Skip to content
2000
image of Design, Synthesis, and Biological Assessment of Bis-thiazole Derivatives as Promising Anticancer Agents with Molecular Docking Insights

Abstract

Introduction

Thiazoles and bis-thiazoles are recognized for their anticancer and antitubercular properties, making them crucial in medicinal chemistry. This study focuses on synthesizing and evaluating novel bis-thiazole derivatives.

Materials and Methods

Bis-thiosemicarbazone derivative 3 was used as a precursor to synthesize bis-thiazole (6a-f, 12a-h) and bis-thiazolone (9a-d) derivatives through reactions with appropriate reagents. Anticancer activity was screened using the MTT assay on HCT-116 cells, while antitubercular activity was tested using the microplate Alamar blue assay (MABA). The derivatives were synthesized under optimized reflux conditions and characterized using spectroscopic techniques. Biological assays evaluated their therapeutic potential.

Results

The compounds displayed variable cytotoxicity and antitubercular efficacy. Molecular docking studies on dihydrofolate reductase (DHFR) revealed significant interactions, suggesting potential mechanisms of action.

Discussion

The results highlight the influence of structural features on biological activity, with active compounds showing favorable interactions and docking scores.

Conclusion

Bis-thiazole and bis-thiazolone derivatives exhibit promising anticancer and antitubercular potential, warranting further investigation for therapeutic applications.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794379474250528170604
2025-06-12
2025-09-04
Loading full text...

Full text loading...

References

  1. Menta E. Palumbo M. Novel antineoplastic agents. Expert Opin. Ther. Pat. 1997 7 12 1401 1426 10.1517/13543776.7.12.1401
    [Google Scholar]
  2. Nussbaumer S. Bonnabry P. Veuthey J.L. Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta 2011 85 5 2265 2289 10.1016/j.talanta.2011.08.034 21962644
    [Google Scholar]
  3. Rebucci M. Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol. 2013 85 9 1219 1226 10.1016/j.bcp.2013.02.017 23435357
    [Google Scholar]
  4. Holohan C. Van Schaeybroeck S. Longley D.B. Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013 13 10 714 726 10.1038/nrc3599 24060863
    [Google Scholar]
  5. Rosa R. Monteleone F. Zambrano N. Bianco R. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr. Med. Chem. 2014 21 14 1595 1606 10.2174/09298673113209990226 23992330
    [Google Scholar]
  6. da Silva E.B. Oliveira e Silva D.A. Oliveira A.R. da Silva Mendes C.H. dos Santos T.A.R. da Silva A.C. de Castro M.C.A. Ferreira R.S. Moreira D.R.M. Cardoso M.V.O. de Simone C.A. Pereira V.R.A. Leite A.C.L. Leite A.C. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death. Eur. J. Med. Chem. 2017 130 39 50 10.1016/j.ejmech.2017.02.026 28242550
    [Google Scholar]
  7. Espيndola J.W.P.; Cardoso, M.V.O.; Filho, G.B.O.; Oliveira e Silva, D.A.; Moreira, D.R.M.; Bastos, T.M.; Simone, C.A.; Soares, M.B.P.; Villela, F.S.; Ferreira, R.S.; Castro, M.C.A.B.; Pereira, V.R.A.; Murta, S.M.F.; Sales Junior, P.A.; Romanha, A.J.; Leite, A.C.L.; Leite, A.C.L. Synthesis and structure–activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur. J. Med. Chem. 2015 101 818 835 10.1016/j.ejmech.2015.06.048 26231082
    [Google Scholar]
  8. Magalhaes Moreira D.R. de Oliveira A.D.T. Teixeira de Moraes Gomes P.A. de Simone C.A. Villela F.S. Ferreira R.S. da Silva A.C. dos Santos T.A.R. Brelaz de Castro M.C.A. Pereira V.R.A. Leite A.C.L. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur. J. Med. Chem. 2014 75 467 478 10.1016/j.ejmech.2014.02.001 24561675
    [Google Scholar]
  9. de Melos J.L.R. Torres-Santos E.C. FaiُOes, V.S.; de Nigris Del Cistia, C.; Sant’Anna, C.M.R.; Rodrigues-Santos, C.E.; Echevarria, A. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. Eur. J. Med. Chem. 2015 103 409 417 10.1016/j.ejmech.2015.09.009 26375353
    [Google Scholar]
  10. da Silva J.B.P. Navarro D.M.A.F. da Silva A.G. Santos G.K.N. Dutra K.A. Moreira D.R. Ramos M.N. Espيndola, J.W.P.; de Oliveira, A.D.T.; Brondani, D.J.; Leite, A.C.L.; Hernandes, M.Z.; Pereira, V.R.A.; da Rocha, L.F.; de Castro, M.C.A.B.; de Oliveira, B.C.; Lan, Q.; Merz, K.M. Thiosemicarbazones as Aedes aegypti larvicidal. Eur. J. Med. Chem. 2015 100 162 175 10.1016/j.ejmech.2015.04.061 26087027
    [Google Scholar]
  11. Netalkar P.P. Netalkar S.P. Revankar V.K. Transition metal complexes of thiosemicarbazone: Synthesis, structures and in vitro antimicrobial studies. Polyhedron 2015 100 215 222 10.1016/j.poly.2015.07.075
    [Google Scholar]
  12. Zhang X.M. Guo H. Li Z.S. Song F.H. Wang W.M. Dai H.Q. Zhang L.X. Wang J.G. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species. Eur. J. Med. Chem. 2015 101 419 430 10.1016/j.ejmech.2015.06.047 26185006
    [Google Scholar]
  13. Zaltariov M.F. Hammerstad M. Arabshahi H.J. Jovanović K. Richter K.W. Cazacu M. Shova S. Balan M. Andersen N.H. Radulović S. Reynisson J. Andersson K.K. Arion V.B. New iminodiacetate-thiosemicarbazone hybrids and their copper (II) complexes as potential ribonucleotide reductase R2 inhibitors with high antiproliferative activity. Inorg. Chem. 2017 56 6 3532 3549 10.1021/acs.inorgchem.6b03178 28252952
    [Google Scholar]
  14. Rogolino D. Cavazzoni A. Gatti A. Tegoni M. Pelosi G. Verdolino V. Fumarola C. Cretella D. Petronini P.G. Carcelli M. Anti-proliferative effects of copper(II) complexes with hydroxyquinoline-thiosemicarbazone ligands. Eur. J. Med. Chem. 2017 128 140 153 10.1016/j.ejmech.2017.01.031 28182987
    [Google Scholar]
  15. Hu W. Zhou W. Xia C. Wen X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett. 2006 16 8 2213 2218 10.1016/j.bmcl.2006.01.048 16458509
    [Google Scholar]
  16. Liu M. Xiao L. Dong Y. Liu Y. Cai L. Xiong W. Yao Y. Yin M. Liu Q. Characterization of the anticancer effects of S115, a novel heteroaromatic thiosemicarbazone compound, in vitro and in vivo. Acta Pharmacol. Sin. 2014 35 10 1302 1310 10.1038/aps.2014.71 25220642
    [Google Scholar]
  17. Cardoso M.V.O. Siqueira L.R.P. Silva E.B. Costa L.B. Hernandes M.Z. Rabello M.M. Ferreira R.S. da Cruz L.F. Magalhمes Moreira, D.R.; Pereira, V.R.A.; de Castro, M.C.A.B.; Bernhardt, P.V.; Leite, A.C.L. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem. 2014 86 48 59 10.1016/j.ejmech.2014.08.012 25147146
    [Google Scholar]
  18. Abdellatif K.R.A. El-Wareth G.A.A. El-Badry O.M. Ragab H.M. El-Enany M.M. Synthesis and antimicrobial evaluation of certain purine, benzothiazole, and thiazole systems substituted with dialkylaminoalkyl-o-cresols. J. Basic Appl. Sci. 2015 4 52 59
    [Google Scholar]
  19. Grozav A. Găină L. Pileczki V. Crisan O. Silaghi-Dumitrescu L. Therrien B. Zaharia V. Berindan-Neagoe I. The synthesis and antiproliferative activities of new arylidene-hydrazinyl-thiazole derivatives. Int. J. Mol. Sci. 2014 15 12 22059 22072 10.3390/ijms151222059 25470024
    [Google Scholar]
  20. dos Santos T.A.R. da Silva A.C. Silva E.B. Gomes P.A.T.M. Espيndola, J.W.P.; Cardoso, M.V.O.; Moreira, D.R.M.; Leite, A.C.L.; Pereira, V.R.A. Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells. Biomed. Pharmacother. 2016 82 555 560 10.1016/j.biopha.2016.05.038 27470396
    [Google Scholar]
  21. Aliabadi A. Shamsa F. Ostad S.N. Emami S. Shafiee A. Davoodi J. Foroumadi A. Synthesis and biological evaluation of 2-phenylthiazole-4-carboxamide derivatives as anticancer agents. Eur. J. Med. Chem. 2010 45 11 5384 5389 10.1016/j.ejmech.2010.08.063 20846760
    [Google Scholar]
  22. Banimustafa M. Kheirollahi A. Safavi M. Kabudanian Ardestani S. Aryapour H. Foroumadi A. Emami S. Synthesis and biological evaluation of 3-(trimethoxyphenyl)-2(3H)-thiazole thiones as combretastatin analogs. Eur. J. Med. Chem. 2013 70 692 702 10.1016/j.ejmech.2013.10.046 24219991
    [Google Scholar]
  23. Ayati A. Emami S. Asadipour A. Shafiee A. Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem. 2015 97 699 718 10.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  24. Das D. Sikdar P. Bairagi M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem. 2016 109 89 98 10.1016/j.ejmech.2015.12.022 26771245
    [Google Scholar]
  25. Limban C. Chifiriuc M.C.B. Missir A.V. Chiriţă I.C. Bleotu C. Antimicrobial activity of some new thioureides derived from 2-(4-chlorophenoxymethyl)benzoic acid. Molecules 2008 13 3 567 580 10.3390/molecules13030567 18463566
    [Google Scholar]
  26. Hussein A.M. Gomha S.M. El-Ghany N.A.A. Zaki M.E.A. Farag B. Al-Hussain S.A. Sayed A.R. Zaki Y.H. Mohamed N.A. Green biocatalyst for ultrasound-assisted thiazole derivatives: Synthesis, antibacterial evaluation, and docking analysis. ACS Omega 2024 9 12 13666 13679 10.1021/acsomega.3c07785 38559991
    [Google Scholar]
  27. Limban C. Marutescu L. Chifiriuc M.C. Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives. Molecules 2011 16 9 7593 7607 10.3390/molecules16097593 21900862
    [Google Scholar]
  28. John M. Beale J. Block J.H. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry. 12th ed Wolters Kluwer Health 2012
    [Google Scholar]
  29. Al-Omair M.A. Sayed A.R. Youssef M.M. Synthesis and biological evaluation of bisthiazoles and polythiazoles. Molecules 2018 23 5 1133 10.3390/molecules23051133 29747479
    [Google Scholar]
  30. Kouatly O. Geronikaki A. Kamoutsis C. Hadjipavlou-Litina D. Eleftheriou P. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents. Eur. J. Med. Chem. 2009 44 3 1198 1204 10.1016/j.ejmech.2008.05.029 18603333
    [Google Scholar]
  31. Abolibda T.Z. El-Sayed A.A.A.A. Farag B. Zaki M.E.A. Alrehaily A. Elbadawy H.M. Al-Shahri A.A. Alsenani S.R. Gomha S.M. Novel thiazolyl-pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation, and molecular docking studies. Results Chem. 2025 13 102008 10.1016/j.rechem.2024.102008
    [Google Scholar]
  32. Jackson R.C. Hart L.I. Harrap K.R. Intrinsic resistance to methotrexate of cultured mammalian cells in relation to the inhibition kinetics of their dihydrololate reductases. Cancer Res. 1976 36 6 1991 1997 5189
    [Google Scholar]
  33. Goldie J.H. Krystal G. Hartley D. Gudauskas G. Dedhar S. A methotrexate insensitive variant of folate reductase present in two lines of methotrexate-resistant L5178Y cells. Eur. J. Cancer 1980 16 12 1539 1546 10.1016/0014‑2964(80)90026‑2 7227429
    [Google Scholar]
  34. Kobayashi H. Takemura Y. Ohnuma T. Variable expression of RFC1 in human leukemia cell lines resistant to antifolates. Cancer Lett. 1998 124 2 135 142 10.1016/S0304‑3835(97)00464‑3 9500202
    [Google Scholar]
  35. Assaraf Y.G. Molecular basis of antifolate resistance. Cancer Metastasis Rev. 2007 26 1 153 181 10.1007/s10555‑007‑9049‑z 17333344
    [Google Scholar]
  36. Abali E.E. Skacel N.E. Celikkaya H. Hsieh Y.C. Regulation of human dihydrofolate reductase activity and expression. Vitam. Horm. 2008 79 267 292 10.1016/S0083‑6729(08)00409‑3 18804698
    [Google Scholar]
  37. Dolnick B.J. Berenson R.J. Bertino J.R. Kaufman R.J. Nunberg J.H. Schimke R.T. Correlation of dihydrofolate reductase elevation with gene amplification in a homogeneously staining chromosomal region in L5178Y cells. J. Cell Biol. 1979 83 2 394 402 10.1083/jcb.83.2.394 500787
    [Google Scholar]
  38. Song B. Wang Y. Kudo K. Gavin E.J. Xi Y. Ju J. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res. 2008 14 24 8080 8086 10.1158/1078‑0432.CCR‑08‑1422 19088023
    [Google Scholar]
  39. Jang G.R. Harris R.Z. Lau D.T. Pharmacokinetics and its role in small molecule drug discovery research. Med. Res. Rev. 2001 21 5 382 396 10.1002/med.1015 11579439
    [Google Scholar]
  40. Zaki Y.H. Gomha S.M. Farag B. Zaki M.E.A. Hussein A.M. Synthesis, characterization, and in silico studies of substituted 2,3-dihydro-1,3,4-thiadiazole derivatives. Results Chem. 2025 13 101977 10.1016/j.rechem.2024.101977
    [Google Scholar]
  41. Thompson T. Early ADME in support of drug discovery: The role of metabolic stability studies. Curr. Drug Metab. 2000 1 3 215 241 10.2174/1389200003339018 11465046
    [Google Scholar]
  42. Merlot C. Computational toxicology: A tool for early safety evaluation. Drug Discov. Today 2010 15 1-2 16 22 10.1016/j.drudis.2009.09.010 19835978
    [Google Scholar]
  43. Eddershaw P.J. Beresford A.P. Bayliss M.K. ADME/PK as part of a rational approach to drug discovery. Drug Discov. Today 2000 5 9 409 414 10.1016/S1359‑6446(00)01540‑3 10931658
    [Google Scholar]
  44. Gomha S.M. El-Sayed A.A.A.A. Zaki M.E.A. Alrehaily A. Elbadawy H.M. Al-Shahri A.A. Alsenani S.R. Abouzied A.S. Synthesis, in vitro and in silico studies of novel Bis‐triazolopyridopyrimidines from curcumin analogues as potential aromatase agents. Chem. Biodivers. 2024 21 8 e202400701 10.1002/cbdv.202400701 38829745
    [Google Scholar]
  45. Gomha S.M. Riyadh S.M. El-Sayed A.A.A.A. Abdallah A.M. Zaki M.E.A. Alrehaily A. Elbadawy H.M. Al-Shahri A.A. Alsenani S.R. Hussein A.M. Grinding-assisted synthesis of novel arylhydrazono curcumin analogues and bis-pyrazolines as cyclin-dependent kinases (CDKs) inhibitors. Inorg. Chem. Commun. 2024 169 113128 10.1016/j.inoche.2024.113128
    [Google Scholar]
  46. Gomha S.M. El-Sayed A.A.A.A. Alrehaily A. Elbadawy H.M. Farag B. Al-Shahri A.A. Alsenani S.R. Abdelgawad F.E. Zaki M.E.A. Synthesis, molecular docking, in silico study, and evaluation of bis-thiazole-based curcumin derivatives as potential antimicrobial agents. Results Chem. 2024 7 101504 10.1016/j.rechem.2024.101504
    [Google Scholar]
  47. Ouf S.A. Gomha S.M. Farag B. Zaki M.E.A. Ewies M.M. Sharawy I.A.A. Khalil F.O. Mahmoud H.K. Synthesis of novel Bis-1,2,4-Triazolo[3,4-b][1,3,4]Thiadiazines from natural camphoric acid as potential anti-candidal agents. Results Chem. 2024 7 101406 10.1016/j.rechem.2024.101406
    [Google Scholar]
  48. Kassab R.M. Al-Hussain S.A. Abdelmonsef A.H. Zaki M.E. Gomha S.M. Muhammad Z.A. Novel Bis-Thiazole derivatives as HSV-1 inhibitors through targeting surface glycoprotein D: An efficient synthesis, characterization, biological evaluation, and molecular docking study. Future Med. Chem. 2024 16 27 41 10.4155/fmc‑2023‑0210 38063202
    [Google Scholar]
  49. Mohamed M.A. Abouzied A.S. Reyad A. Sayed Abdelsalam Zaki M.E. Abdelgawad F.E. Al-Humaidi J.Y. Gomha S.M. Novel terpyridines as Staphylococcus aureus gyrase inhibitors: Efficient synthesis and antibacterial assessment via solvent-drop grinding. Future Med. Chem. 2024 16 3 205 220 10.4155/fmc‑2023‑0278 38230640
    [Google Scholar]
  50. Kassab R.M. Gomha S.M. Muhammad Z.A. El-khouly A.S. Synthesis, biological profile, and molecular docking of some new bis-fused imidazole templates and investigation of their cytotoxic potential as anti-tubercular and/or anticancer prototypes. Med. Chem. 2021 17 8 875 886 10.2174/1573406417666201208121458 33292124
    [Google Scholar]
  51. Mahmoud H.K. Kassab R.M. Gomha S.M. Synthesis and characterization of some novel bis‐thiazoles. J. Heterocycl. Chem. 2019 56 11 3157 3163 10.1002/jhet.3717
    [Google Scholar]
  52. Abdelrazek F.M. Gomha S.M. Metz P. Abdalla M.M. Synthesis of some novel 1,4-phenylene-bis-thiazolyl derivatives and their anti-hypertensive α-blocking activity screening. J. Heterocycl. Chem. 2017 54 1 618 623 10.1002/jhet.2633
    [Google Scholar]
  53. Gomha S. Kheder N. Abdelhamid A. Mabkhot Y. One pot single step synthesis and biological evaluation of some novel bis (1,3,4-thiadiazole) derivatives as potential cytotoxic agents. Molecules 2016 21 11 1532 10.3390/molecules21111532 27854300
    [Google Scholar]
  54. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  55. Gomha S.M. Riyadh S.M. Mahmmoud E.A. Elaasser M.M. Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem. Heterocycl. Compd. 2015 51 11-12 1030 1038 10.1007/s10593‑016‑1815‑9
    [Google Scholar]
  56. Raimondi M.V. Randazzo O. La Franca M. Barone G. Vignoni E. Rossi D. Collina S. 2-DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules 2019 24 6 1140 10.3390/molecules24061140 30909399
    [Google Scholar]
  57. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012 64 4 17 10.1016/j.addr.2012.09.019 11259830
    [Google Scholar]
  58. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  59. Daina A. Michielin O. Zoete V. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014 54 12 3284 3301 10.1021/ci500467k 25382374
    [Google Scholar]
  60. Kola I. Landis J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004 3 8 711 716 10.1038/nrd1470 15286737
    [Google Scholar]
  61. Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  62. Karami T.K. Hailu S. Feng S. Graham R. Gukasyan H.J. Eyes on Lipinski’s rule of five: A New “rule of thumb” for physicochemical design space of ophthalmic drugs. J. Ocul. Pharmacol. Ther. 2022 38 1 43 55 10.1089/jop.2021.0069 34905402
    [Google Scholar]
  63. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  64. Obach R.S. Lombardo F. Waters N.J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab. Dispos. 2008 36 7 1385 1405 10.1124/dmd.108.020479 18426954
    [Google Scholar]
  65. Ahmed J. Worth C.L. Thaben P. Matzig C. Blasse C. Dunkel M. Preissner R. FragmentStore--a comprehensive database of fragments linking metabolites, toxic molecules and drugs Nucleic Acids Research 2011 39 Database D1049 D1054 10.1093/nar/gkq969 20965964
    [Google Scholar]
  66. Cumming J.G. Davis A.M. Muresan S. Haeberlein M. Chen H. Chemical predictive modelling to improve compound quality. Nat. Rev. Drug Discov. 2013 12 12 948 962 10.1038/nrd4128 24287782
    [Google Scholar]
  67. Hosny M. Salem M.E. Darweesh A.F. Elwahy A.H.M. Synthesis of novel bis(thiazolylchromen-2-one) derivatives linked to alkyl spacer via phenoxy group. J. Heterocycl. Chem. 2018 55 10 2342 2348 10.1002/jhet.3296
    [Google Scholar]
  68. Shawali A.S. Gomha S.M. Regioselectivity in 1,5-electrocyclization of N-[as-triazin-3-yl]nitrilimines. Synthesis of s-triazolo[4,3-b]-as-triazin-7(8H)-ones. Tetrahedron 2002 58 42 8559 8564 10.1016/S0040‑4020(02)00946‑8
    [Google Scholar]
  69. Gomha S.M. Abdel-Aziz H.A. Enaminones as building blocks in heterocyclic preparations: Synthesis of novel Pyrazoles, Pyrazolo[3,4-d]pyridazines, Pyrazolo[1,5-a]pyrimidines, and Pyrido[2,3-d]pyrimidines linked to Imidazo[2,1-b]thiazole system. Heterocycles 2012 85 2291 2303 10.3987/COM‑12‑12531
    [Google Scholar]
  70. Badrey M.G. Gomha S.M. 3-Amino-8-Hydroxy-4-Imino-6-Methyl-5-Phenyl-4,5-Dihydro-3H-Chromeno[2,3-d]pyrimidine: An efficient precursor for novel synthesis of Triazines and Triazepines as potential anti-tumor agents. Molecules 2012 17 11538 11553 10.3390/molecules171011538 23018926
    [Google Scholar]
  71. Raimondi M.V. Randazzo O. La Franca M. Barone G. Vignoni E. Rossi D. Collina S. DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules 2019 24 6 1140 10.3390/molecules24061140 30909399
    [Google Scholar]
  72. Dulucq S. St-Onge G. Gagné V. Ansari M. Sinnett D. Labuda D. Moghrabi A. Krajinovic M. DNA variants in the dihydrofolate reductase gene and outcome in childhood ALL. Blood 2008 111 7 3692 3700 10.1182/blood‑2007‑09‑110593 18096764
    [Google Scholar]
  73. Saha S. Jungas T. Ohayon D. Audouard C. Ye T. Fawal M.A. Davy A. Dihydrofolate reductase activity controls neurogenic transitions in the developing neocortex. Development 2023 150 20 dev201696 10.1242/dev.201696 37665322
    [Google Scholar]
  74. Dunbar J. Yennawar H.P. Banerjee S. Luo J. Farber G.K. The effect of denaturants on protein structure. Protein Sci. 1997 6 8 1727 1733 10.1002/pro.5560060813 9260285
    [Google Scholar]
  75. Chawla P. Teli G. Gill R.K. Narang R.K. An insight into synthetic strategies and recent developments of dihydrofolate reductase inhibitors. ChemistrySelect 2021 6 43 12101 12145 10.1002/slct.202102555
    [Google Scholar]
  76. Sawant S.D. Sahu M. Nerkar A.G. Quinazolinone platinum metal complexes: In silico design, synthesis and evaluation of anticancer activity. Asian J. Chem. 2018 30 10 2164 2170 10.14233/ajchem.2018.21330
    [Google Scholar]
  77. Muhammad Z. Edrees M. Faty R. Gomha S. Alterary S. Mabkhot Y. Synthesis, antitumor evaluation and molecular docking of new morpholine-based heterocycles. Molecules 2017 22 7 1211 10.3390/molecules22071211 28726760
    [Google Scholar]
  78. Tang Y-Q. Lim J.Y. Gew L.T. Biocomputational-mediated screening and molecular docking platforms for discovery of coumarin-derived antimelanogenesis agents. Zhonghua Pifuke Yixue Zazhi 2023 41 1 8 17 10.4103/ds.DS‑D‑22‑00087
    [Google Scholar]
/content/journals/cos/10.2174/0115701794379474250528170604
Loading
/content/journals/cos/10.2174/0115701794379474250528170604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test