Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The meninges serve as a protective layer, and the fluid around the brain and spinal cord can become inflamed, known as meningitis. Lipid-based pharmaceutical formulations, by their high lipophilicity, can negotiate the Blood-Brain Barrier (BBB). The current mode of treatment of meningitis is mainly through antibiotics, which, at best, is partially effective. The success of antibiotic therapy depends on several factors, for example, the difficulty of reaching the infection site, maintaining proper concentrations of the drug after crossing the BBB, and finally, its efficacy in preventing recurrent infection. In this context, interest has focused on organic and inorganic nanostructures for meningitis and transporting antibiotics to the selected region through the BBB. A focus has also been placed on several polymeric nanotechnology techniques for detecting various types of meningitis. This review focuses on nano interventions and their most recent meningitis treatments using nanotechnology.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010303028240429073144
2024-05-03
2025-09-16
Loading full text...

Full text loading...

References

  1. BrouwerM.C. TunkelA.R. van de BeekD. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis.Clin. Microbiol. Rev.201023346749210.1128/CMR.00070‑0920610819
    [Google Scholar]
  2. WeisfeltM. de GansJ. van der PollT. van de BeekD. Pneumococcal meningitis in adults: New approaches to management and prevention.Lancet Neurol.20065433234210.1016/S1474‑4422(06)70409‑416545750
    [Google Scholar]
  3. Ait-AliY. BourlonL. JacobsF.M. Review of progress and challenges in bacterial meningitis.JAMA202332916140610.1001/jama.2023.254537097361
    [Google Scholar]
  4. RafiW. ChandramukiA. ManiR. SatishchandraP. ShankarS.K. Rapid diagnosis of acute bacterial meningitis: role of a broad range 16S rRNA polymerase chain reaction.J. Emerg. Med.201038222523010.1016/j.jemermed.2008.02.05318790588
    [Google Scholar]
  5. PetersenP.T. BodilsenJ. JepsenM.P.G. LarsenL. StorgaardM. HansenB.R. Helweg-LarsenJ. WieseL. LüttichauH.R. AndersenC.Ø. NielsenH. BrandtC.T. Danish Study Group of Infections of the Brain (DASGIB) Clinical features and prognostic factors in adults with viral meningitis.Brain202314693816382510.1093/brain/awad08936929167
    [Google Scholar]
  6. ZueterA.M. ZaiterA. Infectious Meningitis.Clin. Microbiol. Newsl.2015376435110.1016/j.clinmicnews.2015.02.004
    [Google Scholar]
  7. BlochK.C. BailinS.S. Update on fungal infections of the central nervous system: Emerging pathogens and emerging diagnostics.Curr. Opin. Infect. Dis.201932327728410.1097/QCO.000000000000054130921084
    [Google Scholar]
  8. RansonE. ShipH. GarnerO. YangS. BhattacharyaD. Unusual presentation of meningococcal meningitis in the elderly and utility of CSF PCR testing.Access Microbiol.2020210acmi00015810.1099/acmi.0.00015833195972
    [Google Scholar]
  9. SharmaN. ZahoorI. SachdevaM. SubramaniyanV. FuloriaS. FuloriaN.K. NavedT. BhatiaS. Al-HarrasiA. AleyaL. BungauS. BehlT. SinghS. Deciphering the role of nanoparticles for management of bacterial meningitis: An update on recent studies.Environ. Sci. Pollut. Res. Int.20212843604596047610.1007/s11356‑021‑16570‑y34545518
    [Google Scholar]
  10. ChaudhuriA. MartinP.M. KennedyP.G.E. Andrew SeatonR. PortegiesP. BojarM. SteinerI. EFNS Task Force EFNS guideline on the management of community‐acquired bacterial meningitis: Report of an EFNS Task Force on acute bacterial meningitis in older children and adults.Eur. J. Neurol.200815764965910.1111/j.1468‑1331.2008.02193.x18582342
    [Google Scholar]
  11. KischkelB. RossiS.A. SantosS.R. NosanchukJ.D. TravassosL.R. TabordaC.P. Therapies and vaccines based on nanoparticles for the treatment of systemic fungal infections.Front. Cell. Infect. Microbiol.20201046310.3389/fcimb.2020.0046333014889
    [Google Scholar]
  12. BaraniM. MukhtarM. RahdarA. SargaziG. ThysiadouA. KyzasG.Z. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections.Molecules202126118610.3390/molecules2601018633401658
    [Google Scholar]
  13. GendelmanH.E. AnantharamV. BronichT. GhaisasS. JinH. KanthasamyA.G. LiuX. McMillanJ. MosleyR.L. NarasimhanB. MallapragadaS.K. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases.Nanomedicine201511375176710.1016/j.nano.2014.12.01425645958
    [Google Scholar]
  14. ReynardP. BascoulA. BiottiD. KarsentyJ. IonescuE. Thai-VanH. Audiovestibular neuropathy in an immunocompetent man with cryptococcal meningitis.Eur. Ann. Otorhinolaryngol. Head Neck Dis.2021138537738110.1016/j.anorl.2020.10.00833092984
    [Google Scholar]
  15. GaoW. ChenY. ZhangY. ZhangQ. ZhangL. Nanoparticle-based local antimicrobial drug delivery.Adv. Drug Deliv. Rev.2018127465710.1016/j.addr.2017.09.01528939377
    [Google Scholar]
  16. AderibigbeB. Metal-based nanoparticles for the treatment of infectious diseases.Molecules2017228137010.3390/molecules2208137028820471
    [Google Scholar]
  17. StieJ. FoxD. Blood–brain barrier invasion by Cryptococcus neoformans is enhanced by functional interactions with plasmin.Microbiology2012158124025810.1099/mic.0.051524‑021998162
    [Google Scholar]
  18. PragerO. FriedmanA. NebenzahlY.M. Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis.Exp. Ther. Med.201713379980910.3892/etm.2017.408228450902
    [Google Scholar]
  19. ZhuX. Radovic-MorenoA.F. WuJ. LangerR. ShiJ. Nanomedicine in the management of microbial infection – Overview and perspectives.Nano Today20149447849810.1016/j.nantod.2014.06.00325267927
    [Google Scholar]
  20. JainK.K. Nanomedicine: Application of nanobiotechnology in medical practice.Med. Princ. Pract.20081728910110.1159/00011296118287791
    [Google Scholar]
  21. RibeiroM.H.D.M. MarianiV.C. CoelhoL.S. Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods.J. Biomed. Inform.202011110357510.1016/j.jbi.2020.10357532976990
    [Google Scholar]
  22. UpadhyayR.K. Drug delivery systems, CNS protection, and the blood brain barrier.BioMed Res. Int.2014201413710.1155/2014/86926925136634
    [Google Scholar]
  23. NairM. JayantR.D. KaushikA. SagarV. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS.Adv. Drug Deliv. Rev.201610320221710.1016/j.addr.2016.02.00826944096
    [Google Scholar]
  24. ZeeshanM MukhtarM AinQU KhanS AliH Nanopharmaceuticals: A boon to the brain-targeted drug delivery.Pharmaceutical Formulation Design-Recent PracticesIntechOpen2019
    [Google Scholar]
  25. WackerM. Nanocarriers for intravenous injection—The long hard road to the market.Int. J. Pharm.20134571506210.1016/j.ijpharm.2013.08.07924036012
    [Google Scholar]
  26. JahangirM.A. TaleuzzamanM. KalaC. GilaniS.J. Advancements in polymer and lipid-based nanotherapeutics for cancer drug targeting.Curr. Pharm. Des.202026405119512710.2174/138161282699920082017325332867646
    [Google Scholar]
  27. LuH. ZhangS. WangJ. ChenQ. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems.Front. Nutr.2021878383110.3389/fnut.2021.78383134926557
    [Google Scholar]
  28. ÜnerM. YenerG. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.Int. J. Nanomedicine20072328930018019829
    [Google Scholar]
  29. WangH. XuK. LiuL. TanJ.P.K. ChenY. LiY. FanW. WeiZ. ShengJ. YangY.Y. LiL. The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis.Biomaterials201031102874288110.1016/j.biomaterials.2009.12.04220044131
    [Google Scholar]
  30. FatouhA. ElshafeeyA. AbdelbaryA. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics.Drug Des. Devel. Ther.2017111815182510.2147/DDDT.S10250028684900
    [Google Scholar]
  31. NevesA.R. QueirozJ.F. ReisS. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E.J. Nanobiotechnology20161412710.1186/s12951‑016‑0177‑x27061902
    [Google Scholar]
  32. VeszelkaS. MeszarosM. KissL. KotaZ. PaliT. HoykZ. BozsoZ. FulopL. TothA. RakhelyG. DeliM.A. Biotin and glutathione targeting of solid nanoparticles to cross human brain endothelial cells.Curr. Pharm. Des.201723284198420528748755
    [Google Scholar]
  33. JawetzE. AdelbergE.A. CarrollK.C. MelnickJ.L. Microbiología médica.McGraw-Hill2016182187
    [Google Scholar]
  34. AlfaroC. Pathogenesis of Neisseria meningitidis.Rev. Méd. Hosp. Nac. Niños Dr. Carlos Saenz Herrera20054027380
    [Google Scholar]
  35. HuangQ. ChenY. ZhangW. XiaX. LiH. QinM. GaoH. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases.J. Control. Release202436651953410.1016/j.jconrel.2023.12.05438182059
    [Google Scholar]
  36. HuangQ. ChenX. YuS. GongG. ShuH. Research progress in brain-targeted nasal drug delivery.Front. Aging Neurosci.202415134129510.3389/fnagi.2023.134129538298925
    [Google Scholar]
  37. KaratiD. A concise review on bio-responsive polymers in targeted drug delivery system.Polym. Bull.20238077023704510.1007/s00289‑022‑04424‑7
    [Google Scholar]
  38. PatelV. Liposome: A novel carrier for targeting drug delivery system.Asian J. Pharm. Res. Dev.2020846776
    [Google Scholar]
  39. TorchilinV.P. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers.Adv. Drug Deliv. Rev.2008604-554855810.1016/j.addr.2007.10.00818053612
    [Google Scholar]
  40. Bartomeu GarciaC. ShiD. WebsterT.J. Tat-functionalized liposomes for the treatment of meningitis: An in vitro study.Int. J. Nanomedicine2017123009302110.2147/IJN.S13012528442909
    [Google Scholar]
  41. StewartE.R. EldridgeM.L. McHardyI. CohenS.H. ThompsonG.R.III Liposomal amphotericin B as monotherapy in relapsed coccidioidal meningitis.Mycopathologia2018183361962210.1007/s11046‑017‑0240‑729340909
    [Google Scholar]
  42. ZhanelG.G. SimorA.E. VercaigneL. MandellL. the Canadian Carbapenem Discussion Group Imipenem and meropenem: Comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects.Can. J. Infect. Dis.19989421522810.1155/1998/83142522346545
    [Google Scholar]
  43. SteeleR.W. Ceftriaxone therapy of meningitis and serious infections.Am. J. Med.1984774C50536093519
    [Google Scholar]
  44. JuhairiyahF. de LangeE.C.M. Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential.AAPS J.202123611410.1208/s12248‑021‑00648‑z34713363
    [Google Scholar]
  45. MukherjeeS. RayS. ThakurR.S. Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy.Pak. J. Pharm. Sci.200922213113819339221
    [Google Scholar]
  46. Bayón-CorderoL. AlkortaI. AranaL. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs.Nanomaterials20199347410.3390/nano903047430909401
    [Google Scholar]
  47. Abdel HadyM. SayedO.M. AklM.A. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; Optimization and in-vivo evaluation.Colloids Surf. B Biointerfaces202019311107610.1016/j.colsurfb.2020.11107632408259
    [Google Scholar]
  48. KumarM. KakkarV. MishraA.K. ChuttaniK. KaurI.P. Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood.Int. J. Pharm.20144611-222323310.1016/j.ijpharm.2013.11.03824286922
    [Google Scholar]
  49. HansM.L. LowmanA.M. Biodegradable nanoparticles for drug delivery and targeting.Curr. Opin. Solid State Mater. Sci.20026431932710.1016/S1359‑0286(02)00117‑1
    [Google Scholar]
  50. NairK.G.S. VelmuruganR. SukumaranS.K. Formulation and optimization of ansamycin-loaded polymeric nanoparticles using response surface methodology for bacterial meningitis.Bionanoscience202010127929110.1007/s12668‑019‑00713‑0
    [Google Scholar]
  51. AbdelghanyS.M. QuinnD.J. IngramR.J. GilmoreB.F. DonnellyR.F. TaggartC.C. ScottC.J. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection.Int. J. Nanomedicine201274053406322915848
    [Google Scholar]
  52. ZhangJ. SunH. GaoC. WangY. ChengX. YangY. GouQ. LeiL. ChenY. WangX. ZouQ. GuJ. Development of a chitosan‐modified PLGA nanoparticle vaccine for protection against Escherichia coli K1 caused meningitis in mice.J. Nanobiotechnology20211916910.1186/s12951‑021‑00812‑933673858
    [Google Scholar]
  53. XuN. JulinG. YuanjieZ. HaiW. QiushiR. JianghanC. Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice.Int. J. Nanomedicine2011690591310.2147/IJN.S1750321720503
    [Google Scholar]
  54. HongW. ZhangZ. LiuL. ZhaoY. ZhangD. LiuM. Brain-targeted delivery of PEGylated nano-bacitracin A against Penicillin-sensitive and -resistant Pneumococcal meningitis: formulated with RVG 29 and Pluronic ® P85 unimers.Drug Deliv.20182511886189710.1080/10717544.2018.148647330404541
    [Google Scholar]
  55. LuC.T. ZhaoY.Z. WongH.L. CaiJ. PengL. TianX.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers.Int. J. Nanomedicine201492241225710.2147/IJN.S6128824872687
    [Google Scholar]
  56. BeloquiA. SolinísM.Á. RieuxA. PréatV. Rodríguez-GascónA. Dextran–protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs.Int. J. Pharm.20144681-210511110.1016/j.ijpharm.2014.04.02724746410
    [Google Scholar]
  57. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  58. ForierK. RaemdonckK. De SmedtS.C. DemeesterJ. CoenyeT. BraeckmansK. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.J. Control. Release201419060762310.1016/j.jconrel.2014.03.05524794896
    [Google Scholar]
  59. RinaldiF. OlivaA. SabatinoM. ImbrianoA. HaniehP.N. GarzoliS. MastroianniC.M. De AngelisM. MieleM.C. ArnautM. Di TimoteoF. MarianecciC. RagnoR. CarafaM. Antimicrobial essential oil formulation: Chitosan coated nanoemulsions for nose to brain delivery.Pharmaceutics202012767810.3390/pharmaceutics1207067832709076
    [Google Scholar]
  60. HarunS. Amin NordinS. Abd GaniS.S. ShamsuddinA.F. BasriM. Bin BasriH. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: Designs, characterizations, and pharmacokinetics.Int. J. Nanomedicine2018132571258410.2147/IJN.S15178829731632
    [Google Scholar]
  61. MusaS.H. BasriM. MasoumiH.R.F. KarjibanR.A. MalekE.A. BasriH. ShamsuddinA.F. Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment.Colloids Surf. B Biointerfaces201311211311910.1016/j.colsurfb.2013.07.04323974000
    [Google Scholar]
  62. ShoboA. PamreddyA. KrugerH.G. MakatiniM.M. NaickerT. GovenderT. BaijnathS. Enhanced brain penetration of pretomanid by intranasal administration of an oil-in-water nanoemulsion.Nanomedicine2018139997100810.2217/nnm‑2017‑036529790418
    [Google Scholar]
  63. PompilioA. GeminianiC. MantiniP. SiriwardenaT.N. Di BonaventuraI. ReymondJ.L. Di BonaventuraG. Peptide dendrimers as “lead compounds” for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: In vitro and in vivo studies.Infect. Drug Resist.2018111767178210.2147/IDR.S16886830349334
    [Google Scholar]
  64. SvensonS. TomaliaD.A. Dendrimers in biomedical applications—reflections on the field.Adv. Drug Deliv. Rev.20126410211510.1016/j.addr.2012.09.03016305813
    [Google Scholar]
  65. García-GallegoS. FranciG. FalangaA. GómezR. FollieroV. GaldieroS. de la MataF. GaldieroM. Function oriented molecular design: Dendrimers as novel antimicrobials.Molecules20172210158110.3390/molecules2210158128934169
    [Google Scholar]
  66. LaddE. SheikhiA. LiN. van de VenT. KakkarA. Design and synthesis of dendrimers with facile surface group functionalization, and an evaluation of their bactericidal efficacy.Molecules201722686810.3390/molecules2206086828538670
    [Google Scholar]
  67. NikzamirM. HanifehpourY. AkbarzadehA. PanahiY. Applications of dendrimers in nanomedicine and drug delivery: A review.J. Inorg. Organomet. Polym. Mater.20213162246226110.1007/s10904‑021‑01925‑2
    [Google Scholar]
  68. MhlwatikaZ. AderibigbeB. Application of dendrimers for the treatment of infectious diseases.Molecules2018239220510.3390/molecules2309220530200314
    [Google Scholar]
  69. KumariP. LuqmanS. MeenaA. Nanomaterials: A promising tool for drug delivery.Environmental Chemistry for a Sustainable World20203914910.1007/978‑3‑030‑29207‑2_1
    [Google Scholar]
  70. TomaliaD.A. BakerH. DewaldJ. HallM. KallosG. MartinS. RoeckJ. RyderJ. SmithP. A new class of polymers: Starburst-dendritic macromolecules.Polym. J.198517111713210.1295/polymj.17.117
    [Google Scholar]
  71. SherjeA.P. JadhavM. DravyakarB.R. KadamD. Dendrimers: A versatile nanocarrier for drug delivery and targeting.Int. J. Pharm.2018548170772010.1016/j.ijpharm.2018.07.03030012508
    [Google Scholar]
  72. AyubA. WettigS. An overview of nanotechnologies for drug delivery to the brain.Pharmaceutics202214222410.3390/pharmaceutics1402022435213957
    [Google Scholar]
  73. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  74. KalhapureR.S. SulemanN. MocktarC. SeedatN. GovenderT. Nanoengineered drug delivery systems for enhancing antibiotic therapy.J. Pharm. Sci.2015104387290510.1002/jps.2429825546108
    [Google Scholar]
  75. SvenningsenS.W. FrederiksenR.F. CounilC. FickerM. LeisnerJ.J. ChristensenJ.B. Synthesis and antimicrobial properties of a ciprofloxacin and PAMAM-dendrimer conjugate.Molecules2020256138910.3390/molecules2506138932197523
    [Google Scholar]
  76. TarachP. JanaszewskaA. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy.Int. J. Mol. Sci.2021226291210.3390/ijms2206291233805602
    [Google Scholar]
  77. KuckováK. BhideM. Dendrimers as antimicrobial agents in the central nervous system infections. A review.Folia Vet.2023672243210.2478/fv‑2023‑0014
    [Google Scholar]
  78. WalveJR BakliwalSR RaneBR PawarSP Transfersomes: A surrogated carrier for transdermal drug delivery system.Int J Appl Biol Pharm Technol.201121204213
    [Google Scholar]
  79. RadaS.K. PolaK.K. An overview on ultra deformable vesicular drug delivery systems in transdermal drug delivery.Int. J. Appl. Pharm.2023152834
    [Google Scholar]
  80. SachanR. ParasharT. SoniyaS.V. SinghG. TyagiS. PatelC. GuptaA. Drug carrier transfersomes: A novel tool for transdermal drug delivery system.IJRDPLS.201322309316
    [Google Scholar]
  81. LeiW. YuC. LinH. ZhouX. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo.Asian J. Pharm. Sci.20138633634510.1016/j.ajps.2013.09.005
    [Google Scholar]
  82. PandeyA. MittalA. ChauhanN. AlamS. Role of surfactants as penetration enhancer in transdermal drug delivery system.J. Mol. Pharm. Org. Process Res.2014222710.4172/2329‑9053.1000113
    [Google Scholar]
  83. EidH.M. ElkomyM.H. El MenshaweS.F. SalemH.F. Transfersomal nanovesicles for nose-to-brain delivery of ofloxacin for better management of bacterial meningitis: Formulation, optimization by Box-Behnken design, characterization and in vivo pharmacokinetic study.J. Drug Deliv. Sci. Technol.20195410130410.1016/j.jddst.2019.101304
    [Google Scholar]
  84. BabiychukE. DraegerA. Bern Universitaet, assignee. Tailored liposomes for the treatment of bacterial infections.U.S. Patent 169245392020
  85. Hauser Antibiotic - coated nanoparticles.U.S. Patent 20190099500A12019
  86. YoungT.D.S. Novel nanoparticles and use thereof - Google Patents.U.S. Patent 20070258889A12007
  87. NavaiC.A.M.A.G. Inhibition of Bacterial Protein Production by Polyvalent Oligonucleotide Modified Nanoparticle Conjugates - Google Patents.U.S. Patent US20100184844A1 2010
  88. Martin Pharmaceutical compositions.U.S. Patent 20040132652A12004
  89. Khan Compositions and methods for modified denormernanoparticle delivery.U.S. Patent 20170079916A12017
  90. ChakrabortyM. BanerjeeD. MukherjeeS. KaratiD. Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: an explicative review.Polym. Bull.20238011117591177710.1007/s00289‑022‑04661‑w
    [Google Scholar]
  91. BagJ. MukherjeeS. KaratiD. Recent advancement of nanostructured materials: A compatible therapy of tissue engineering and drug delivery system.Polym. Bull.2023•••124
    [Google Scholar]
  92. BosettiR. JonesS.L. Cost–effectiveness of nanomedicine: Estimating the real size of nano-costs.Nanomedicine201914111367137010.2217/nnm‑2019‑013031169449
    [Google Scholar]
  93. RichardsonJ.J. CarusoF. Nanomedicine toward 2040.Nano Lett.20202031481148210.1021/acs.nanolett.0c0062032118443
    [Google Scholar]
  94. SaleemS. IqubalM.K. GargS. AliJ. BabootaS. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis.Expert Opin. Drug Deliv.202017681783810.1080/17425247.2020.175866532315216
    [Google Scholar]
  95. AhmadN. RamschR. LlinàsM. SolansC. HashimR. TajuddinH.A. Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems.Colloids Surf. B Biointerfaces201411526727410.1016/j.colsurfb.2013.12.01324384142
    [Google Scholar]
  96. BaiL. McClementsD.J. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.J. Colloid Interface Sci.2016479717910.1016/j.jcis.2016.06.04727372634
    [Google Scholar]
  97. BehaloM.S. BloiseE. CarboneL. SoleR.D. LomonacoD. MazzettoS.E. MeleG. MergolaL. Cardanol-based green nanovesicles with antioxidant and cytotoxic activities.J. Exp. Nanosci.201611161274128410.1080/17458080.2016.1212407
    [Google Scholar]
  98. MakO.W. SemanN. HarunN.H. HussenR.S.D. RodziN.M. HeidelbergT. Nanovesicles based on mixtures of a biantennary glycolipid with ionic co-surfactants.J. Surfactants Deterg.201518697398010.1007/s11743‑015‑1746‑y
    [Google Scholar]
  99. Sedaghat DoostA. Van CampJ. DewettinckK. Van der MeerenP. Production of thymol nanoemulsions stabilized using Quillaja Saponin as a biosurfactant: Antioxidant activity enhancement.Food Chem.201929313414310.1016/j.foodchem.2019.04.09031151593
    [Google Scholar]
  100. MukherjeeS. MaityS. GhoshB. ChakrabortyT. MondalA. BishayeeA. Assessment of the antidiabetic potentiality of glyburide loaded glyceryl monostearate solid lipid nanoparticles.J. Drug Deliv. Sci. Technol.20205510145110.1016/j.jddst.2019.101451
    [Google Scholar]
  101. YinX. ZhangS. LeeJ.H. DongH. MourgkosG. TerwilligerG. KrausA. GeraldoL.H. PouletM. FischerS. ZhouT. MohammedF.S. ZhouJ. WangY. MalloyS. RohnerN. SharmaL. SalinasI. EichmannA. ThomasJ.L. SaltzmanW.M. HuttnerA. ZeissC. RingA. IwasakiA. SongE. Compartmentalized ocular lymphatic system mediates eye–brain immunity.Nature2024628800620421110.1038/s41586‑024‑07130‑838418880
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010303028240429073144
Loading
/content/journals/cpb/10.2174/0113892010303028240429073144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test