-associated inflammatory responses in gastric cancer development.Semin. Immunopathol.201335213915010.1007/s00281‑012‑0353‑5 23053397
    [Google Scholar]
  73. VenninC. SpruytN. RobinY.M. ChassatT. Le BourhisX. AdriaenssensE. The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications.Cancer Lett.201738519820610.1016/j.canlet.2016.10.023 27780718
    [Google Scholar]
  74. ZhangT. HuH. YanG. WuT. LiuS. ChenW. NingY. LuZ. Long non-coding RNA and breast cancer.Technol. Cancer Res. Treat.20191810.1177/1533033819843889 30983509
    [Google Scholar]
  75. CaiY. HeJ. ZhangD. Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway.OncoTargets Ther.201582657266410.2147/ott.S90485 26442763
    [Google Scholar]
  76. LuP. GuY. LiL. WangF. YangX. YangY. Long noncoding RNA CAMTA1 promotes proliferation and mobility of the human breast cancer cell line MDA-MB-231 via targeting miR-20b.Oncol. Res.201826462563510.3727/096504017X14953948675395 28550685
    [Google Scholar]
  77. RenY. CaoL. YouM. JiJ. GongY. RenH. XuF. GuoH. HuJ. LiZ. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages.Trends Analyt. Chem.202215711677410.1016/j.trac.2022.116774
    [Google Scholar]
  78. Ghafouri-FardS. ShooreiH. BranickiW. TaheriM. Non-coding RNA profile in lung cancer.Exp. Mol. Pathol.202011410441110.1016/j.yexmp.2020.104411 32112788
    [Google Scholar]
  79. ChenZ. LeiT. ChenX. GuJ. HuangJ. LuB. WangZ. Long non-coding RNA in lung cancer.Clin. Chim. Acta202050419020010.1016/j.cca.2019.11.031 31790697
    [Google Scholar]
  80. WeiM.M. ZhouG.B. Long non-coding RNAs and their roles in non-small-cell lung cancer.Genomics Proteomics Bioinformatics201614528028810.1016/j.gpb.2016.03.007 27397102
    [Google Scholar]
  81. BraicuC. ZimtaA.A. HarangusA. IurcaI. IrimieA. CozaO. Berindan-NeagoeI. The function of non-coding rnas in lung cancer tumorigenesis.Cancers201911560510.3390/cancers11050605 31052265
    [Google Scholar]
  82. ZhengQ. GuX. YangQ. ChuQ. DaiY. ChenZ. DLX6-AS1 is a potential biomarker and therapeutic target in cancer initiation and progression.Clin. Chim. Acta20215171810.1016/j.cca.2021.02.006 33607068
    [Google Scholar]
  83. FengJ. BiC. ClarkB.S. MadyR. ShahP. KohtzJ.D. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator.Genes Dev.200620111470148410.1101/gad.1416106 16705037
    [Google Scholar]
  84. Maleki DanaP. MansourniaM.A. MirhashemiS.M. PIWI-interacting RNAs: New biomarkers for diagnosis and treatment of breast cancer.Cell Biosci.20201014410.1186/s13578‑020‑00403‑5 32211149
    [Google Scholar]
  85. CaoZ. OyangL. LuoX. XiaL. HuJ. LinJ. TanS. TangY. ZhouY. CaoD. LiaoQ. The roles of long non-coding RNAs in lung cancer.J. Cancer202213117418310.7150/jca.65031 34976181
    [Google Scholar]
  86. TanoK. Onoguchi-MizutaniR. YeasminF. UchiumiF. SuzukiY. YadaT. AkimitsuN. Identification of minimal p53 promoter region regulated by MALAT1 in human lung adenocarcinoma cells.Front. Genet.2018820810.3389/fgene.2017.00208 29632545
    [Google Scholar]
  87. LiuK. ZhangS. GongY. ZhuP. ShenW. ZhangQ. PSMC4 promotes prostate carcinoma progression by regulating the CBX3 – EGFR‐PI3K‐AKT‐MTOR pathway.J. Cell. Mol. Med.202327162437244710.1111/jcmm.17832 37436074
    [Google Scholar]
  88. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  89. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  90. ChengX. ZengZ. YangH. ChenY. LiuY. ZhouX. ZhangC. WangG. Novel cuproptosis-related long non-coding RNA signature to predict prognosis in prostate carcinoma.BMC Cancer202323110510510.1186/s12885‑023‑10584‑0 36717792
    [Google Scholar]
  91. NavaV.E. PereraP.Y. KumarN. JainM. Noncoding-RNA-based therapeutics with an emphasis on prostatic carcinoma—progress and challenges.Vaccines202210227627610.3390/vaccines10020276 35214734
    [Google Scholar]
  92. ZhangL. ChenY. WangZ. XiaQ. LncRNA PSMG3-AS1 is upregulated in prostate carcinoma and downregulates miR-106b through DNA methylation.Syst Biol Reprod Med202369426427010.1080/19396368.2023.2187269 37023254
    [Google Scholar]
  93. LiW. YangG. YangD. LiD. SunQ. LncRNA LEF1-AS1 promotes metastasis of prostatic carcinoma via the Wnt/β-catenin pathway.Cancer Cell Int.202020154354310.1186/s12935‑020‑01624‑x 33292271
    [Google Scholar]
  94. AbudoubariS. BuK. MeiY. MaimaitiyimingA. AnH. TaoN. Preliminary study on miRNA in prostate cancer.World J. Surg. Oncol.202321127010.1186/s12957‑023‑03151‑1 37641123
    [Google Scholar]
  95. ZhangY. LiuF. FengY. XuX. WangY. ZhuS. DongJ. ZhaoS. XuB. FengN. CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9.Cancer Gene Ther.202229111731174110.1038/s41417‑022‑00492‑z 35760899
    [Google Scholar]
  96. ZhangY. WeiY.J. ZhangY.F. LiuH.W. ZhangY.F. Emerging functions and clinical applications of exosomal ncRNAs in ovarian cancer.Front. Oncol.20211176545876545810.3389/fonc.2021.765458 34804970
    [Google Scholar]
  97. MomenimovahedZ. TiznobaikA. TaheriS. SalehiniyaH. Ovarian cancer in the world: Epidemiology and risk factors.Int. J. Womens Health20191128729910.2147/IJWH.S197604 31118829
    [Google Scholar]
  98. PratJ. Staging classification for cancer of the ovary, fallopian tube, and peritoneum.Int. J. Gynaecol. Obstet.201412411510.1016/j.ijgo.2013.10.001 24219974
    [Google Scholar]
  99. YangY. ZhangH. XieY. ZhangS. ZhuJ. YinG. ShuG. ZhangY. Preliminary screening and identification of differentially expressed metastasis-related ncRNAs in ovarian cancer.Oncol. Lett.20181511 Pt.A36837410.3892/ol.2017.7338 29387224
    [Google Scholar]
  100. CuiP.H. LiZ.Y. LiD.H. HanS.Y. ZhangY.J. SP1 -induced LNCRNA DANCR contributes to proliferation and invasion of ovarian cancer.Kaohsiung J. Med. Sci.202137537137810.1002/kjm2.12316 33089960
    [Google Scholar]
  101. ZhangY. TangY. ChenX. SunX. ZhaoM. ChenQ. Therapeutic potential of miRNAs in placental extracellular vesicles in ovarian and endometrial cancer.Hum. Cell202437128529610.1007/s13577‑023‑00986‑4 37801261
    [Google Scholar]
  102. WangH. ZhangX. QiaoL. WangH. CircRNA circ_0000554 promotes ovarian cancer invasion and proliferation by regulating miR-567.Environ. Sci. Pollut. Res. Int.20222913190721908010.1007/s11356‑021‑13710‑2 34709546
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010295993240430125552
Loading
/content/journals/cpb/10.2174/0113892010295993240430125552
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test