Skip to content
2000
image of Characterization of Ultrasonic Cavitation Energy for Efficient Soil Pretreatment: A Novel Approach for Rapid Detection of Available Potassium and Phosphorus Using CE-C4D

Abstract

Background

Soil sample pretreatment is a critical step in soil analysis, often involving complex processes and the use of organic solvents, which can lead to environmental pollution and inefficiency. In this regard, traditional methods are time-consuming and prone to human error, rendering them unsuitable for large-scale soil surveys. To address these challenges, this study proposes a novel rapid soil pretreatment method employing a device that integrates ultrasonic extraction with pure water and capillary electrophoresis using capacitively coupled contactless conductivity detection (CE-C4D). This study aims to enhance the efficiency and accuracy of soil nutrient analysis while minimizing environmental impact.

Methods

Ultrasonic extraction using pure water as a solvent, combined with CE-C4D detection, was employed for rapid and efficient analysis of soil nutrients, particularly potassium and phosphorus. Parameters influencing ultrasonic extraction, including frequency, treatment time, and the relationship between solution factors and cavitation yield, were optimized through both simulations and experiments. Cavitation yield was assessed using iodine release, conductivity measurement, and fluorescence analysis. Additionally, the sound pressure distribution within the extraction tube was simulated, and temperature changes during ultrasonic treatment were monitored. The pretreatment device and detection method were validated using standard soil samples.

Results

The optimal ultrasonic extraction parameters were identified as a frequency of 1.7 MHz and a treatment time of 10 minutes, resulting in the most effective cavitation yield. The use of pure water as a solvent improved both the efficiency of soil pretreatment and the environmental sustainability of the process. The CE-C4D system successfully detected available potassium and phosphorus in standard soil samples with high accuracy, showing trends consistent with standard values and relative standard deviations (RSD, n=4) of less than 5%. Blind tests on soil samples also demonstrated minimal error, with RSD (n=4) below 4%.

Conclusion

This study presents a portable and efficient ultrasonic extraction device for soil pretreatment coupled with a custom-designed CE-C4D detector for the rapid analysis of available potassium and phosphorus. The use of pure water as a solvent significantly reduces environmental impact, simplifies the process, and enhances testing efficiency, reducing the required testing time from 15-20 days to within 30 minutes. This innovation provides a reliable solution for on-site soil analysis, offering potential applications in large-scale soil surveys and routine soil testing.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794387336250516091810
2025-05-26
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cos/10.2174/0115701794387336250516091810/BMS-COS-2025-HT28-6955-1.html?itemId=/content/journals/cos/10.2174/0115701794387336250516091810&mimeType=html&fmt=ahah

References

  1. Collier S.M. Ruark M.D. Pre-incubation soil handling can influence comparability of potentially mineralizable nitrogen results. Commun. Soil Sci. Plant Anal. 2021 52 10 1121 1131 10.1080/00103624.2021.1872607
    [Google Scholar]
  2. Xu X. Chen S. Xu Z. Yu Y. Zhang S. Dai R. Exploring appropriate preprocessing techniques for hyperspectral soil organic matter content estimation in black soil area. Remote Sens. (Basel) 2020 12 22 3765 10.3390/rs12223765
    [Google Scholar]
  3. Wanke D.J. Heichel J. Zikeli S. Müller T. Hartmann T.E. Comparison of soil phosphorus extraction methods regarding their suitability for organic farming systems. J. Plant Nutr. Soil Sci. 2023 186 5 599 608 10.1002/jpln.202300129
    [Google Scholar]
  4. Matcham E.G. Ruark M.D. Stoltenberg D.E. Conley S.P. Comparison of Bray‐1 and Mehlich‐3 extraction of P and K in Wisconsin silt loam soils. Soil Sci. Soc. Am. J. 2023 87 4 999 1002 10.1002/saj2.20557
    [Google Scholar]
  5. Mattila T.J. Rajala J. Estimating cation exchange capacity from agronomic soil tests: Comparing Mehlich‐3 and ammonium acetate sum of cations. Soil Sci. Soc. Am. J. 2022 86 1 47 50 10.1002/saj2.20340
    [Google Scholar]
  6. Culman S.W. Mann M. Sharma S. Saeed M.T. Fulford A.M. Lindsey L.E. Brooker A. Dayton E. Warden R. Joern B. Calibration of Mehlich-3 with Bray P1 and ammonium acetate in the tri-state region of Ohio, Indiana, and Michigan. Commun. Soil Sci. Plant Anal. 2020 51 1 86 97 10.1080/00103624.2019.1695825
    [Google Scholar]
  7. Li H. Zhang J. Wang Y. Comparative analysis of four methods for accurate estimation of soil phosphorus storage capacity: A case study in a typical red soil. Eurasian Soil Sci. 2024 57 7 1163 1175 10.1134/S1064229323603402
    [Google Scholar]
  8. Bankaji I. Kouki R. Dridi N. Ferreira R. Hidouri S. Duarte B. Sleimi N. Caçador I. Comparison of digestion methods using atomic absorption spectrometry for the determination of metal levels in plants. Separations 2023 10 1 40 10.3390/separations10010040
    [Google Scholar]
  9. Triantafillidis A. Stogiannis P. Amarantos P. Kontodimos I. Ketikidis C. Grammelis P. Trace and major elements analysis of alternative solid fuels by means of inductively coupled plasma mass spectrometry: Comparison with atomic absorption spectrometry and X-ray fluorescence results. Eng. Proc. 2023 56 1 238 10.3390/ASEC2023‑16634
    [Google Scholar]
  10. Vanhoof C. Bacon J.R. Fittschen U.E.A. Vincze L. 2023 atomic spectrometry update: A review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom. 2023 38 9 1730 1743 10.1039/D3JA90026F
    [Google Scholar]
  11. de Souza R.M. Toloza C.A.T. Aucélio R.Q. Fast determination of trace metals in edible oils and fats by inductively coupled plasma mass spectrometry and ultrasonic acidic extraction. Journal of Trace Elements and Minerals 2022 1 100003 10.1016/j.jtemin.2022.100003
    [Google Scholar]
  12. Aly A. Górecki T. Green approaches to sample preparation based on extraction techniques. Molecules 2020 25 7 1719 10.3390/molecules25071719 32283595
    [Google Scholar]
  13. Kokosa J.M. Przyjazny A. Green microextraction methodologies for sample preparations. Green Analytical Chemistry 2022 3 100023 10.1016/j.greeac.2022.100023
    [Google Scholar]
  14. Alidoust M. Baharfar M. Manouchehri M. Yamini Y. Tajik M. Seidi S. Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements. Trends Analyt. Chem. 2021 143 116352 10.1016/j.trac.2021.116352
    [Google Scholar]
  15. González-Martín R. Gutiérrez-Serpa A. Pino V. Sajid M. A tool to assess analytical sample preparation procedures: Sample preparation metric of sustainability. J. Chromatogr. A 2023 1707 464291 10.1016/j.chroma.2023.464291 37582319
    [Google Scholar]
  16. Yahaya N. Mohamed A.H. Miskam M. Abdul Keyon A.S. Loh S.H. Mohamad Zain N.N. Sajid M. Green analytical chemistry metrics for evaluation of microextraction methods: Fascinating or essential tools in real-world applications? Trends Analyt. Chem. 2024 172 117587 10.1016/j.trac.2024.117587
    [Google Scholar]
  17. Liu J.B. Liu B.R. Lee C.C. Efficiency evaluation of China’s transportation system considering carbon emissions: Evidence from big data analytics methods. Sci. Total Environ. 2024 922 171031 10.1016/j.scitotenv.2024.171031 38402964
    [Google Scholar]
  18. Nicoletti J.V.M. Franchi M.R.A. Motomiya A.V.A. Motomiya W.R. Molin J.P. Efficiency and quality of soil sampling according to a sampling tool. Rev. Bras. Eng. Agric. Ambient. 2023 27 6 480 486 10.1590/1807‑1929/agriambi.v27n6p480‑486
    [Google Scholar]
  19. Valente D.S.M. Pereira G.W. de Queiroz D.M. Zandonadi R.S. Amaral L.R. Bottega E.L. Costa M.M. de Freitas Coelho A.L. Grift T. Accuracy of various sampling techniques for precision agriculture: A case study in Brazil. Agriculture 2024 14 12 2198 10.3390/agriculture14122198
    [Google Scholar]
  20. Rennert T. Lenhardt K.R. Potential pitfalls when using popular chemical extractions to characterize Al‐ and Fe‐containing soil constituents. J. Plant Nutr. Soil Sci. 2024 2024 jpln.202300268 10.1002/jpln.202300268
    [Google Scholar]
  21. Uhuegbue P.O. Stein M. Kalbitz K. Schaller J. Silicon effects on soil phosphorus availability: Results obtained depend on the method used. Front. Environ. Sci. 2024 12 1461477 10.3389/fenvs.2024.1461477
    [Google Scholar]
  22. Reijneveld J.A. van Oostrum M.J. Brolsma K.M. Fletcher D. Oenema O. Empower innovations in routine soil testing. Agronomy 2022 12 1 191 10.3390/agronomy12010191
    [Google Scholar]
  23. Mokere R. Ghassan M. Barra I. Soil spectroscopy evolution: A review of homemade sensors, benchtop systems, and mobile instruments coupled with machine learning algorithms in soil diagnosis for precision agriculture. Crit. Rev. Anal. Chem. 2024 2024 1 20 10.1080/10408347.2024.2351820 38743807
    [Google Scholar]
  24. Umapathi R. Ghoreishian S.M. Sonwal S. Rani G.M. Huh Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022 453 214305 10.1016/j.ccr.2021.214305
    [Google Scholar]
  25. Pal A. Dubey S.K. Goel S. Kalita P.K. Portable sensors in precision agriculture: Assessing advances and challenges in soil nutrient determination. Trends Analyt. Chem. 2024 180 117981 10.1016/j.trac.2024.117981
    [Google Scholar]
  26. Noor M. Basharat N. Asad M. Naveed K. Hussain R. Arif M.S. Qadir G. Khalid S. Hussein S. Asif A. Ul Rehman F. Shaukat M.F. Mehmood A. Extraction techniques and purification methods: Precision tools for pure innovation. Pure Appl. Biol. 2025 14 2 224 248 10.19045/bspab.2025.140022
    [Google Scholar]
  27. Ensminger D. Bond L. J. Fundamentals for high-intensity ultrasonics: Basie mechanisms and effects. Ultrasonics: Fundamentals, Technologies, and Applications. CRC Press 2024 562 567 10.1201/9780429286964
    [Google Scholar]
  28. El Jery A. Kosarirad H. Taheri N. Bagheri M. Aldrdery M. Elkhaleefa A. Wang C. Sammen S.S. An application of ultrasonic waves in the pretreatment of biological sludge in urban sewage and proposing an artificial neural network predictive model of concentration. Sustainability 2023 15 17 12875 10.3390/su151712875
    [Google Scholar]
  29. Laganà F. Pullano S.A. Angiulli G. Versaci M. Optimized analytical–numerical procedure for ultrasonic sludge treatment for agricultural use. Algorithms 2024 17 12 592 10.3390/a17120592
    [Google Scholar]
  30. Ma J. Wang J. Xu F. Wu X. A review of the application and future directions of high-power ultrasonic technology in environmental protection. Curr. Opin. Chem. Eng. 2025 48 101105 10.1016/j.coche.2025.101105
    [Google Scholar]
  31. Savun-Hekimoğlu B. A review on sonochemistry and its environmental applications. Acoustics 2020 2 4 766 775 10.3390/acoustics2040042
    [Google Scholar]
  32. Siebenmorgen C. Poortinga A. van Rijn P. Sono-processes: Emerging systems and their applicability within the (bio-)medical field. Ultrason. Sonochem. 2023 100 106630 10.1016/j.ultsonch.2023.106630 37826890
    [Google Scholar]
  33. Shrivastav G. Prava Jyoti T. Chandel S. Singh R. Eco-friendly extraction: Innovations, principles, and comparison with traditional methods. Separ. Purif. Rev. 2024 ••• 1 17 10.1080/15422119.2024.2381605
    [Google Scholar]
  34. Manickam S. Camilla Boffito D. Flores E.M.M. Leveque J.M. Pflieger R. Pollet B.G. Ashokkumar M. Ultrasonics and sonochemistry: Editors’ perspective. Ultrason. Sonochem. 2023 99 106540 10.1016/j.ultsonch.2023.106540 37542752
    [Google Scholar]
  35. Yao Y. Pan Y. Liu S. Power ultrasound and its applications: A state-of-the-art review. Ultrason. Sonochem. 2020 62 104722 10.1016/j.ultsonch.2019.104722 31796328
    [Google Scholar]
  36. Khan M.I. Shixing W. Ullah E. Sajjad M. Zhang L. Fu L. Enhanced metal recovery using ultrasound assisted leaching (UAL). An overview. J. Mol. Liq. 2024 410 125545 10.1016/j.molliq.2024.125545
    [Google Scholar]
  37. Zhao S. Yao C. Liu L. Chen G. Parametrical investigation of acoustic cavitation and extraction enhancement in ultrasonic microreactors. Chem. Eng. J. 2022 450 138185 10.1016/j.cej.2022.138185
    [Google Scholar]
  38. Ding L. Zhao S. Liu L. Wang W. Yao C. Chen G. Characteristics of emulsion preparation in an ultrasonic microreactor: Cavitation, droplet size and energy efficiency. Chem. Eng. J. 2024 484 149462 10.1016/j.cej.2024.149462
    [Google Scholar]
  39. Biryukov D. Gerasimov D. Yurin E. Acoustic Cavitation. Cavitation and Associated Phenomena CRC Press 2022 35 37 10.1201/9780367853495
    [Google Scholar]
  40. Yamamoto T. Effect of ultrasonic frequency on mass transfer of acoustic cavitation bubble. Chem. Eng. Sci. 2024 300 120654 10.1016/j.ces.2024.120654
    [Google Scholar]
  41. Fatmasari D. Widyawati M.N. Amartha T.A.S. Fathonah Y. Aquarista N. Amalia D.N. Development and optimization of an ultrasound-assisted extraction apparatus with integrated advanced features for enhanced essential oil production. Indonesian J.Electronic.Electromed.Eng.Med.Inform 2025 7 1 136 143 10.35882/11vb2734
    [Google Scholar]
  42. Merouani S. Dehane A. Hamdaoui O. Yasui K. Ashokkumar M. Review on the impacts of external pressure on sonochemistry. Ultrason. Sonochem. 2024 106 106893 10.1016/j.ultsonch.2024.106893 38705083
    [Google Scholar]
  43. Rosales Pérez A. Esquivel Escalante K. The evolution of sonochemistry: From the beginnings to novel applications. ChemPlusChem 2024 89 6 e202300660 10.1002/cplu.202300660 38369655
    [Google Scholar]
  44. Dehane A. Merouani S. Insights into sono-electrochemical advances for hydrogen production: An in-depth analysis. Int. J. Green Energy 2025 22 1 216 237 10.1080/15435075.2024.2412061
    [Google Scholar]
  45. Liu W. Li J. Chen Z. Liang Z. Yang B. Du K. Fu J. Mahjoub A.R. Xing M. Unveiling the “sono-physico-chemical” essence: Cavitation and vibration effects in ultrasound–assisted processes. Chin. J. Catal. 2024 61 37 53 10.1016/S1872‑2067(24)60028‑8
    [Google Scholar]
  46. Sharafian S. Hossaini Z. Rostami-Charati F. Khalilzadeh M.A. Molla Ali A. Rahmani M. Ultrasound-promoted green synthesis of pyrido [2, 1-a] isoquinoline derivatives and studies on their antioxidant activity. Comb. Chem. High Throughput Screen. 2021 24 1 119 128 10.2174/1386207323666200606212501 32504497
    [Google Scholar]
  47. Zheng H. Zheng Y. Zhu J. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications. Engineering (Beijing) 2022 19 180 198 10.1016/j.eng.2022.04.027
    [Google Scholar]
  48. Xie G. Luo J. Li F. Li D. Han Y. Tao Y. Comparison between hydrodynamic and ultrasound cavitation on the inactivation of lipoxygenase and physicochemical properties of soy milk. Ultrason. Sonochem. 2023 101 106692 10.1016/j.ultsonch.2023.106692 37988955
    [Google Scholar]
  49. Khaffache R. Dehane A. Merouani S. Hamdaoui O. Ferkous H. Alrashed M.M. Gasmi I. Chibani A. Sonochemistry dosimetries in seawater. Ultrason. Sonochem. 2023 101 106647 10.1016/j.ultsonch.2023.106647 37944338
    [Google Scholar]
  50. Rashid F.L. Al-Obaidi M.A. Hussein A.K. Ahmad S. Albdeiri M.S. Mujtaba I.M. Bubble dynamics in sustainable technologies: A review of growth, collapse, and heat transfer. Processes 2024 13 1 38 10.3390/pr13010038
    [Google Scholar]
  51. Pandit A.V. Sarvothaman V.P. Ranade V.V. Estimation of chemical and physical effects of cavitation by analysis of cavitating single bubble dynamics. Ultrason. Sonochem. 2021 77 105677 10.1016/j.ultsonch.2021.105677 34332329
    [Google Scholar]
  52. Kim H. Kim C. A physics-based cavitation model ranging from inertial to thermal regimes. Int. J. Heat Mass Transf. 2021 181 121991 10.1016/j.ijheatmasstransfer.2021.121991
    [Google Scholar]
  53. Qin D. Lei S. Zhang B. Liu Y. Tian J. Ji X. Yang H. Influence of interactions between bubbles on physico-chemical effects of acoustic cavitation. Ultrason. Sonochem. 2024 104 106808 10.1016/j.ultsonch.2024.106808 38377805
    [Google Scholar]
  54. Wang B. Zeng T. Shang J. Tao J. Liu Y. Yang T. Ren H. Hu G. Bubble dynamics model and its revelation of ultrasonic cavitation behavior in advanced oxidation processes: A review. J. Water Process Eng. 2024 63 105470 10.1016/j.jwpe.2024.105470
    [Google Scholar]
  55. Aktı N. Yildiz S. Exploring ultrasound-induced free radical formation: A comparative study in water and sour cherry juice using glutathione and terephthalic acid indicators. Ultrason. Sonochem. 2025 112 107193 10.1016/j.ultsonch.2024.107193 39657289
    [Google Scholar]
  56. Hodnett M. Prentice P. Measurement techniques in power ultrasonics. Power Ultrasonics Woodhead Publishing Series 2023 131 146 10.1016/B978‑0‑12‑820254‑8.00008‑7
    [Google Scholar]
  57. Galleguillos R. Acoustic cavitation detection during ultrasonic atomization process. Appl. Acoust. 2022 192 108716 10.1016/j.apacoust.2022.108716
    [Google Scholar]
  58. Saiki T. Shimada K. Ishijima A. Song H. Qi X. Okamoto Y. Mizushima A. Mita Y. Hosobata T. Takeda M. Morita S. Kushibiki K. Ozaki S. Motohara K. Yamagata Y. Tsukamoto A. Kannari F. Sakuma I. Inada Y. Nakagawa K. Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography. Sci. Adv. 2023 9 51 eadj8608 10.1126/sciadv.adj8608 38117881
    [Google Scholar]
  59. Ye L. Chuai S. Zhu X. Wang D. Experimental study on ultrasonic cavitation intensity based on fluorescence analysis. Chin. J. Mech. Eng. 2023 36 1 103 10.1186/s10033‑023‑00933‑2
    [Google Scholar]
  60. Wu P. Wang X. Lin W. Bai L. Acoustic characterization of cavitation intensity: A review. Ultrason. Sonochem. 2022 82 105878 10.1016/j.ultsonch.2021.105878 34929549
    [Google Scholar]
  61. Fernandes J. Ramísio P.J. Puga H. Unveiling acoustic cavitation characterization in opaque chambers through a low-cost piezoelectric sensor approach. Electronics 2024 13 8 1581 10.3390/electronics13081581
    [Google Scholar]
  62. Kerboua K. Merouani S. Hamdaoui O. Alghyamah A. Islam M.H. Hansen H.E. Pollet B.G. How do dissolved gases affect the sonochemical process of hydrogen production? An overview of thermodynamic and mechanistic effects – On the “hot spot theory”. Ultrason. Sonochem. 2021 72 105422 10.1016/j.ultsonch.2020.105422 33383540
    [Google Scholar]
  63. Al-Awamleh A. Hegedűs F. Sono-hydrogen: A theoretical investigation of its energy intensity. Period. polytech., Mech. eng 2024 68 3 254 263 10.3311/PPme.37299
    [Google Scholar]
  64. Ferkous H. Hamdaoui O. Pétrier C. Sonochemical reactor characterization in the presence of cylindrical and conical reflectors. Ultrason. Sonochem. 2023 99 106556 10.1016/j.ultsonch.2023.106556 37586183
    [Google Scholar]
  65. Dehane A. Merouani S. Monitoring the sonochemical field: A critical review of chemical dosimetry methods. Asia-Pac. J. Chem. Eng. 2024 19 6 e3141 10.1002/apj.3141
    [Google Scholar]
  66. Kewalramani J.A. Bezerra de Souza B. Marsh R.W. Meegoda J.N. Contributions of reactor geometry and ultrasound frequency on the efficiency of sonochemical reactor. Ultrason. Sonochem. 2023 98 106529 10.1016/j.ultsonch.2023.106529 37487437
    [Google Scholar]
  67. Ciancio A. Ciancio V. Flora B.F.F. A fractional rheological model of viscoanelastic media. Axioms 2023 12 3 243 10.3390/axioms12030243
    [Google Scholar]
  68. McCune E.P. Lee S.A. Konofagou E.E. Interdependence of tissue temperature, cavitation, and displacement imaging during focused ultrasound nerve sonication. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023 70 7 600 612 10.1109/TUFFC.2023.3280455 37256815
    [Google Scholar]
  69. Bonnin M. Traversa F.L. Bonani F. An Impedance matching solution to increase the harvested power and efficiency of nonlinear piezoelectric energy harvesters. Energies 2022 15 8 2764 10.3390/en15082764
    [Google Scholar]
  70. Song K. Bonnin M. Traversa F.L. Bonani F. Application of stochastic averaging to vibrating electro-mechanical systems for piezoelectric energy harvesting. IEEE 3rd International Conference on Industrial Electronics for Sustainable Energy Systems (IESES) Shanghai, China, 26-28 July 2023, pp. 1-6, 10.1109/IESES53571.2023.10253722
    [Google Scholar]
  71. Feng T. Yuan Q. Yu D. Wu B. Wang H. Concepts and key technologies of microelectromechanical systems resonators. Micromachines 2022 13 12 2195 10.3390/mi13122195 36557494
    [Google Scholar]
  72. Gao J. Li W. Li J. Wang R. Rapid detection of soil available phosphorus using capacitively coupled contactless conductivity detection. Curr. Org. Synth. 2025 22 2 169 183 10.2174/0115701794295930240902050855 39962957
    [Google Scholar]
/content/journals/cos/10.2174/0115701794387336250516091810
Loading
/content/journals/cos/10.2174/0115701794387336250516091810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test