Skip to content
2000
image of Comparison Between Solid Catalysis and Electrochemical Catalysis in the Synthesis of Methyl Carbamate via Hofmann Rearrangement

Abstract

Introduction

Hofmann rearrangement reactions are important organic reactions used to obtain carbamates, which are formed via isocyanate as an intermediate compound. Since carbamates have applications in various fields, such as pharmaceuticals, agricultural chemistry, and herbicides, this research focuses on synthesizing carbamates using environmentally friendly methods like solid catalysts and electrical techniques due to their unique characteristics in enhancing selectivity and minimizing solvents. Additionally, a comparison between the two methods was made.

Materials and Methods

In this study, two methods were employed to obtain carbamate. The first method utilized heterogeneous catalysis with sodium halide-modified aluminum oxide to achieve a high basic surface area alongside sodium hypochlorite as a safe and inexpensive oxidant. The second method employs electrochemical catalysis using a carbon anode and a zinc cathode, with sodium halides serving as intermediates.

Results

Sodium chloride modified with aluminum oxide demonstrated better results than sodium bromide and iodide. A higher yield of carbamates was obtained in a shorter time and at moderate temperatures. In contrast, in the electrochemical method, sodium bromide demonstrated the best performance, achieving 75% conversion under ambient conditions.

Conclusion

The comparison between the two methods revealed that the electrochemical method significantly outperformed, as it managed to avoid side products and directed the reaction towards the target compound under mild conditions. Whereas the solid catalytic method (AlO/NaCl) obtained lower yields and produced side products in a shorter reaction time.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794383381250530060121
2025-06-05
2025-09-08
Loading full text...

Full text loading...

References

  1. Senanayake C.H. Fredenburgh L.E. Reamer R.A. Larsen R.D. Verhoeven T.R. Reider P.J. Nature of N-bromosuccinimide in basic media: the true oxidizing species in the Hofmann rearrangement. J. Am. Chem. Soc. 1994 116 17 7947 7948 10.1021/ja00096a082
    [Google Scholar]
  2. Ray S. Chaturvedi D. Application of organic carbamates in drug design. Part 1: anticancer agents-recent reports. Drugs Future 2004 29 4 343 357 10.1358/dof.2004.029.04.787236.
    [Google Scholar]
  3. Goto T. Ito Y. Yamada S. Matsumoto H. Oka H. Nagase H. The high throughput analysis of N-methyl carbamate pesticides in fruits and vegetables by liquid chromatography electrospray ionization tandem mass spectrometry using a short column. Anal. Chim. Acta 2006 555 2 225 232 10.1016/j.aca.2005.09.05517723676
    [Google Scholar]
  4. Faucheux M. Roignant J.Y. Netter S. Charollais J. Antoniewski C. Théodore L. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Mol. Cell. Biol. 2003 23 4 1181 1195 10.1128/MCB.23.4.1181‑1195.200312556479
    [Google Scholar]
  5. Ma J. Lu N. Qin W. Xu R. Wang Y. Chen X. Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides. Ecotoxicol. Environ. Saf. 2006 63 2 268 274 10.1016/j.ecoenv.2004.12.00216677910
    [Google Scholar]
  6. Ghosh A.K. Brindisi M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015 58 7 2895 2940 10.1021/jm501371s 25565044
    [Google Scholar]
  7. Butler D.C.D. Alper H. Synthesis of isocyanates from carbamate esters employing boron trichloride. Chem. Commun. (Camb.) 1998 23 2575 2576 10.1039/a807287f
    [Google Scholar]
  8. Chaturvedi D. Perspectives on the synthesis of organic carbamates. Tetrahedron 2012 68 1 15 45 10.1016/j.tet.2011.10.001
    [Google Scholar]
  9. Feroci M. Inesi A. Rossi L. The reaction of amines with an electrogenerated base. Tetrahedron Lett. 2000 41 6 963 10.1016/S0040‑4039
    [Google Scholar]
  10. Fu X. Zhang Z. Li C. Wang L. Ji H. Yang Y. Zou T. Gao G. N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate. Catal. Commun. 2009 10 5 665 668 10.1016/j.catcom.2008.11.012
    [Google Scholar]
  11. Zagulyaeva A.A. Banek C.T. Yusubov M.S. Zhdankin V.V. Hofmann rearrangement of carboxamides mediated by hypervalent iodine species generated in situ from iodobenzene and oxone: Reaction scope and limitations. Org. Lett. 2010 12 20 4644 4647 10.1021/ol101993q20843092
    [Google Scholar]
  12. Borah A.J. Phukan P. Efficient synthesis of methyl carbamate via Hofmann rearrangement in the presence of TsNBr2. Tetrahedron Lett. 2012 53 24 3035 3037 10.1016/j.tetlet.2012.04.011
    [Google Scholar]
  13. Bastos G.A. de Mattos M.C.S. A convenient Hofmann reaction of carboxamides and cyclic imides mediated by trihaloisocyanuric acids. Tetrahedron Lett. 2021 83 153422 10.1016/j.tetlet.2021.153422
    [Google Scholar]
  14. Ivanović M. Jevtić I. Došen-Mićović L. Ivanović E. Hofmann rearrangement of carboxamides mediated by N-bromoacetamide. Synthesis 2016 48 10 1550 1560 10.1055/s‑0035‑1561405
    [Google Scholar]
  15. Nishikawa T. Urabe D. Tomita M. Tsujimoto T. Iwabuchi T. Isobe M. One-pot transformation of trichloroacetamide into readily deprotectable carbamates. Org. Lett. 2006 8 15 3263 3265 10.1021/ol061123c 16836381
    [Google Scholar]
  16. Miranda L.S.M. da Silva T.R. Crespo L.T. Esteves P.M. de Matos L.F. Diederichs C.C. de Souza R.O.M.A. TBCA mediated microwave-assisted Hofmann rearrangement. Tetrahedron Lett. 2011 52 14 1639 1640 10.1016/j.tetlet.2011.01.126
    [Google Scholar]
  17. Li L. Xue M. Yan X. Liu W. Xu K. Zhang S. Electrochemical Hofmann rearrangement mediated by NaBr: practical access to bioactive carbamates. Org. Biomol. Chem. 2018 16 25 4615 4618 10.1039/C8OB01059E29900466
    [Google Scholar]
  18. Kabalka G.W. Pagni R.M. Organic reactions on alumina. Tetrahedron 1997 53 24 7999 8065 10.1016/S0040‑4020(97)00264‑0.
    [Google Scholar]
  19. Meenakshi; Maheshwari, R.C. Fluoride in drinking water and its removal. J. Hazard. Mater. 2006 137 1 456 463 10.1016/j.jhazmat.2006.02.02416600479
    [Google Scholar]
  20. Moustafa A.B. Abdel-Latif Z.H. Amer L.I. Sayyah S.M. Aqueous polymerization of methyl methacrylate catalyzed by corundum and characterization of the obtained polymers. J. Polym. Sci. A Polym. Chem. 1986 24 11 3049 3056 10.1002/pola.1986.080241130
    [Google Scholar]
  21. Navrátilová H. Kříž Z. Potáček M. Microwave‐assisted elimination reaction of trans ‐4‐(4‐Fluorophenyl)‐3‐chloromethyl‐1‐methylpiperidine on Alumina. Synth. Commun. 2004 34 11 2101 2115 10.1081/SCC‑120037925.
    [Google Scholar]
  22. Sharifi A. Mirzaei M. Naimi-Jamal M.R. Mild and solvent‐free alkynylation of ketones on the KF/alumina. Synth. Commun. 2005 35 8 1039 1044 10.1081/SCC‑200054195
    [Google Scholar]
  23. Wang X.S. Shi D.Q. Tu S.J. Yao C.S. A convenient synthesis of 5-Oxo-5, 6, 7, 8-tetrahydro-4 H-benzo-[b]-pyran derivatives catalyzed by KF-Alumina. Synth. Commun. 2003 33 1 119 126 10.1081/SCC‑120015567
    [Google Scholar]
  24. Wang R. DelloStritto M. Remsing R.C. Carnevale V. Klein M.L. Borguet E. Sodium halide adsorption and water structure at the α-alumina (0001)/water interface. J. Phys. Chem. C 2019 123 25 15618 15628 10.1021/acs.jpcc.9b03054
    [Google Scholar]
  25. Liu J. Zhang L. Xu L. Elastic, electronic structure, and optical properties of orthorhombic Na3AlF6: A first-principles study. Ionics 2018 24 5 1377 1383 10.1007/s11581‑017‑2285‑5
    [Google Scholar]
  26. Chhibber M. Potassium Fluoride on Alumina (KF/Al 2 O 3). Synlett 2004 2004 1 197 198 10.1055/s‑2003‑44991.
    [Google Scholar]
  27. Matsumura Y. Satoh Y. Maki T. Onomura O. The electrochemically induced Hofmann rearrangement and its comparison with the classic Hofmann rearrangement. Electrochim. Acta 2000 45 18 3011 3020 10.1016/S0013‑4686(00)00380‑7
    [Google Scholar]
  28. Kianmehr E. Baghersad M.H. Adv. Synth. Catal. 2011 353 2598
    [Google Scholar]
/content/journals/cos/10.2174/0115701794383381250530060121
Loading
/content/journals/cos/10.2174/0115701794383381250530060121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test