Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

Thiazoles and bis-thiazoles are recognized for their anticancer and antitubercular properties, making them crucial in medicinal chemistry. This study focuses on synthesizing and evaluating novel bis-thiazole derivatives.

Materials and Methods

Bis-thiosemicarbazone derivative 3 was used as a precursor to synthesize bis-thiazole (6a-f, 12a-h) and bis-thiazolone (9a-d) derivatives through reactions with appropriate reagents. Anticancer activity was screened using the MTT assay on HCT-116 cells, while antitubercular activity was tested using the microplate Alamar blue assay (MABA). The derivatives were synthesized under optimized reflux conditions and characterized using spectroscopic techniques. Biological assays evaluated their therapeutic potential.

Results

The compounds displayed variable cytotoxicity and antitubercular efficacy. Molecular docking studies on dihydrofolate reductase (DHFR) revealed significant interactions, suggesting potential mechanisms of action.

Discussion

The results highlight the influence of structural features on biological activity, with active compounds showing favorable interactions and docking scores.

Conclusion

Bis-thiazole and bis-thiazolone derivatives exhibit promising anticancer and antitubercular potential, warranting further investigation for therapeutic applications.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794379474250528170604
2025-06-12
2026-01-31
Loading full text...

Full text loading...

References

  1. MentaE. PalumboM. Novel antineoplastic agents.Expert Opin. Ther. Pat.19977121401142610.1517/13543776.7.12.1401
    [Google Scholar]
  2. NussbaumerS. BonnabryP. VeutheyJ.L. Fleury-SouverainS. Analysis of anticancer drugs: A review.Talanta20118552265228910.1016/j.talanta.2011.08.03421962644
    [Google Scholar]
  3. RebucciM. MichielsC. Molecular aspects of cancer cell resistance to chemotherapy.Biochem. Pharmacol.20138591219122610.1016/j.bcp.2013.02.01723435357
    [Google Scholar]
  4. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: An evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc359924060863
    [Google Scholar]
  5. RosaR. MonteleoneF. ZambranoN. BiancoR. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies.Curr. Med. Chem.201421141595160610.2174/0929867311320999022623992330
    [Google Scholar]
  6. da SilvaE.B. Oliveira e SilvaD.A. OliveiraA.R. da Silva MendesC.H. dos SantosT.A.R. da SilvaA.C. de CastroM.C.A. FerreiraR.S. MoreiraD.R.M. CardosoM.V.O. de SimoneC.A. PereiraV.R.A. LeiteA.C.L. LeiteA.C. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death.Eur. J. Med. Chem.2017130395010.1016/j.ejmech.2017.02.02628242550
    [Google Scholar]
  7. EspيndolaJ.W.P. CardosoM.V.O. FilhoG.B.O. Oliveira e SilvaD.A. MoreiraD.R.M. BastosT.M. SimoneC.A. SoaresM.B.P. VillelaF.S. FerreiraR.S. CastroM.C.A.B. PereiraV.R.A. MurtaS.M.F. Sales JuniorP.A. RomanhaA.J. LeiteA.C.L. Synthesis and structure–activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain.Eur. J. Med. Chem.201510181883510.1016/j.ejmech.2015.06.04826231082
    [Google Scholar]
  8. Magalhaes MoreiraD.R. de OliveiraA.D.T. Teixeira de Moraes GomesP.A. de SimoneC.A. VillelaF.S. FerreiraR.S. da SilvaA.C. dos SantosT.A.R. Brelaz de CastroM.C.A. PereiraV.R.A. LeiteA.C.L. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death.Eur. J. Med. Chem.20147546747810.1016/j.ejmech.2014.02.00124561675
    [Google Scholar]
  9. de MelosJ.L.R. Torres-SantosE.C. FaiõesV.S. de Nigris Del CistiaC. Sant’AnnaC.M.R. Rodrigues-SantosC.E. EchevarriaA. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis.Eur. J. Med. Chem.201510340941710.1016/j.ejmech.2015.09.00926375353
    [Google Scholar]
  10. da SilvaJ.B.P. NavarroD.M.A.F. da SilvaA.G. SantosG.K.N. DutraK.A. MoreiraD.R. RamosM.N. EspíndolaJ.W.P. de OliveiraA.D.T. BrondaniD.J. LeiteA.C.L. HernandesM.Z. PereiraV.R.A. da RochaL.F. de CastroM.C.A.B. de OliveiraB.C. LanQ. MerzK.M. Thiosemicarbazones as Aedes aegypti larvicidal.Eur. J. Med. Chem.201510016217510.1016/j.ejmech.2015.04.06126087027
    [Google Scholar]
  11. NetalkarP.P. NetalkarS.P. RevankarV.K. Transition metal complexes of thiosemicarbazone: Synthesis, structures and in vitro antimicrobial studies.Polyhedron201510021522210.1016/j.poly.2015.07.075
    [Google Scholar]
  12. ZhangX.M. GuoH. LiZ.S. SongF.H. WangW.M. DaiH.Q. ZhangL.X. WangJ.G. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species.Eur. J. Med. Chem.201510141943010.1016/j.ejmech.2015.06.04726185006
    [Google Scholar]
  13. ZaltariovM.F. HammerstadM. ArabshahiH.J. JovanovićK. RichterK.W. CazacuM. ShovaS. BalanM. AndersenN.H. RadulovićS. ReynissonJ. AnderssonK.K. ArionV.B. New iminodiacetate-thiosemicarbazone hybrids and their copper (II) complexes as potential ribonucleotide reductase R2 inhibitors with high antiproliferative activity.Inorg. Chem.20175663532354910.1021/acs.inorgchem.6b0317828252952
    [Google Scholar]
  14. RogolinoD. CavazzoniA. GattiA. TegoniM. PelosiG. VerdolinoV. FumarolaC. CretellaD. PetroniniP.G. CarcelliM. Anti-proliferative effects of copper(II) complexes with hydroxyquinoline-thiosemicarbazone ligands.Eur. J. Med. Chem.201712814015310.1016/j.ejmech.2017.01.03128182987
    [Google Scholar]
  15. HuW. ZhouW. XiaC. WenX. Synthesis and anticancer activity of thiosemicarbazones.Bioorg. Med. Chem. Lett.20061682213221810.1016/j.bmcl.2006.01.04816458509
    [Google Scholar]
  16. LiuM. XiaoL. DongY. LiuY. CaiL. XiongW. YaoY. YinM. LiuQ. Characterization of the anticancer effects of S115, a novel heteroaromatic thiosemicarbazone compound, in vitro and in vivo.Acta Pharmacol. Sin.201435101302131010.1038/aps.2014.7125220642
    [Google Scholar]
  17. CardosoM.V.O. SiqueiraL.R.P. SilvaE.B. CostaL.B. HernandesM.Z. RabelloM.M. FerreiraR.S. da CruzL.F. Magalhães MoreiraD.R. PereiraV.R.A. de CastroM.C.A.B. BernhardtP.V. LeiteA.C.L. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation.Eur. J. Med. Chem.201486485910.1016/j.ejmech.2014.08.01225147146
    [Google Scholar]
  18. AbdellatifK.R.A. El-WarethG.A.A. El-BadryO.M. RagabH.M. El-EnanyM.M. Synthesis and antimicrobial evaluation of certain purine, benzothiazole, and thiazole systems substituted with dialkylaminoalkyl-o-cresols.J. Basic Appl. Sci.201545259
    [Google Scholar]
  19. GrozavA. GăinăL. PileczkiV. CrisanO. Silaghi-DumitrescuL. TherrienB. ZahariaV. Berindan-NeagoeI. The synthesis and antiproliferative activities of new arylidene-hydrazinyl-thiazole derivatives.Int. J. Mol. Sci.20141512220592207210.3390/ijms15122205925470024
    [Google Scholar]
  20. dos Santos, T.A.R.; da Silva, A.C.; Silva, E.B.; Gomes, P.A.T.M.; Espíndola, J.W.P.; Cardoso, M.V.O.; Moreira, D.R.M.; Leite, A.C.L.; Pereira, V.R.A. Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells.Biomed. Pharmacother.20168255556010.1016/j.biopha.2016.05.03827470396
    [Google Scholar]
  21. AliabadiA. ShamsaF. OstadS.N. EmamiS. ShafieeA. DavoodiJ. ForoumadiA. Synthesis and biological evaluation of 2-phenylthiazole-4-carboxamide derivatives as anticancer agents.Eur. J. Med. Chem.201045115384538910.1016/j.ejmech.2010.08.06320846760
    [Google Scholar]
  22. BanimustafaM. KheirollahiA. SafaviM. Kabudanian ArdestaniS. AryapourH. ForoumadiA. EmamiS. Synthesis and biological evaluation of 3-(trimethoxyphenyl)-2(3H)-thiazole thiones as combretastatin analogs.Eur. J. Med. Chem.20137069270210.1016/j.ejmech.2013.10.04624219991
    [Google Scholar]
  23. AyatiA. EmamiS. AsadipourA. ShafieeA. ForoumadiA. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery.Eur. J. Med. Chem.20159769971810.1016/j.ejmech.2015.04.01525934508
    [Google Scholar]
  24. DasD. SikdarP. BairagiM. Recent developments of 2-aminothiazoles in medicinal chemistry.Eur. J. Med. Chem.2016109899810.1016/j.ejmech.2015.12.02226771245
    [Google Scholar]
  25. LimbanC. ChifiriucM.C.B. MissirA.V. ChiriţăI.C. BleotuC. Antimicrobial activity of some new thioureides derived from 2-(4-chlorophenoxymethyl)benzoic acid.Molecules200813356758010.3390/molecules1303056718463566
    [Google Scholar]
  26. HusseinA.M. GomhaS.M. El-GhanyN.A.A. ZakiM.E.A. FaragB. Al-HussainS.A. SayedA.R. ZakiY.H. MohamedN.A. Green biocatalyst for ultrasound-assisted thiazole derivatives: Synthesis, antibacterial evaluation, and docking analysis.ACS Omega2024912136661367910.1021/acsomega.3c0778538559991
    [Google Scholar]
  27. LimbanC. MarutescuL. ChifiriucM.C. Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives.Molecules20111697593760710.3390/molecules1609759321900862
    [Google Scholar]
  28. JohnM. BealeJ. BlockJ.H. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry.12th edWolters Kluwer Health2012
    [Google Scholar]
  29. Al-OmairM.A. SayedA.R. YoussefM.M. Synthesis and biological evaluation of bisthiazoles and polythiazoles.Molecules2018235113310.3390/molecules2305113329747479
    [Google Scholar]
  30. KouatlyO. GeronikakiA. KamoutsisC. Hadjipavlou-LitinaD. EleftheriouP. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents.Eur. J. Med. Chem.20094431198120410.1016/j.ejmech.2008.05.02918603333
    [Google Scholar]
  31. AbolibdaT.Z. El-SayedA.A.A.A. FaragB. ZakiM.E.A. AlrehailyA. ElbadawyH.M. Al-ShahriA.A. AlsenaniS.R. GomhaS.M. Novel thiazolyl-pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation, and molecular docking studies.Results Chem.20251310200810.1016/j.rechem.2024.102008
    [Google Scholar]
  32. JacksonR.C. HartL.I. HarrapK.R. Intrinsic resistance to methotrexate of cultured mammalian cells in relation to the inhibition kinetics of their dihydrololate reductases.Cancer Res.1976366199119975189
    [Google Scholar]
  33. GoldieJ.H. KrystalG. HartleyD. GudauskasG. DedharS. A methotrexate insensitive variant of folate reductase present in two lines of methotrexate-resistant L5178Y cells.Eur. J. Cancer198016121539154610.1016/0014‑2964(80)90026‑27227429
    [Google Scholar]
  34. KobayashiH. TakemuraY. OhnumaT. Variable expression of RFC1 in human leukemia cell lines resistant to antifolates.Cancer Lett.1998124213514210.1016/S0304‑3835(97)00464‑39500202
    [Google Scholar]
  35. AssarafY.G. Molecular basis of antifolate resistance.Cancer Metastasis Rev.200726115318110.1007/s10555‑007‑9049‑z17333344
    [Google Scholar]
  36. AbaliE.E. SkacelN.E. CelikkayaH. HsiehY.C. Regulation of human dihydrofolate reductase activity and expression.Vitam. Horm.20087926729210.1016/S0083‑6729(08)00409‑318804698
    [Google Scholar]
  37. DolnickB.J. BerensonR.J. BertinoJ.R. KaufmanR.J. NunbergJ.H. SchimkeR.T. Correlation of dihydrofolate reductase elevation with gene amplification in a homogeneously staining chromosomal region in L5178Y cells.J. Cell Biol.197983239440210.1083/jcb.83.2.394500787
    [Google Scholar]
  38. SongB. WangY. KudoK. GavinE.J. XiY. JuJ. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit.Clin. Cancer Res.200814248080808610.1158/1078‑0432.CCR‑08‑142219088023
    [Google Scholar]
  39. JangG.R. HarrisR.Z. LauD.T. Pharmacokinetics and its role in small molecule drug discovery research.Med. Res. Rev.200121538239610.1002/med.101511579439
    [Google Scholar]
  40. ZakiY.H. GomhaS.M. FaragB. ZakiM.E.A. HusseinA.M. Synthesis, characterization, and in silico studies of substituted 2,3-dihydro-1,3,4-thiadiazole derivatives.Results Chem.20251310197710.1016/j.rechem.2024.101977
    [Google Scholar]
  41. ThompsonT. Early ADME in support of drug discovery: The role of metabolic stability studies.Curr. Drug Metab.20001321524110.2174/138920000333901811465046
    [Google Scholar]
  42. MerlotC. Computational toxicology: A tool for early safety evaluation.Drug Discov. Today2010151-2162210.1016/j.drudis.2009.09.01019835978
    [Google Scholar]
  43. EddershawP.J. BeresfordA.P. BaylissM.K. ADME/PK as part of a rational approach to drug discovery.Drug Discov. Today20005940941410.1016/S1359‑6446(00)01540‑310931658
    [Google Scholar]
  44. GomhaS.M. El-SayedA.A.A.A. ZakiM.E.A. AlrehailyA. ElbadawyH.M. Al-ShahriA.A. AlsenaniS.R. AbouziedA.S. Synthesis, in vitro and in silico studies of novel Bis‐triazolopyridopyrimidines from curcumin analogues as potential aromatase agents.Chem. Biodivers.2024218e20240070110.1002/cbdv.20240070138829745
    [Google Scholar]
  45. GomhaS.M. RiyadhS.M. El-SayedA.A.A.A. AbdallahA.M. ZakiM.E.A. AlrehailyA. ElbadawyH.M. Al-ShahriA.A. AlsenaniS.R. HusseinA.M. Grinding-assisted synthesis of novel arylhydrazono curcumin analogues and bis-pyrazolines as cyclin-dependent kinases (CDKs) inhibitors.Inorg. Chem. Commun.202416911312810.1016/j.inoche.2024.113128
    [Google Scholar]
  46. GomhaS.M. El-SayedA.A.A.A. AlrehailyA. ElbadawyH.M. FaragB. Al-ShahriA.A. AlsenaniS.R. AbdelgawadF.E. ZakiM.E.A. Synthesis, molecular docking, in silico study, and evaluation of bis-thiazole-based curcumin derivatives as potential antimicrobial agents.Results Chem.2024710150410.1016/j.rechem.2024.101504
    [Google Scholar]
  47. OufS.A. GomhaS.M. FaragB. ZakiM.E.A. EwiesM.M. SharawyI.A.A. KhalilF.O. MahmoudH.K. Synthesis of novel Bis-1,2,4-Triazolo[3,4-b][1,3,4]Thiadiazines from natural camphoric acid as potential anti-candidal agents.Results Chem.2024710140610.1016/j.rechem.2024.101406
    [Google Scholar]
  48. KassabR.M. Al-HussainS.A. AbdelmonsefA.H. ZakiM.E. GomhaS.M. MuhammadZ.A. Novel Bis-Thiazole derivatives as HSV-1 inhibitors through targeting surface glycoprotein D: An efficient synthesis, characterization, biological evaluation, and molecular docking study.Future Med. Chem.202416274110.4155/fmc‑2023‑021038063202
    [Google Scholar]
  49. MohamedM.A. AbouziedA.S. ReyadA. Sayed Abdelsalam ZakiM.E. AbdelgawadF.E. Al-HumaidiJ.Y. GomhaS.M. Novel terpyridines as Staphylococcus aureus gyrase inhibitors: Efficient synthesis and antibacterial assessment via solvent-drop grinding.Future Med. Chem.202416320522010.4155/fmc‑2023‑027838230640
    [Google Scholar]
  50. KassabR.M. GomhaS.M. MuhammadZ.A. El-khoulyA.S. Synthesis, biological profile, and molecular docking of some new bis-fused imidazole templates and investigation of their cytotoxic potential as anti-tubercular and/or anticancer prototypes.Med. Chem.202117887588610.2174/157340641766620120812145833292124
    [Google Scholar]
  51. MahmoudH.K. KassabR.M. GomhaS.M. Synthesis and characterization of some novel bis‐thiazoles.J. Heterocycl. Chem.201956113157316310.1002/jhet.3717
    [Google Scholar]
  52. AbdelrazekF.M. GomhaS.M. MetzP. AbdallaM.M. Synthesis of some novel 1,4-phenylene-bis-thiazolyl derivatives and their anti-hypertensive α-blocking activity screening.J. Heterocycl. Chem.201754161862310.1002/jhet.2633
    [Google Scholar]
  53. GomhaS. KhederN. AbdelhamidA. MabkhotY. One pot single step synthesis and biological evaluation of some novel bis (1,3,4-thiadiazole) derivatives as potential cytotoxic agents.Molecules20162111153210.3390/molecules2111153227854300
    [Google Scholar]
  54. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  55. GomhaS.M. RiyadhS.M. MahmmoudE.A. ElaasserM.M. Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst.Chem. Heterocycl. Compd.20155111-121030103810.1007/s10593‑016‑1815‑9
    [Google Scholar]
  56. RaimondiM.V. RandazzoO. La FrancaM. BaroneG. VignoniE. RossiD. CollinaS. 2-DHFR inhibitors: Reading the past for discovering novel anticancer agents.Molecules2019246114010.3390/molecules2406114030909399
    [Google Scholar]
  57. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.01911259830
    [Google Scholar]
  58. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  59. DainaA. MichielinO. ZoeteV. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach.J. Chem. Inf. Model.201454123284330110.1021/ci500467k25382374
    [Google Scholar]
  60. KolaI. LandisJ. Can the pharmaceutical industry reduce attrition rates?Nat. Rev. Drug Discov.20043871171610.1038/nrd147015286737
    [Google Scholar]
  61. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  62. KaramiT.K. HailuS. FengS. GrahamR. GukasyanH.J. Eyes on Lipinski’s rule of five: A New “rule of thumb” for physicochemical design space of ophthalmic drugs.J. Ocul. Pharmacol. Ther.2022381435510.1089/jop.2021.006934905402
    [Google Scholar]
  63. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  64. ObachR.S. LombardoF. WatersN.J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.Drug Metab. Dispos.20083671385140510.1124/dmd.108.02047918426954
    [Google Scholar]
  65. AhmedJ. WorthC.L. ThabenP. MatzigC. BlasseC. DunkelM. PreissnerR. FragmentStore--a comprehensive database of fragments linking metabolites, toxic molecules and drugs.Nucleic Acids Res.201139DatabaseD1049D105410.1093/nar/gkq96920965964
    [Google Scholar]
  66. CummingJ.G. DavisA.M. MuresanS. HaeberleinM. ChenH. Chemical predictive modelling to improve compound quality.Nat. Rev. Drug Discov.2013121294896210.1038/nrd412824287782
    [Google Scholar]
  67. HosnyM. SalemM.E. DarweeshA.F. ElwahyA.H.M. Synthesis of novel bis(thiazolylchromen-2-one) derivatives linked to alkyl spacer via phenoxy group.J. Heterocycl. Chem.201855102342234810.1002/jhet.3296
    [Google Scholar]
  68. ShawaliA.S. GomhaS.M. Regioselectivity in 1,5-electrocyclization of N-[as-triazin-3-yl]nitrilimines. Synthesis of s-triazolo[4,3-b]-as-triazin-7(8H)-ones.Tetrahedron200258428559856410.1016/S0040‑4020(02)00946‑8
    [Google Scholar]
  69. GomhaS.M. Abdel-AzizH.A. Enaminones as building blocks in heterocyclic preparations: Synthesis of novel Pyrazoles, Pyrazolo[3,4-d]pyridazines, Pyrazolo[1,5-a]pyrimidines, and Pyrido[2,3-d]pyrimidines linked to Imidazo[2,1-b]thiazole system.Heterocycles2012852291230310.3987/COM‑12‑12531
    [Google Scholar]
  70. BadreyM.G. GomhaS.M. 3-Amino-8-Hydroxy-4-Imino-6-Methyl-5-Phenyl-4,5-Dihydro-3H-Chromeno[2,3-d]pyrimidine: An efficient precursor for novel synthesis of Triazines and Triazepines as potential anti-tumor agents.Molecules201217115381155310.3390/molecules17101153823018926
    [Google Scholar]
  71. RaimondiM.V. RandazzoO. La FrancaM. BaroneG. VignoniE. RossiD. CollinaS. DHFR inhibitors: Reading the past for discovering novel anticancer agents.Molecules2019246114010.3390/molecules2406114030909399
    [Google Scholar]
  72. DulucqS. St-OngeG. GagnéV. AnsariM. SinnettD. LabudaD. MoghrabiA. KrajinovicM. DNA variants in the dihydrofolate reductase gene and outcome in childhood ALL.Blood200811173692370010.1182/blood‑2007‑09‑11059318096764
    [Google Scholar]
  73. SahaS. JungasT. OhayonD. AudouardC. YeT. FawalM.A. DavyA. Dihydrofolate reductase activity controls neurogenic transitions in the developing neocortex.Development202315020dev20169610.1242/dev.20169637665322
    [Google Scholar]
  74. DunbarJ. YennawarH.P. BanerjeeS. LuoJ. FarberG.K. The effect of denaturants on protein structure.Protein Sci.1997681727173310.1002/pro.55600608139260285
    [Google Scholar]
  75. ChawlaP. TeliG. GillR.K. NarangR.K. An insight into synthetic strategies and recent developments of dihydrofolate reductase inhibitors.ChemistrySelect2021643121011214510.1002/slct.202102555
    [Google Scholar]
  76. SawantS.D. SahuM. NerkarA.G. Quinazolinone platinum metal complexes: In silico design, synthesis and evaluation of anticancer activity.Asian J. Chem.201830102164217010.14233/ajchem.2018.21330
    [Google Scholar]
  77. MuhammadZ. EdreesM. FatyR. GomhaS. AlteraryS. MabkhotY. Synthesis, antitumor evaluation and molecular docking of new morpholine-based heterocycles.Molecules2017227121110.3390/molecules2207121128726760
    [Google Scholar]
  78. TangY-Q. LimJ.Y. GewL.T. Biocomputational-mediated screening and molecular docking platforms for discovery of coumarin-derived antimelanogenesis agents.Zhonghua Pifuke Yixue Zazhi202341181710.4103/ds.DS‑D‑22‑00087
    [Google Scholar]
/content/journals/cos/10.2174/0115701794379474250528170604
Loading
/content/journals/cos/10.2174/0115701794379474250528170604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test