Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

This review aims to examine the hydrogel structure concisely, approaches to hydrogel synthesis, and the most recent progressions in hydrogel technology along with its multifaceted applications within the domain of biomedicine, emphasizing its capacity to transform the delivery of drugs, tissue engineering, and diagnostics.

This review employs an organized search of the literature to gather and evaluate state-of-the-art examines on hydrogel uses for biomedicine, synthesizing significant developments and breakthroughs to provide a holistic comprehension of their developing role and possible impact.

The review's findings emphasize the revolutionary potential of recent advances in hydrogel uses within biomedicine, which include improved drug delivery, cutting-edge tissue engineering, and recognized diagnostics.

In summary, this scholarly article explores the intricacies of hydrogel structure, methodologies for hydrogel synthesis, and notable breakthroughs in the biomedical utilization of hydrogels. Given the extraordinary potential of hydrogels to transform diagnostic and therapeutic methodologies, this article emphasizes the growing significance of hydrogels in biomedicine and the critical need for further investigation into this subject matter. Consequently, hydrogels can pave the way for enhanced healthcare standards.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010294727240502051954
2024-05-20
2025-09-04
Loading full text...

Full text loading...

References

  1. LIMD. Hydrophilic gels for biological use.Nature19601854706
    [Google Scholar]
  2. McMahonT.T. ZadnikK. Twenty-five years of contact lenses: The impact on the cornea and ophthalmic practice.Cornea200019573074010.1097/00003226‑200009000‑00018 11009325
    [Google Scholar]
  3. HoffmanA.S. Hydrogels for biomedical applications.Adv. Drug Deliv. Rev.201264182310.1016/j.addr.2012.09.010 11755703
    [Google Scholar]
  4. GrahamN.B. McNeillM.E. Hydrogels for controlled drug delivery.Biomaterials198451273610.1016/0142‑9612(84)90063‑2 6587916
    [Google Scholar]
  5. CalnanJ.S. PflugJ.J. ChhabraA.S. RaghupatiN. Clinical and experimental studies of polyhydroxyethylmethacrylate gel (“hydron”) for reconstructive surgery.Br. J. Plast. Surg.197124211312410.1016/S0007‑1226(71)80029‑2 5581755
    [Google Scholar]
  6. BuwaldaS.J. BoereK.W.M. DijkstraP.J. FeijenJ. VermondenT. HenninkW.E. Hydrogels in a historical perspective: From simple networks to smart materials.J. Control. Release201419025427310.1016/j.jconrel.2014.03.052 24746623
    [Google Scholar]
  7. AhmadZ. SalmanS. KhanS.A. AminA. RahmanZ.U. Al-GhamdiY.O. AkhtarK. BakhshE.M. KhanS.B. Versatility of hydrogels: From synthetic strategies, classification, and properties to biomedical applications.Gels20228316710.3390/gels8030167 35323280
    [Google Scholar]
  8. ZhaoW. JinX. CongY. LiuY. FuJ. Degradable natural polymer hydrogels for articular cartilage tissue engineering.J. Chem. Technol. Biotechnol.201388332733910.1002/jctb.3970
    [Google Scholar]
  9. TaylorD.L. In het panhuis M. Self-healing hydrogels.Adv. Mater.201628419060909310.1002/adma.201601613 27488822
    [Google Scholar]
  10. JeongJ.J. LeeD.W. SongS.Y. ParkY. KimJ.H. KimJ.I. KimH.G. NamK.T. LeeW.J. NamK.H. LeeJ.H. Development of novel biocompatible thermosensitive anti-adhesive agents using human-derived acellular dermal matrix.PLoS One2019142e021258310.1371/journal.pone.0212583 30794612
    [Google Scholar]
  11. WangJ. PengC. ChenZ. SunS. ShiZ. JinL. ZhaoW. ZhaoC. Engineering antimicrobial and biocompatible electrospun PLGA fibrous membranes by irradiation grafting polyvinylpyrrolidone and periodate.Colloids Surf. B Biointerfaces201918191892610.1016/j.colsurfb.2019.06.059 31382341
    [Google Scholar]
  12. DuX. ZhouJ. ShiJ. XuB. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials.Chem. Rev.201511524131651330710.1021/acs.chemrev.5b00299 26646318
    [Google Scholar]
  13. GharaziS. ZarketB.C. DeMellaK.C. RaghavanS.R. Nature-inspired hydrogels with soft and stiff zones that exhibit a 100-fold difference in elastic modulus.ACS Appl. Mater. Interfaces20181040346643467310.1021/acsami.8b14126 30265507
    [Google Scholar]
  14. UllahF. OthmanM.B.H. JavedF. AhmadZ. AkilH.M. Classification, processing and application of hydrogels: A review.Mater. Sci. Eng. C20155741443310.1016/j.msec.2015.07.053 26354282
    [Google Scholar]
  15. RosiakJ.M. UlańskiP. RzeźnickiA. Hydrogels for biomedical purposes.Nucl. Instrum. Methods Phys. Res. B19951051-433533910.1016/0168‑583X(95)00550‑1
    [Google Scholar]
  16. GanjiF. VasheghaniF.S. VasheghaniF.E. Theoretical description of hydrogel swelling: A review.Iran. Polym. J.2010195375398
    [Google Scholar]
  17. HolbackH. YeoY. ParkK. Hydrogel swelling behavior and its biomedical applications.Biomedical Hydrogels.Woodhead Publishing Series in Biomaterials201132410.1533/9780857091383.1.3
    [Google Scholar]
  18. GibasI. JanikH. Synthetic polymer hydrogels for biomedical applications.Chem. Chem. Technol.20104429730410.23939/chcht04.04.297
    [Google Scholar]
  19. OkayO. General properties of hydrogels.Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and BiosensorsSpringer: Berlin, Heidelberg.2010614
    [Google Scholar]
  20. ZhangH. ZhangF. WuJ. Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique.React. Funct. Polym.201373792392810.1016/j.reactfunctpolym.2012.12.014
    [Google Scholar]
  21. parhi, R. Cross-linked hydrogel for pharmaceutical applications: A review.Adv. Pharm. Bull.20177451553010.15171/apb.2017.064 29399542
    [Google Scholar]
  22. DavisN.E. DingS. ForsterR.E. PinkasD.M. BarronA.E. Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation.Biomaterials201031287288729710.1016/j.biomaterials.2010.06.003 20609472
    [Google Scholar]
  23. JinR. HiemstraC. ZhongZ. FeijenJ. Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates.Biomaterials200728182791280010.1016/j.biomaterials.2007.02.032 17379300
    [Google Scholar]
  24. YungC.W. WuL.Q. TullmanJ.A. PayneG.F. BentleyW.E. BarbariT.A. Transglutaminase crosslinked gelatin as a tissue engineering scaffold.J. Biomed. Mater. Res. A200783A41039104610.1002/jbm.a.31431 17584898
    [Google Scholar]
  25. YungA.R. YuenH.P. BergerG. FranceyS. HungT.C. NelsonB. PhillipsL. McGorryP. Declining transition rate in ultra high risk (prodromal) services: Dilution or reduction of risk?Schizophr. Bull.200733367368110.1093/schbul/sbm015 17404389
    [Google Scholar]
  26. KimJ.H. LimS.Y. NamD.H. RyuJ. KuS.H. ParkC.B. Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors.Biosens. Bioelectron.20112651860186510.1016/j.bios.2010.01.026 20171868
    [Google Scholar]
  27. GentileP. ChionoV. Tonda-TuroC. SartoriS. CiardelliG. Biomimetic materials for medical application through enzymatic modification.Adv. Biochem. Eng. Biotechnol.2011125181205
    [Google Scholar]
  28. ChenK. MangaP. OrlowS.J. Pink-eyed dilution protein controls the processing of tyrosinase.Mol. Biol. Cell20021361953196410.1091/mbc.02‑02‑0022 12058062
    [Google Scholar]
  29. GulrezSK Al-AssafS PhillipsGO Hydrogels: Methods of preparation, characterisation and applicationsProgress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology ApplicationsInTech201111715010.5772/24553
    [Google Scholar]
  30. LugaoA.B. MalmongeS.M. Use of radiation in the production of hydrogels.Nucl. Instrum. Methods Phys. Res. B20011851-4374210.1016/S0168‑583X(01)00807‑2
    [Google Scholar]
  31. MaitraJ. ShuklaV.K. Cross-linking in hydrogels-a review.Am. J. Pol. Sci.2014422531
    [Google Scholar]
  32. HoT.C. ChangC.C. ChanH.P. ChungT.W. ShuC.W. ChuangK.P. DuhT.H. YangM.H. TyanY.C. Hydrogels: Properties and applications in biomedicine.Molecules2022279290210.3390/molecules27092902 35566251
    [Google Scholar]
  33. NorouziM. NazariB. MillerD.W. Injectable hydrogel-based drug delivery systems for local cancer therapy.Drug Discov. Today201621111835184910.1016/j.drudis.2016.07.006 27423369
    [Google Scholar]
  34. TamH.H. MeloM.B. KangM. PeletJ.M. RudaV.M. FoleyM.H. HuJ.K. KumariS. CramptonJ. BaldeonA.D. SandersR.W. MooreJ.P. CrottyS. LangerR. AndersonD.G. ChakrabortyA.K. IrvineD.J. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination.Proc. Natl. Acad. Sci. USA201611343E6639E664810.1073/pnas.1606050113 27702895
    [Google Scholar]
  35. XuJ. StrandmanS. ZhuJ.X.X. BarraletJ. CerrutiM. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery.Biomaterials20153739540410.1016/j.biomaterials.2014.10.024 25453967
    [Google Scholar]
  36. Kang DerwentJ.J. MielerW.F. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye.Trans. Am. Ophthalmol. Soc.2008106206213 19277236
    [Google Scholar]
  37. HussainM.A. BukhariS.N.A. AliA. HaseebM.T. MuhammadG. SheikhF.A. Farid-ul-Haq, M.; Ahmad, N. A smart hydrogel from Salvia spinosa seeds: PH Responsiveness, on-off switching, sustained drug release, and transit detection.Curr. Drug Deliv.202320329230510.2174/1567201819666220509200019 35579145
    [Google Scholar]
  38. DattiloM. PatitucciF. PreteS. ParisiO.I. PuociF. Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: A review.J. Funct. Biomater.20231425510.3390/jfb14020055 36826854
    [Google Scholar]
  39. DaleiG. DasS. Ranjan JenaS. JenaD. NayakJ. SamantaL. In situ crosslinked dialdehyde guar gum-chitosan Schiff-base hydrogels for dual drug release in colorectal cancer therapy.Chem. Eng. Sci.202326911848210.1016/j.ces.2023.118482
    [Google Scholar]
  40. SchoenerC.A. HutsonH.N. PeppasN.A. pH‐responsive hydrogels with dispersed hydrophobic nanoparticles for the delivery of hydrophobic therapeutic agents.Polym. Int.201261687487910.1002/pi.4219 23087546
    [Google Scholar]
  41. HarshaS. E AldhubiabB. NairA. Abdulrahman AlhaiderI. AttimaradM. NarayanaswamayV. Srinivasan, V.; Gangadhara, N.; Asif, A. Nanoparticle formulation by Büchi B-90 Nano Spray Dryer for oral mucoadhesion.Drug Des. Devel. Ther.2015927328210.2147/DDDT.S66654 25670882
    [Google Scholar]
  42. AnY.H. LeeJ. SonD.U. KangD.H. ParkM.J. ChoK.W. KimS. KimS.H. KoJ. JangM.H. LeeJ.Y. KimD.H. HwangN.S. Facilitated transdermal drug delivery using nanocarriers-embedded electroconductive hydrogel coupled with reverse electrodialysis-driven iontophoresis.ACS Nano20201444523453510.1021/acsnano.0c00007 32191436
    [Google Scholar]
  43. Vera-GonzálezN. ShuklaA. Advances in biomaterials for the prevention and disruption of Candida biofilms.Front. Microbiol.20201153860210.3389/fmicb.2020.538602 33042051
    [Google Scholar]
  44. OsmariB.F. GiulianiL.M. ReolonJ.B. RigoG.V. TascaT. CruzL. Gellan gum-based hydrogel containing nanocapsules for vaginal indole-3-carbinol delivery in trichomoniasis treatment.Eur. J. Pharm. Sci.202015110537910.1016/j.ejps.2020.105379 32473199
    [Google Scholar]
  45. ChaudhuriO. GuL. KlumpersD. DarnellM. BencherifS.A. WeaverJ.C. HuebschN. LeeH. LippensE. DudaG.N. MooneyD.J. Hydrogels with tunable stress relaxation regulate stem cell fate and activity.Nat. Mater.201615332633410.1038/nmat4489 26618884
    [Google Scholar]
  46. XueX. HuY. WangS. ChenX. JiangY. SuJ. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering.Bioact. Mater.20221232733910.1016/j.bioactmat.2021.10.029 35128180
    [Google Scholar]
  47. PanH. GaoH. LiQ. LinZ. FengQ. YuC. ZhangX. DongH. ChenD. CaoX. Engineered macroporous hydrogel scaffolds via pickering emulsions stabilized by MgO nanoparticles promote bone regeneration.J. Mater. Chem. B Mater. Biol. Med.20208286100611410.1039/D0TB00901F 32555907
    [Google Scholar]
  48. LeeK. ChanC.K. PatilN. GoodmanS.B. Cell therapy for bone regeneration—Bench to bedside.J. Biomed. Mater. Res. B Appl. Biomater.200989B125226310.1002/jbm.b.31199 18777578
    [Google Scholar]
  49. PuppiD. ChielliniF. PirasA.M. ChielliniE. Polymeric materials for bone and cartilage repair.Prog. Polym. Sci.201035440344010.1016/j.progpolymsci.2010.01.006
    [Google Scholar]
  50. SimeonovM.S. ApostolovA.A. VassilevaE.D. In situ calcium phosphate deposition in hydrogels of poly(acrylic acid)–polyacrylamide interpenetrating polymer networks.RSC Advances2016620162741628410.1039/C5RA26066C
    [Google Scholar]
  51. QuinlanE. López-NoriegaA. ThompsonE. KellyH.M. CryanS.A. O’BrienF.J. Development of collagen–hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering.J. Control. Release2015198717910.1016/j.jconrel.2014.11.021 25481441
    [Google Scholar]
  52. WuG. FengC. QuanJ. WangZ. WeiW. ZangS. KangS. HuiG. ChenX. WangQ. In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration.Carbohydr. Polym.201818221522410.1016/j.carbpol.2017.10.090 29279118
    [Google Scholar]
  53. SilvaR. FabryB. BoccacciniA.R. Fibrous protein-based hydrogels for cell encapsulation.Biomaterials201435256727673810.1016/j.biomaterials.2014.04.078 24836951
    [Google Scholar]
  54. BaiX. GaoM. SyedS. ZhuangJ. XuX. ZhangX.Q. Bioactive hydrogels for bone regeneration.Bioact. Mater.20183440141710.1016/j.bioactmat.2018.05.006 30003179
    [Google Scholar]
  55. ZhaoX. SunX. YildirimerL. LangQ. LinZ.Y.W. ZhengR. ZhangY. CuiW. AnnabiN. KhademhosseiniA. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing.Acta Biomater.201749667710.1016/j.actbio.2016.11.017 27826004
    [Google Scholar]
  56. LiX. ChoB. MartinR. SeuM. ZhangC. ZhouZ. ChoiJ.S. JiangX. ChenL. WaliaG. YanJ. CallananM. LiuH. ColbertK. Morrissette-McAlmonJ. GraysonW. ReddyS. SacksJ.M. MaoH.Q. Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction.Sci. Transl. Med.201911490eaau621010.1126/scitranslmed.aau6210 31043572
    [Google Scholar]
  57. GhobrilC. GrinstaffM.W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial.Chem. Soc. Rev.20154471820183510.1039/C4CS00332B 25649260
    [Google Scholar]
  58. ZhaoX. WuH. GuoB. DongR. QiuY. MaP.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing.Biomaterials2017122344710.1016/j.biomaterials.2017.01.011 28107663
    [Google Scholar]
  59. BhattaraiN. GunnJ. ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery.Adv. Drug Deliv. Rev.2010621839910.1016/j.addr.2009.07.019 19799949
    [Google Scholar]
  60. HamidiM. AzadiA. RafieiP. Hydrogel nanoparticles in drug delivery.Adv. Drug Deliv. Rev.200860151638164910.1016/j.addr.2008.08.002 18840488
    [Google Scholar]
  61. QiX. CaiE. XiangY. ZhangC. GeX. WangJ. LanY. XuH. HuR. ShenJ. An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics.Adv. Mater.20233548230663210.1002/adma.202306632 37803944
    [Google Scholar]
  62. QiX. XiangY. CaiE. YouS. GaoT. LanY. DengH. LiZ. HuR. ShenJ. All-in-one: Harnessing multifunctional injectable natural hydrogels for ordered therapy of bacteria-infected diabetic wounds.Chem. Eng. J.202243913569110.1016/j.cej.2022.135691
    [Google Scholar]
  63. ChengS. WangH. PanX. ZhangC. ZhangK. ChenZ. DongW. XieA. QiX. Dendritic hydrogels with robust inherent antibacterial properties for promoting bacteria-infected wound healing.ACS Appl. Mater. Interfaces2022149111441115510.1021/acsami.1c25014 35195389
    [Google Scholar]
  64. YingH. ZhouJ. WangM. SuD. MaQ. LvG. ChenJ. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing.Mater. Sci. Eng. C201910148749810.1016/j.msec.2019.03.093 31029343
    [Google Scholar]
  65. DingC. TianM. FengR. DangY. ZhangM. Novel self-healing hydrogel with injectable, pH-responsive, strain-sensitive, promoting wound-healing, and hemostatic properties based on collagen and chitosan.ACS Biomater. Sci. Eng.2020673855386710.1021/acsbiomaterials.0c00588 33463340
    [Google Scholar]
  66. HanF. DongY. SongA. YinR. LiS. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride.Appl. Surf. Sci.201431162663410.1016/j.apsusc.2014.05.125
    [Google Scholar]
  67. ChenH. XingX. TanH. JiaY. ZhouT. ChenY. LingZ. HuX. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing.Mater. Sci. Eng. C201770Pt 128729510.1016/j.msec.2016.08.086 27770893
    [Google Scholar]
  68. KimD.W. KimK.S. SeoY.G. LeeB.J. ParkY.J. YounY.S. KimJ.O. YongC.S. JinS.G. ChoiH.G. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing.Int. J. Pharm.20154951677410.1016/j.ijpharm.2015.08.082 26325319
    [Google Scholar]
  69. OmidianH. RoccaJ.G. ParkK. Advances in superporous hydrogels.J. Control. Release2005102131210.1016/j.jconrel.2004.09.028 15653129
    [Google Scholar]
  70. SinhaS. Biodegradable superabsorbents: Methods of preparation and application—A review.Fundamental Biomaterials: PolymersWoodhead Publishing Series in Biomaterials2018307322
    [Google Scholar]
  71. SanninoA. DemitriC. MadaghieleM. Biodegradable cellulose-based hydrogels: Design and applications.Materials20092235337310.3390/ma2020353
    [Google Scholar]
  72. ZohourianM.M. KabiriK. Superabsorbent polymer materials: A review.Iran. Polym. J.2008176447451
    [Google Scholar]
  73. ZhaoJ. WangL. ZhangH. LiaoB. LiY. Progress of research in in situ smart hydrogels for local antitumor therapy: A review.Pharmaceutics20221410202810.3390/pharmaceutics14102028 36297463
    [Google Scholar]
  74. MittalR.K. MishraR. UddinR. SharmaV. Hydrogel breakthroughs in biomedicine: Recent advances and implications.Curr. Pharm. Biotechnol.20242510.2174/0113892010281021231229100228 38288792
    [Google Scholar]
  75. BiswasT. MittalR.K. SharmaV. MishraI. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.2024
    [Google Scholar]
  76. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-Thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.2023212110.2174/0115701786274678231124101033
    [Google Scholar]
  77. PurohitP. MittalR.K. KhatanaK. Quinoline-3-carboxylic acids “DNA minor groove-binding agent.Anticancer. Agents Med. Chem.2022222344348
    [Google Scholar]
  78. MittalR.K. PurohitP. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent.Anticancer. Agents Med. Chem.202020161981199110.2174/1871520620666200619175906
    [Google Scholar]
  79. MittalR.K. PurohitP. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent.Anticancer. Agents Med. Chem.202121131708171610.2174/1871520620999201124214112
    [Google Scholar]
  80. ChinnS.B. MyersJ.N. Oral cavity carcinoma: Current management, controversies, and future directions.J. Clin. Oncol.201533293269327610.1200/JCO.2015.61.2929 26351335
    [Google Scholar]
  81. MohammadiM. KarimiM. Malaekeh-NikoueiB. TorkashvandM. AlibolandiM. Hybrid in situ- forming injectable hydrogels for local cancer therapy.Int. J. Pharm.202261612153410.1016/j.ijpharm.2022.121534 35124117
    [Google Scholar]
  82. YangY. YangY. CaoY. WangX. ChenY. LiuH. GaoY. WangJ. LiuC. WangW. YuJ.K. WuD. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors.Chem. Eng. J.202140312643110.1016/j.cej.2020.126431
    [Google Scholar]
  83. GuD. O’ConnorA.J. G H QiaoG. LadewigK. Hydrogels with smart systems for delivery of hydrophobic drugs.Expert Opin. Drug Deliv.201714787989510.1080/17425247.2017.1245290 27705026
    [Google Scholar]
  84. FanD. TianY. LiuZ. Injectable hydrogels for localized cancer therapy.Front Chem.2019767510.3389/fchem.2019.00675 31681729
    [Google Scholar]
  85. ParisiO.I. MorelliC. ScrivanoL. SinicropiM.S. CesarioM.G. CandamanoS. PuociF. SisciD. Controlled release of sunitinib in targeted cancer therapy: Smart magnetically responsive hydrogels as restricted access materials.RSC Advances2015580653086531510.1039/C5RA12229E
    [Google Scholar]
  86. JafariH. AtlasiZ. MahdaviniaG.R. HadifarS. SabziM. Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release.Mater. Sci. Eng. C202112411204210.1016/j.msec.2021.112042 33947542
    [Google Scholar]
  87. TeoR.D. TerminiJ. GrayH.B. Lanthanides: Applications in cancer diagnosis and therapy.Miniperspective. J. Med. Chem.201659136012602410.1021/acs.jmedchem.5b01975 26862866
    [Google Scholar]
  88. de FreitasC.F. KimuraE. RubiraA.F. MunizE.C. Curcumin and silver nanoparticles carried out from polysaccharide-based hydrogels improved the photodynamic properties of curcumin through metal-enhanced singlet oxygen effect.Mater. Sci. Eng. C202011211085310.1016/j.msec.2020.110853 32409030
    [Google Scholar]
  89. CaliariS.R. BurdickJ.A. A practical guide to hydrogels for cell culture.Nat. Methods201613540541410.1038/nmeth.3839 27123816
    [Google Scholar]
  90. MoritzM. Geszke-MoritzM. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles.Chem. Eng. J.201322859661310.1016/j.cej.2013.05.046
    [Google Scholar]
  91. BoonkaewB. SuwanpreuksaP. CuttleL. BarberP.M. SupapholP. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity.J. Appl. Polym. Sci.20141319app.4021510.1002/app.40215
    [Google Scholar]
  92. MontanariE. D’ArrigoG. Di MeoC. VirgaA. CovielloT. PassarielloC. MatricardiP. Chasing bacteria within the cells using levofloxacin-loaded hyaluronic acid nanohydrogels.Eur. J. Pharm. Biopharm.201487351852310.1016/j.ejpb.2014.03.003 24642185
    [Google Scholar]
  93. BakadiaB.M. ZhongA. LiX. BoniB.O.O. AhmedA.A.Q. SouhoT. ZhengR. ShiZ. ShiD. LamboniL. YangG. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing.Adv. Compos. Hybrid Mater.2022542847287210.1007/s42114‑022‑00467‑6
    [Google Scholar]
  94. ChattopadhyayS. RainesR.T. Collagen‐based biomaterials for wound healing.Biopolymers2014101882183310.1002/bip.22486 24633807
    [Google Scholar]
  95. Bal-ÖztürkA. ÖzkahramanB. ÖzbaşZ. YaşayanG. TamahkarE. AlarçinE. Advancements and future directions in the antibacterial wound dressings – A review.J. Biomed. Mater. Res. B Appl. Biomater.2021109570371610.1002/jbm.b.34736 33047502
    [Google Scholar]
  96. LiaoC.H. ChenC.S. ChenY.C. JiangN.E. FarnC.J. ShenY.S. HsuM.L. ChangC.H. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: Bio-compatibility, drug release, antimicrobial activity, and biofilm model.J. Microbiol. Immunol. Infect.202053452553110.1016/j.jmii.2019.08.008 31607570
    [Google Scholar]
  97. NaeimiM. TajedinR. FarahmandfarF. NaeimiM. MonajjemiM. Preparation and characterization of vancomycin-loaded chitosan/PVA/PEG hydrogels for wound dressing.Mater. Res. Express20207909540110.1088/2053‑1591/abb154
    [Google Scholar]
  98. AyeS.S.S. ZhangZ.H. YuX. YuH. MaW.D. YangK. LiuX. LiJ. LiJ.L. Silk hydrogel electrostatically functionalized with a polycationic antimicrobial peptide: Molecular interactions, gel properties, and antimicrobial activity.Langmuir2022381506110.1021/acs.langmuir.1c01312 34963282
    [Google Scholar]
  99. BaralA. RoyS. GhoshS. Hermida-MerinoD. HamleyI.W. BanerjeeA. A peptide-based mechano-sensitive, proteolytically stable hydrogel with remarkable antibacterial properties.Langmuir20163271836184510.1021/acs.langmuir.5b03789 26818698
    [Google Scholar]
  100. ZhouC. LiP. QiX. SharifA.R.M. PoonY.F. CaoY. ChangM.W. LeongS.S.J. Chan-ParkM.B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine.Biomaterials201132112704271210.1016/j.biomaterials.2010.12.040 21257199
    [Google Scholar]
  101. VigataM. O’ConnellC.D. ComettaS. HutmacherD.W. MeinertC. BockN. Gelatin methacryloyl hydrogels for the localized delivery of cefazolin.Polymers20211322396010.3390/polym13223960 34833259
    [Google Scholar]
  102. PalantokenA. Sari YilmazM. Altikatoğlu YapaözM. Yenigül TulunayE. ErenT. PiskinS. Dual antimicrobial effects induced by hydrogel incorporated with UV-curable quaternary ammonium polyethyleneimine and AgNO3.Mater. Sci. Eng. C20166849450410.1016/j.msec.2016.06.005 27524046
    [Google Scholar]
  103. PinelliF. MagagninL. RossiF. Progress in hydrogels for sensing applications: A review.Mater. Today Chem.20201710031710.1016/j.mtchem.2020.100317
    [Google Scholar]
  104. BuengerD. TopuzF. GrollJ. Hydrogels in sensing applications.Prog. Polym. Sci.201237121678171910.1016/j.progpolymsci.2012.09.001
    [Google Scholar]
  105. HoltzJ.H. AsherS.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials.Nature1997389665382983210.1038/39834 9349814
    [Google Scholar]
  106. ChaubeyA. MalhotraB.D. Mediated biosensors.Biosens. Bioelectron.2002176-744145610.1016/S0956‑5663(01)00313‑X 11959464
    [Google Scholar]
  107. GrieshaberD. MacKenzieR. VörösJ. ReimhultE. Electrochemical biosensors-sensor principles and architectures.Sensors2008831400145810.3390/s80314000 27879772
    [Google Scholar]
  108. RonkainenN.J. HalsallH.B. HeinemanW.R. Electrochemical biosensors.Chem. Soc. Rev.20103951747176310.1039/b714449k 20419217
    [Google Scholar]
  109. LiL. WangY. PanL. ShiY. ChengW. ShiY. YuG. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection.Nano Lett.20151521146115110.1021/nl504217p 25569673
    [Google Scholar]
  110. WangH. WangH. LiY. JiangC. ChenD. WenY. LiZ. Capillarity self-driven DNA hydrogel sensor for visual quantification of microRNA.Sens. Actuators B Chem.202031312803610.1016/j.snb.2020.128036
    [Google Scholar]
  111. KonoH. OtakaF. OzakiM. Preparation and characterization of guar gum hydrogels as carrier materials for controlled protein drug delivery.Carbohydr. Polym.201411183084010.1016/j.carbpol.2014.05.050 25037422
    [Google Scholar]
  112. MazzarottaA. CaputoT.M. RaiolaL. BattistaE. NettiP.A. CausaF. Small oligonucleotides detection in three-dimensional polymer network of dna-peg hydrogels.Gels2021739010.3390/gels7030090 34287281
    [Google Scholar]
  113. XuL. DingL. WangL. CaoY. ZhuH. LuJ. LiX.A. SongT. HuY. DaiJ. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars.Stem Cell Res. Ther.20178113
    [Google Scholar]
  114. LinN. LiX. SongT. WangJ. MengK. YangJ. HouX. DaiJ. HuY. The effect of collagen-binding vascular endothelial growth factor on the remodeling of scarred rat uterus following full-thickness injury.Biomaterials20123361801180710.1016/j.biomaterials.2011.11.038 22136717
    [Google Scholar]
  115. LuH. JuD. YangG. ZhuL. YangX. LiJ. SongW. WangJ. ZhangC. ZhangZ. ZhangR. Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma.EBioMedicine20194027628910.1016/j.ebiom.2018.12.044 30594556
    [Google Scholar]
  116. SuJ. DingL. ChengJ. YangJ. LiX. YanG. SunH. DaiJ. HuY. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency.Hum. Reprod.20163151075108610.1093/humrep/dew041 26965432
    [Google Scholar]
  117. YouS. LiuS. DongX. LiH. ZhuY. HuL. Intravaginal administration of human type III collagen-derived biomaterial with high cell-adhesion activity to treat vaginal atrophy in rats.ACS Biomater. Sci. Eng.2020641977198810.1021/acsbiomaterials.9b01649 33455320
    [Google Scholar]
  118. Shirazi TehraniA. MazoochiT. Akhavan TaheriM. AghadavoodE. SalehniaM. The effects of ovarian encapsulation on morphology and expression of apoptosis-related genes in vitrified mouse ovary.J. Reprod. Infertil.20212212331 33680882
    [Google Scholar]
  119. ZhuJ. XuY. RashediA.S. PavoneM.E. KimJ.J. WoodruffT.K. BurdetteJ.E. Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk in the reproductive cycle.Mol. Hum. Reprod.2016221175676710.1093/molehr/gaw041
    [Google Scholar]
  120. ZuidemaJ.M. RivetC.J. GilbertR.J. MorrisonF.A. A protocol for rheological characterization of hydrogels for tissue engineering strategies.J. Biomed. Mater. Res. B Appl. Biomater.201410251063107310.1002/jbm.b.33088 24357498
    [Google Scholar]
  121. CaiM.H. ChenX.Y. FuL.Q. DuW.L. YangX. MouX.Z. HuP.Y. Design and development of hybrid hydrogels for biomedical applications: Recent trends in anticancer drug delivery and tissue engineering.Front. Bioeng. Biotechnol.2021963094310.3389/fbioe.2021.630943 33681168
    [Google Scholar]
  122. DedeloudiA. SiamidiA. PavlouP. VlachouM. Recent advances in the excipients used in modified release vaginal formulations.Materials202215132710.3390/ma15010327 35009472
    [Google Scholar]
  123. BuckenmeyerM.J. SukhwaniM. IftikharA. NolfiA.L. XianZ. DadiS. CaseZ.W. SteimerS.R. D’AmoreA. OrwigK.E. BrownB.N. Bioengineering an in situ ovary (ISO) for fertility preservation.bioRxiv2020
    [Google Scholar]
  124. Francés-HerreroE. Rodríguez-EgurenA. Gómez-ÁlvarezM. de Miguel-GómezL. FerreroH. CervellóI. Future challenges and opportunities of extracellular matrix hydrogels in female reproductive medicine.Int. J. Mol. Sci.2022237376510.3390/ijms23073765 35409119
    [Google Scholar]
  125. VeerasarnV. PhromratanapongseP. SuntornpongN. LorvidhayaV. ChitapanaruxI. TesavibulC. KongthanaratY. ShotelersukK. ChiewvitS. PusuwanP. 908 Effect of amifostine to prevent radiotherapy-induced acute and late toxicity in head and neck cancer patients who had normal or mild impaired salivary gland function.Eur. J. Cancer, Suppl.200315S27310.1016/S1359‑6349(03)90935‑9
    [Google Scholar]
  126. NguyenK.T. WestJ.L. Photopolymerizable hydrogels for tissue engineering applications.Biomaterials200223224307431410.1016/S0142‑9612(02)00175‑8 12219820
    [Google Scholar]
  127. LutolfM.P. HubbellJ.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.Nat. Biotechnol.2005231475510.1038/nbt1055 15637621
    [Google Scholar]
  128. Di MarzioN. EglinD. SerraT. MoroniL. Bio-fabrication: convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine.Front. Bioeng. Biotechnol.2020832610.3389/fbioe.2020.00326 32373603
    [Google Scholar]
  129. AbelardoE. Synthetic material bioinks. In: 3D Bioprinting for Reconstructive Surgery.Woodhead Publishing201813714410.1016/B978‑0‑08‑101103‑4.00009‑0
    [Google Scholar]
  130. Van Den BulckeA.I. BogdanovB. De RoozeN. SchachtE.H. CornelissenM. BerghmansH. Structural and rheological properties of methacrylamide modified gelatin hydrogels.Biomacromolecules200011313810.1021/bm990017d 11709840
    [Google Scholar]
  131. LeeK.Y. MooneyD.J. Hydrogels for tissue engineering.Chem. Rev.200110171869188010.1021/cr000108x 11710233
    [Google Scholar]
  132. ZhuJ. MarchantR.E. Design properties of hydrogel tissue-engineering scaffolds.Expert Rev. Med. Devices20118560762610.1586/erd.11.27 22026626
    [Google Scholar]
  133. JacobS. NairA.B. PatelV. ShahJ. 3D printing technologies: Recent development and emerging applications in various drug delivery systems.AAPS PharmSciTech202021622010.1208/s12249‑020‑01771‑4 32748243
    [Google Scholar]
  134. FetahK. TebonP. GoudieM.J. EichenbaumJ. RenL. BarrosN. NasiriR. AhadianS. AshammakhiN. DokmeciM.R. KhademhosseiniA. The emergence of 3D bioprinting in organ-on-chip systems.Progress in Biomedical Engineering20191101200110.1088/2516‑1091/ab23df
    [Google Scholar]
  135. XuS. AnX. Preparation, microstructure and function for injectable liposome-hydrogels.Colloids Surf. A Physicochem. Eng. Asp.2019560202510.1016/j.colsurfa.2018.09.037
    [Google Scholar]
  136. PotjewydG. MoxonS. WangT. DomingosM. HooperN.M. Tissue engineering 3D neurovascular units: A biomaterials and bioprinting perspective.Trends Biotechnol.201836445747210.1016/j.tibtech.2018.01.003 29422410
    [Google Scholar]
  137. StewartD.C. RubianoA. DysonK. SimmonsC.S. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.PLoS One2017126e017756110.1371/journal.pone.0177561 28582392
    [Google Scholar]
  138. MacleanF.L. ImsG.M. HorneM.K. WilliamsR.J. NisbetD.R. A programmed anti-inflammatory nanoscaffold (PAIN) as a 3D tool to understand the brain injury response.Adv. Mater.20183050180520910.1002/adma.201805209 30285286
    [Google Scholar]
  139. ZimmermannD.R. Dours-ZimmermannM.T. Extracellular matrix of the central nervous system: From neglect to challenge.Histochem. Cell Biol.2008130463565310.1007/s00418‑008‑0485‑9 18696101
    [Google Scholar]
  140. HopkinsA.M. De LaporteL. TortelliF. SpeddenE. StaiiC. AthertonT.J. HubbellJ.A. KaplanD.L. Silk hydrogels as soft substrates for neural tissue engineering.Adv. Funct. Mater.201323415140514910.1002/adfm.201300435
    [Google Scholar]
  141. SunW. IncittiT. MigliaresiC. QuattroneA. CasarosaS. MottaA. Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells.J. Tissue Eng. Regen. Med.2016101087688710.1002/term.1868 24668649
    [Google Scholar]
  142. MederD. HerzD.M. RoweJ.B. LehéricyS. SiebnerH.R. The role of dopamine in the brain - lessons learned from Parkinson’s disease.Neuroimage2019190799310.1016/j.neuroimage.2018.11.021 30465864
    [Google Scholar]
  143. RenY. ZhaoX. LiangX. MaP.X. GuoB. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease.Int. J. Biol. Macromol.2017105Pt 11079108710.1016/j.ijbiomac.2017.07.130 28746885
    [Google Scholar]
  144. ThakurS. GovenderP.P. MamoM.A. TamuleviciusS. MishraY.K. ThakurV.K. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives.Vacuum201714634235510.1016/j.vacuum.2017.08.011
    [Google Scholar]
  145. OliveraS. MuralidharaH.B. VenkateshK. GunaV.K. GopalakrishnaK. KumarK.Y. Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review.Carbohydr. Polym.201615360061810.1016/j.carbpol.2016.08.017 27561533
    [Google Scholar]
  146. TangC.Y. YuP. TangL.S. WangQ.Y. BaoR.Y. LiuZ.Y. YangM.B. YangW. Tannic acid functionalized graphene hydrogel for organic dye adsorption.Ecotoxicol. Environ. Saf.201816529930610.1016/j.ecoenv.2018.09.009 30205332
    [Google Scholar]
  147. Sekhavat PourZ. GhaemyM. Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly(vinyl alcohol)/carboxymethyl starch-g-poly(vinyl imidazole).RSC Advances2015579641066411810.1039/C5RA08025H
    [Google Scholar]
  148. YuY. ShuY. YeL. In situ crosslinking of poly (vinyl alcohol)/graphene oxide-glutamic acid nano-composite hydrogel as microbial carrier: Intercalation structure and its wastewater treatment performance.Chem. Eng. J.201833630631410.1016/j.cej.2017.12.038
    [Google Scholar]
  149. GuoH. JiaoT. ZhangQ. GuoW. PengQ. YanX. Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment.Nanoscale Res. Lett.201510127210.1186/s11671‑015‑0931‑2 26123269
    [Google Scholar]
  150. MohodC.V. DhoteJ. Review of heavy metals in drinking water and their effect on human health.Int. J. Innov. Res. Sci. Eng. Technol.20132729922996
    [Google Scholar]
  151. YangS. FuS. ZhouY. XieC. LiX. Preparation and release properties of a pH-tunable carboxymethyl cellulose hydrogel/methylene blue host/guest model.Int. J. Polym. Mater.2010601627410.1080/00914037.2010.504160
    [Google Scholar]
  152. MishraA. NathA. PandeP.P. ShankarR. Treatment of gray wastewater and heavy metal removal from aqueous medium using hydrogels based on novel crosslinkers.J. Appl. Polym. Sci.2021138165024210.1002/app.50242
    [Google Scholar]
  153. OzayO. EkiciS. BaranY. AktasN. SahinerN. Removal of toxic metal ions with magnetic hydrogels.Water Res.200943174403441110.1016/j.watres.2009.06.058 19625066
    [Google Scholar]
  154. CarvalhoH.W.P. BatistaA.P.L. HammerP. LuzG.H.P. RamalhoT.C. Removal of metal ions from aqueous solution by chelating polymeric hydrogel.Environ. Chem. Lett.20108434334810.1007/s10311‑009‑0231‑0
    [Google Scholar]
  155. El-Hag AliA. ShawkyH.A. Abd El RehimH.A. HegazyE.A. Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution.Eur. Polym. J.200339122337234410.1016/S0014‑3057(03)00150‑2
    [Google Scholar]
  156. OzayO. EkiciS. AktasN. SahinerN.P. (4-vinyl pyridine) hydrogel use for the removal of and Th4+ from aqueous environments.J. Environ. Manage.201192123121312910.1016/j.jenvman.2011.08.004 21864974
    [Google Scholar]
  157. LiW. ZhaoH. TeasdaleP.R. JohnR. ZhangS. Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd.React. Funct. Polym.2002521314110.1016/S1381‑5148(02)00055‑X
    [Google Scholar]
  158. WangY.M. ShangD.J. NiuZ.W. Removal of heavy metals by poly (vinyl pyrrolidone)/Laponite nanocomposite hydrogels.Adv. Mat. Res.2013631-63229129710.4028/www.scientific.net/AMR.631‑632.291
    [Google Scholar]
  159. ChatterjeeA. JurgensonC.T. SchroederF.C. EalickS.E. BegleyT.P. Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate.J. Am. Chem. Soc.2007129102914292210.1021/ja067606t 17309261
    [Google Scholar]
  160. ZhaoL. MitomoH. Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation.J. Appl. Polym. Sci.200811031388139510.1002/app.28718
    [Google Scholar]
  161. VilelaP.B. DalaliberaA. DuminelliE.C. BecegatoV.A. PaulinoA.T. Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel.Environ. Sci. Pollut. Res. Int.20192628284812848910.1007/s11356‑018‑3208‑3 30229486
    [Google Scholar]
  162. ZhangM. SongL. JiangH. LiS. ShaoY. YangJ. LiJ. Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions.J. Mater. Chem. A Mater. Energy Sustain.2017573434344610.1039/C6TA10513K
    [Google Scholar]
  163. ChanS.Y. ChooW.S. YoungD.J. LohX.J. Pectin as a rheology modifier: Origin, structure, commercial production and rheology.Carbohydr. Polym.201716111813910.1016/j.carbpol.2016.12.033 28189220
    [Google Scholar]
  164. DaiL. XiX. LiX. LiW. DuY. LvY. WangW. NiY. Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging.Carbohydr. Polym.202127111842510.1016/j.carbpol.2021.118425 34364566
    [Google Scholar]
  165. MujtabaM. LipponenJ. OjanenM. PuttonenS. VaittinenH. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review.Sci. Total Environ.2022851Pt 215832810.1016/j.scitotenv.2022.158328 36037892
    [Google Scholar]
  166. MituraS. SionkowskaA. JaiswalA. Biopolymers for hydrogels in cosmetics: Review.J. Mater. Sci. Mater. Med.20203165010.1007/s10856‑020‑06390‑w 32451785
    [Google Scholar]
  167. LeeS. LeeH.S. ChungJ.J. KimS.H. ParkJ.W. LeeK. JungY. Enhanced regeneration of vascularized adipose tissue with dual 3D-printed elastic polymer/DECM hydrogel complex.Int. J. Mol. Sci.2021226288610.3390/ijms22062886 33809175
    [Google Scholar]
  168. SetayeshmehrM. HafeezS. van BlitterswijkC. MoroniL. MotaC. BakerM.B. Bioprinting via a dual-gel bioink based on poly (vinyl alcohol) and solubilized extracellular matrix towards cartilage engineering.Int. J. Mol. Sci.2021228390110.3390/ijms22083901 33918892
    [Google Scholar]
  169. JinY. NeogiA. Ultrasound imaging by thermally tunable phononic crystal lens.Int. J. Mol. Sci.20212215796610.3390/ijms22157966 34360731
    [Google Scholar]
  170. PurohitP. BhattA. MittalR.K. AbdellattifM.H. FarghalyT.A. Polymer grafting and its chemical reactions.Front. Bioeng. Biotechnol.202310104492710.3389/fbioe.2022.1044927 36714621
    [Google Scholar]
  171. Al-TabbaaO. AnkrahS. Social capital to facilitate ‘engineered’ university-industry collaboration for technology transfer: A dynamic perspective.Technol. Forecast. Soc. Change201610411510.1016/j.techfore.2015.11.027
    [Google Scholar]
  172. YuW. JiangY.Y. SunT.W. QiC. ZhaoH. ChenF. ShiZ. ZhuY.J. ChenD. HeY. Design of a novel wound dressing consisting of alginate hydrogel and simvastatin-incorporated mesoporous hydroxyapatite microspheres for cutaneous wound healing.RSC Advances2016610610437510438710.1039/C6RA20892D
    [Google Scholar]
  173. WongT.W. RamliN.A. Carboxymethylcellulose film for bacterial wound infection control and healing.Carbohydr. Polym.201411236737510.1016/j.carbpol.2014.06.002 25129756
    [Google Scholar]
  174. ParenteM.E. Ochoa AndradeA. AresG. RussoF. Jiménez-KairuzÁ. Bioadhesive hydrogels for cosmetic applications.Int. J. Cosmet. Sci.201537551151810.1111/ics.12227 25854849
    [Google Scholar]
  175. KimS.J. KwonS.S. JeonS.H. YuE.R. ParkS.N. Enhanced skin delivery of liquiritigenin and liquiritin-loaded liposome-in-hydrogel complex system.Int. J. Cosmet. Sci.201436655356010.1111/ics.12156 25074560
    [Google Scholar]
  176. LaiY.C. WilsonA.C. Zantos, SG Contact lenses.Kirk-Othmer Encyclopedia of Chemical Technology.Wiley Online Library200012510.1002/0471238961.03151420120109.a01
    [Google Scholar]
  177. MusgraveC.S.A. FangF. Contact lens materials: A materials science perspective.Materials201912226110.3390/ma12020261 30646633
    [Google Scholar]
  178. MunćanJ. MileusnićI. Šakota RosićJ. Vasić-MilovanovićA. MatijaL. Water properties of soft contact lenses: A comparative near-infrared study of two hydrogel materials.Int. J. Polym. Sci.2016201613737916
    [Google Scholar]
  179. AswathyS.H. NarendrakumarU. ManjubalaI. Commercial hydrogels for biomedical applications.Heliyon202064e0371910.1016/j.heliyon.2020.e03719 32280802
    [Google Scholar]
  180. CaoJ. YuanP. WuB. LiuY. HuC. Advances in the research and application of smart-responsive hydrogels in disease treatment.Gels20239866210.3390/gels9080662 37623116
    [Google Scholar]
  181. TibbittM.W. AnsethK.S. Hydrogels as extracellular matrix mimics for 3D cell culture.Biotechnol. Bioeng.2009103465566310.1002/bit.22361 19472329
    [Google Scholar]
  182. LangerR. TirrellD.A. Designing materials for biology and medicine.Nature2004428698248749210.1038/nature02388 15057821
    [Google Scholar]
  183. BertschP. DibaM. MooneyD.J. LeeuwenburghS.C.G. Self-healing injectable hydrogels for tissue regeneration.Chem. Rev.2023123283487310.1021/acs.chemrev.2c00179 35930422
    [Google Scholar]
  184. AnnabiN. TamayolA. UquillasJ.A. AkbariM. BertassoniL.E. ChaC. Camci-UnalG. DokmeciM.R. PeppasN.A. KhademhosseiniA. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine.Adv. Mater.20142618512410.1002/adma.201303233 24741694
    [Google Scholar]
  185. HighleyC.B. PrestwichG.D. BurdickJ.A. Recent advances in hyaluronic acid hydrogels for biomedical applications.Curr. Opin. Biotechnol.201640354010.1016/j.copbio.2016.02.008 26930175
    [Google Scholar]
  186. O’ConnellC.D. Di BellaC. ThompsonF. AugustineC. BeirneS. CornockR. RichardsC.J. ChungJ. GambhirS. YueZ. BourkeJ. ZhangB. TaylorA. QuigleyA. KapsaR. ChoongP. WallaceG.G. Development of the Biopen: A handheld device for surgical printing of adipose stem cells at a chondral wound site.Biofabrication20168101501910.1088/1758‑5090/8/1/015019 27004561
    [Google Scholar]
  187. DanyuoY. AniC.J. SalifuA.A. ObayemiJ.D. Dozie-NwachukwuS. ObanawuV.O. AkpanU.M. OdusanyaO.S. Abade-AbugreM. McBagonluriF. SoboyejoW.O. Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer.Sci. Rep.201991386210.1038/s41598‑019‑39578‑4 30846795
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010294727240502051954
Loading
/content/journals/cpb/10.2174/0113892010294727240502051954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test