Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Tyrosinase, often recognized as polyphenol oxidase, plays a pivotal role as an enzyme in catalyzing the formation of melanin—a complex process involving the oxidation of monophenols and o-diphenols.

Objectives

Tyrosinase functions as a monooxygenase, facilitating the o-hydroxylation of monophenols to generate the corresponding catechols, as well as catalyzing the oxidation of monophenols to form the corresponding o-quinones, exhibiting diphenolase or catecholase activity. This versatile enzymatic capability is not limited to specific organisms but is found across various sources, including bacteria, fungi, plants, and mammals.

Methods

Pertinent research articles, reviews, and patents on tyrosinase were gathered through a comprehensive literature search. These materials were analyzed to gain insights into the diverse applications of tyrosinase. The review was structured by categorizing these applications and offering a thorough summary of the current state of knowledge in the field.

Results

Based on the literature survey, tyrosinase exhibits promising potential across a spectrum of biotechnological applications. These include but are not limited to: synthesizing L-DOPA, creating innovative mixed melanins, manufacturing phenolic biosensors, deploying in food and feed industries, facilitating protein cross-linking, eliminating phenols and dyes, and serving as a biocatalyst. Moreover, immobilized tyrosinase demonstrates multiple utility avenues within the pharmaceutical sector.

Conclusion

The article offers a comprehensive exploration of tyrosinase, encompassing its structural features, evolutionary origins, biochemical characteristics, and contemporary applications in various fields.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010279852240702062859
2024-07-15
2025-10-08
Loading full text...

Full text loading...

References

  1. LiJ. LiC. PengX. LiS. LiuB. ChuC. Recent discovery of tyrosinase inhibitors in traditional Chinese medicines and screening methods.J. Ethnopharmacol.202330311595110.1016/j.jep.2022.115951 36410577
    [Google Scholar]
  2. GhasemiN. MoradiS. IrajiA. MahdaviM. Thiazolopyrimidine derivatives as novel class of small molecule tyrosinase inhibitor.BMC Chem.202317115610.1186/s13065‑023‑01077‑z 37981674
    [Google Scholar]
  3. ShusterV. FishmanA. Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium.J. Mol. Microbiol. Biotechnol.2009174188200 19672047
    [Google Scholar]
  4. CarradoriS. MelfiF. RešetarJ. ŞimşekR. Tyrosinase enzyme and its inhibitors: An update of the literature.Metalloenzymes. SupuranC.T. DonaldW.A. Academic Press2024533546
    [Google Scholar]
  5. SelinheimoE. NiEidhin, D.; Steffensen, C.; Nielsen, J.; Lomascolo, A.; Halaouli, S.; Record, E.; O’Beirne, D.; Buchert, J.; Kruus, K. Comparison of the characteristics of fungal and plant tyrosinases.J. Biotechnol.2007130447148010.1016/j.jbiotec.2007.05.018 17602775
    [Google Scholar]
  6. FernandesM.S. KerkarS. Microorganisms as a source of tyrosinase inhibitors: A review.Ann. Microbiol.201767434335810.1007/s13213‑017‑1261‑7
    [Google Scholar]
  7. BourquelotE. BertrandA. Le bleuissement et le noircissement des champignons.Comp. Rend. Soc. Biol.18952582584
    [Google Scholar]
  8. ZaidiK.U. AliA.S. AliS.A. NaazI. Microbial tyrosinases: Promising enzymes for pharmaceutical, food bioprocessing, and environmental industry.Biochem. Res. Int.2014201411610.1155/2014/854687 24895537
    [Google Scholar]
  9. DuránN. EspósitoE. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review.Appl. Catal. B2000282839910.1016/S0926‑3373(00)00168‑5
    [Google Scholar]
  10. StrongP.J. ClausH. Laccase: A review of its past and its future in bioremediation.Crit. Rev. Environ. Sci. Technol.201141437343410.1080/10643380902945706
    [Google Scholar]
  11. DolashkiA. GushterovaA. VoelterW. TchorbanovB. Purification and characterization of tyrosinases from Streptomyces albus.Z. Naturforsch. C J. Biosci.2009649-1072473210.1515/znc‑2009‑9‑1019 19957443
    [Google Scholar]
  12. NosanchukJ.D. CasadevallA. The contribution of melanin to microbial pathogenesis.Cell. Microbiol.20035420322310.1046/j.1462‑5814.2003.00268.x 12675679
    [Google Scholar]
  13. ParvezS. KangM. ChungH.S. BaeH. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries.Phytother. Res.200721980581610.1002/ptr.2184 17605157
    [Google Scholar]
  14. TembeS. D’SouzaS. F. Immobilisation strategies for construction of tyrosinase-based biosensors.Mat. Technol.201430sup7B190B195
    [Google Scholar]
  15. Janovitz-KlappA. RichardF. NicolasJ. Polyphenoloxidase from apple, partial purification and some properties.Phytochemistry198928112903290710.1016/0031‑9422(89)80250‑X
    [Google Scholar]
  16. NawazA. Tyrosinase: Sources, structure and applications.Int J Biotech & Bioeng201735142148
    [Google Scholar]
  17. WuJ. ChenH. GaoJ. LiuX. ChengW. MaX. Cloning, characterization and expression of two new polyphenol oxidase cDNAs from Agaricus bisporus.Biotechnol. Lett.201032101439144710.1007/s10529‑010‑0329‑2 20676921
    [Google Scholar]
  18. HaudecoeurR. GouronA. DuboisC. JametH. LightbodyM. HardréR. MiletA. BergantinoE. BubaccoL. BelleC. RéglierM. BoumendjelA. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors.ChemBioChem20141591325133310.1002/cbic.201402003 24849818
    [Google Scholar]
  19. MinK. ParkG.W. YooY.J. LeeJ.S. A perspective on the biotechnological applications of the versatile tyrosinase.Bioresour. Technol.201928912173010.1016/j.biortech.2019.121730 31279520
    [Google Scholar]
  20. KongK.H. HongM.P. ChoiS.S. KimY.T. ChoS.H. Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum.Biotechnol. Appl. Biochem.200031211311810.1042/BA19990096 10744956
    [Google Scholar]
  21. HuberM. HintermannG. LerchK. Primary structure of tyrosinase from Streptomyces glaucescens.Biochemistry198524226038604410.1021/bi00343a003 3002431
    [Google Scholar]
  22. López-serranoD. SAnchez-Amat, A.; Solano, F. Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea.Pigment Cell Res.200215210411110.1034/j.1600‑0749.2002.1o068.x 11936267
    [Google Scholar]
  23. PiñeroS. RiveraJ. RomeroD. CevallosM.A. MartínezA. BolívarF. GossetG. Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance.J. Mol. Microbiol. Biotechnol.2007131-33544 17693711
    [Google Scholar]
  24. RuanL. HeW. HeJ. SunM. YuZ. Cloning and expression of mel gene from Bacillus thuringiensis in Escherichia coli.Antonie van Leeuwenhoek200587428328810.1007/s10482‑004‑4775‑5 15928981
    [Google Scholar]
  25. McMahonA.M. DoyleE.M. BrooksS. O’ConnorK.E. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6.Enzyme Microb. Technol.20074051435144110.1016/j.enzmictec.2006.10.020
    [Google Scholar]
  26. WichersH.J. GerritsenY.A.M. ChapelonC.G.J. Tyrosinase isoforms from the fruitbodies of Agaricus bisporus.Phytochemistry199643233333710.1016/0031‑9422(96)00309‑3
    [Google Scholar]
  27. KupperU. NiedermannD.M. TravagliniG. LerchK. Isolation and characterization of the tyrosinase gene from Neurospora crassa.J. Biol. Chem.198926429172501725810.1016/S0021‑9258(18)71485‑3 2529259
    [Google Scholar]
  28. KandaK. SatoT. IshiiS. EneiH. EjiriS. Purification and properties of tyrosinase isozymes from the gill of Lentinus edodes fruiting body.Biosci. Biotechnol. Biochem.19966081273127810.1271/bbb.60.1273 8987542
    [Google Scholar]
  29. NakamuraM. NakajimaT. OhbaY. YamauchiS. LeeB.R. IchishimaE. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis.Biochem. J.2000350253754510.1042/bj3500537 10947969
    [Google Scholar]
  30. HalaouliS. AstherM. KruusK. GuoL. HamdiM. SigoillotJ.C. AstherM. LomascoloA. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications.J. Appl. Microbiol.200598233234310.1111/j.1365‑2672.2004.02481.x 15659188
    [Google Scholar]
  31. MuellerL.A. HinzU. ZrÿdJ.P. Characterization of a tyrosinase from Amanita muscaria involved in betalain biosynthesis.Phytochemistry19964261511151510.1016/0031‑9422(96)00171‑9
    [Google Scholar]
  32. GębalskiJ. GraczykF. ZałuskiD. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: A critical review on a structure–activity relationship.J. Enzyme Inhib. Med. Chem.20223711120119510.1080/14756366.2022.2061966 35470749
    [Google Scholar]
  33. RashidM.T. GuoZ.J. SongC. LiX. YaoY. Progress in the application of tyrosinase in food processing industry: A review.Trends Food Sci. Technol.202110887100
    [Google Scholar]
  34. ChenH. YaoY. XieT. GuoH. ChenS. ZhangY. HongZ. Identification of tyrosinase inhibitory peptides from sea cucumber (Apostichopus japonicus) collagen by in silico methods and study of their molecular mechanism.Curr. Protein Pept. Sci.202324975876610.2174/1389203724666230622095013 37350006
    [Google Scholar]
  35. FariaR.O. MoureV.R. BalmantW. AmazonasM.A. KriegerN. MitchellD.A. The tyrosinase produced by Lentinula boryana (Berk. & Mont.) pegler suffers substrate inhibition by L-DOPA.Food Technol. Biotechnol.200745334340
    [Google Scholar]
  36. FriedmanM. Food browning and its prevention: An overview.J. Agric. Food Chem.199644363165310.1021/jf950394r
    [Google Scholar]
  37. LeeJ.L. KongK.H. ChoS.H. Purification and characterization of tyrosinase from Solanum melongena.J. Biochem. Mol. Biol.1997302150156
    [Google Scholar]
  38. RaymondJ. RakariyathamN. AzanzaJ.L. Purification and some properties of polyphenoloxidase from sunflower seeds.Phytochemistry199334492793110.1016/S0031‑9422(00)90689‑7
    [Google Scholar]
  39. MermerA. DemirciS. Recent advances in triazoles as tyrosinase inhibitors.Eur. J. Med. Chem.202325911565510.1016/j.ejmech.2023.115655 37482020
    [Google Scholar]
  40. WangY. XiongB. XingS. ChenY. LiaoQ. MoJ. ChenY. LiQ. SunH. Medicinal prospects of targeting tyrosinase: A feature review.Curr. Med. Chem.202330232638267110.2174/0929867329666220915123714 36111760
    [Google Scholar]
  41. KanteevM. GoldfederM. FishmanA. Structure–function correlations in tyrosinases.Protein Sci.20152491360136910.1002/pro.2734 26104241
    [Google Scholar]
  42. ArmanI. Optimization of tyrosinase enzyme production from native bacillus sp. MV29 Isolate.J. Appl. Biol. Sci.2015927782
    [Google Scholar]
  43. KaurR. SharmaS. KaurS. SodhiH.S. Biochemical characterization with kinetic studies of melanogenic enzyme tyrosinase from white button mushroom, Agaricus bisporus.Indian J. Biochem. Biophys.202259718725
    [Google Scholar]
  44. WangK.H. LinR.D. HsuF.L. HuangY.H. ChangH.C. HuangC.Y. LeeM.H. Cosmetic applications of selected traditional Chinese herbal medicines.J. Ethnopharmacol.2006106335335910.1016/j.jep.2006.01.010 16497459
    [Google Scholar]
  45. AbdullahJ. AhmadM. KaruppiahN. HengL.Y. SidekH. Immobilization of tyrosinase in chitosan film for an optical detection of phenol.Sens. Actuators B Chem.2006114260460910.1016/j.snb.2005.06.019
    [Google Scholar]
  46. TatsumaT. KomoriK. YeohH.H. OyamaN. Disposable test plates with tyrosinase and β-glucosidases for cyanide and cyanogenic glycosides.Anal. Chim. Acta20004081-223324010.1016/S0003‑2670(99)00744‑8
    [Google Scholar]
  47. AbhijithK.S. Sujith KumarP.V. KumarM.A. ThakurM.S. Immobilised tyrosinase-based biosensor for the detection of tea polyphenols.Anal. Bioanal. Chem.20073897-82227223410.1007/s00216‑007‑1604‑5 17928999
    [Google Scholar]
  48. PriorR.L. WuX. SchaichK. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements.J. Agric. Food Chem.200553104290430210.1021/jf0502698 15884874
    [Google Scholar]
  49. SeoS.Y. SharmaV.K. SharmaN. Mushroom tyrosinase: recent prospects.J. Agric. Food Chem.200351102837285310.1021/jf020826f 12720364
    [Google Scholar]
  50. Methods for treating wounds using melanin and related substances.WO2003051331A12002Available from: https://patents.google.com/patent/WO2003051331A1/en
    [Google Scholar]
  51. Therapeutic uses of melanin.US5703051A,1997Available from: https://patents.google.com/patent/US5703051A/en
    [Google Scholar]
  52. FortinskaiaE.S. TorkhovskaiaT.I. SharapovaG.Ia. LoginovaT.K. KhalilolE.M. A method of determination of cholesterol contents on the surface of the human skin and prospects of its use. II.Psoriasis. Klin. Lab. Diagn.199451517 7850227
    [Google Scholar]
  53. FaccioG. KruusK. SaloheimoM. Thöny-MeyerL. Bacterial tyrosinases and their applications.Process Biochem.201247121749176010.1016/j.procbio.2012.08.018
    [Google Scholar]
  54. SelinheimoE. AutioK. KruusK. BuchertJ. Elucidating the mechanism of laccase and tyrosinase in wheat bread making.J. Agric. Food Chem.200755156357636510.1021/jf0703349 17602567
    [Google Scholar]
  55. LuoY.W. XieW.H. XuM. LuoF.X. Effects of phytase and polyphenol oxidase treatments on in vitro iron bioavailability in faba bean (Vicia faba L.).CYTA J. Food201210216517110.1080/19476337.2011.631222
    [Google Scholar]
  56. FujimotoN. OnoderaH. MitsumoriK. TamuraT. MaruyamaS. ItoA. Changes in thyroid function during development of thyroid hyperplasia induced by kojic acid in F344 rats.Carcinogenesis19992081567157210.1093/carcin/20.8.1567 10426808
    [Google Scholar]
  57. JinY.H. LeeS.J. ChungM.H. ParkJ.H. ParkY.I. ChoT.H. LeeS.K. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism.Arch. Pharm. Res.199922323223610.1007/BF02976355 10403123
    [Google Scholar]
  58. SelinheimoE. Tyrosinase and laccase as novel crosslinking tools for food biopolymers.EspooVTT Technical Research Centre of Finland20081693
    [Google Scholar]
  59. LandE.J. RamsdenC.A. RileyP.A. Quinone chemistry and melanogenesis.Methods Enzymol.20043788810910.1016/S0076‑6879(04)78005‑2 15038959
    [Google Scholar]
  60. TakasakiS. KawakishiS. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins.Biochemistry1993321847804786
    [Google Scholar]
  61. JeeJ.G. ParkS.J. KimH.J. Tyrosinase-induced cross-linking of tyrosine-containing peptides investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.Rapid Commun. Mass Spectrom.2000141615631567 10931554
    [Google Scholar]
  62. GamageN.U. DugglebyR.G. BarnettA.C. TresillianM. LathamC.F. LiyouN.E. McManusM.E. MartinJ.L. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition.J. Biol. Chem.200327897655766210.1074/jbc.M207246200 12471039
    [Google Scholar]
  63. MakinoN. MasonH.S. Reactivity of oxytyrosinase toward substrates.J. Biol. Chem.1973248165731573510.1016/S0021‑9258(19)43565‑5 4198884
    [Google Scholar]
  64. Margolles-ClarkE. TenkanenM. Nakari-SetäläT. PenttiläM. Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae.Appl. Environ. Microbiol.199662103840384610.1128/aem.62.10.3840‑3846.1996 8837440
    [Google Scholar]
  65. Sambasiva RaoK.R.S. Production, characterization, catalytic and inhibitory activities of tyrosinase.Res. J. Biotechnol.201381
    [Google Scholar]
  66. BrasquetC. SubrenatE. Le CloirecP. Removal of phenolic compounds from aqueous solution by activated carbon cloths.Water Sci. Technol.19993910-1120120510.2166/wst.1999.0656
    [Google Scholar]
  67. García-MolinaP. García-MolinaF. Teruel-PucheJ.A. Rodríguez-LópezJ.N. García-CánovasF. Muñoz-MuñozJ.L. Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review.Molecular Catalysis202251811207210.1016/j.mcat.2021.112072
    [Google Scholar]
  68. SinghN. SinghJ. An enzymatic method for removal of phenol from industrial effluent.Prep. Biochem. Biotechnol.200232212713310.1081/PB‑120004125 12071643
    [Google Scholar]
  69. IkehataK. NicellJ.A. Color and toxicity removal following tyrosinase-catalyzed oxidation of phenols.Biotechnol. Prog.200016453354010.1021/bp0000510 10933824
    [Google Scholar]
  70. BevilaquaJ.V. CammarotaM.C. FreireD.M.G. Sant’AnnaG.L.Jr Phenol removal through combined biological and enzymatic treatments.Braz. J. Chem. Eng.200219215115810.1590/S0104‑66322002000200010
    [Google Scholar]
  71. TembeS. InamdarS. HaramS. KarveM. D’SouzaS.F. Electrochemical biosensor for catechol using agarose–guar gum entrapped tyrosinase.J. Biotechnol.20071281808510.1016/j.jbiotec.2006.09.020 17113674
    [Google Scholar]
  72. BounegruA.V. ApetreiC. Tyrosinase immobilization strategies for the development of electrochemical biosensors: A review.Nanomaterials202313476010.3390/nano13040760 36839128
    [Google Scholar]
  73. JesurajA. HassanU. Point-of-care portable 3D-printed multispectral sensor for real-time enzyme activity monitoring in healthcare applications.Biosensors202313112010.3390/bios13010120 36671955
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010279852240702062859
Loading
/content/journals/cpb/10.2174/0113892010279852240702062859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test