Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Bitter melon ( L.) is a member of the Cucurbitaceae, which is also known as bitter squash, bitter gourd, karela, Goya melon and balsam pear. It is a rich source of different vitamins, potassium, zinc and other nutrients.

The main pharmaceutical benefits of bitter melon are “antiinflammatory”, “antioxidant activity”, “antimicrobial characteristic”, “anticancer activity”, and “antihelmintic activity”, “antidiabetic effects”, “antiinflammation activity” and “treat skin conditions”. Its fruit is the main part of the plant which has been used for medicinal and food purposes.

The primary metabolites in bitter gourd are common sugars, chlorophyll and proteins while secondary metabolites are carotenoids, alkaloids, phenolics, curcubitane triterpenoids, saponins, .

The present review aims to study and survey on the nearly up-to-date results and findings regarding the pharmaceutical advantages and health benefits of bitter melon in an organic life.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794285586240523101245
2024-06-24
2025-10-04
Loading full text...

Full text loading...

References

  1. SunW. ShahrajabianM.H. ChengQ. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes.Cogent Biol.201951167368810.1080/23312025.2019.1673688
    [Google Scholar]
  2. ShahrajabianM.H. SunW. SoleymaniA. ChengQ. Traditional herbal medicines to overcome stress anxiety and improve mental health in ourbreaks of human coronaviruses.Phytother. Res.20202020111110.1002/ptr.6888 33350538
    [Google Scholar]
  3. ShahrajabianM.H. SunW. ChengQ. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review.Int. J. Food Prop.20202311961197010.1080/10942912.2020.1828456
    [Google Scholar]
  4. SunW. ShahrajabianM.H. ChengQ. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era.Appl. Sci. 20211117788910.3390/app11177889
    [Google Scholar]
  5. SunW. ShahrajabianM.H. ChengQ. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses.Isr. J. Plant Sci.2021681-2617110.1163/22238980‑bja10019
    [Google Scholar]
  6. ShahrajabianM.H. SunW. The importance of salicylic acid, humic acid and fulvic acid on crop production.Lett. Drug Des. Discov.2023202010.2174/1570180820666230411102209
    [Google Scholar]
  7. ShahrajabianM.H. SunW. Various techniques for molecular and rapid detection of infectious and epidemic diseases.Lett. Org. Chem.202320977980110.2174/1570178620666230331095720
    [Google Scholar]
  8. ShahrajabianM.H. SunW. Importance of thymoquinone, sulforaphane, phloretin and epigallocatechin and their health benefits.Lett. Drug Des. Discov.20231910.2174/1570180819666220902115521
    [Google Scholar]
  9. VolpatoG. GodínezD. BeyraA. BarretoA. Uses of medicinal plants by Haitian immigrants and their descendants in the Province of Camagüey, Cuba.J. Ethnobiol. Ethnomed.2009511610.1186/1746‑4269‑5‑16 19450279
    [Google Scholar]
  10. JosephB. JiniD. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency.Asian Pac. J. Trop. Dis.2013329310210.1016/S2222‑1808(13)60052‑3
    [Google Scholar]
  11. Abdel-RahmanR.F. SolimanG.A. SaeedanA.S. OgalyH.A. Abd-ElsalamR.M. AlqasoumiS.I. Abdel-KaderM.S. Molecular and biochemical monitoring of the possible herb-drug interaction between Momordica charantia extract and glibenclamide in diabetic rats.Saudi Pharm. J.201927680381610.1016/j.jsps.2019.05.002 31516323
    [Google Scholar]
  12. PerveenH. DashM. KhatunS. MaityM. IslamS.S. ChattopadhyayS. Electrozymographic evaluation of the attenuation of arsenic induced degradation of hepatic SOD, catalase in an in vitro assay system by pectic polysaccharides of Momordica charantia in combination with curcumin.Biochem. Biophys. Rep.201711647110.1016/j.bbrep.2017.06.002 28955769
    [Google Scholar]
  13. YanJ.K. WuL.X. QiaoZ.R. CaiW.D. MaH. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices.Food Chem.201927158859610.1016/j.foodchem.2018.08.012 30236720
    [Google Scholar]
  14. ZhangC. ChenH. BaiW. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice.Int. J. Biol. Macromol.2018115455210.1016/j.ijbiomac.2018.04.039 29649536
    [Google Scholar]
  15. PanlilioB.G. MacabeoA.P.G. KnornM. KohlsP. RichommeP. KouamS.F. GehleD. KrohnK. FranzblauS.G. ZhangQ. AguinaldoM.A.M. A lanostane aldehyde from Momordica charantia.Phytochem. Lett.20125368268410.1016/j.phytol.2012.07.006
    [Google Scholar]
  16. RaishM. AhmadA. JanB.L. AlkharfyK.M. AnsariM.A. MohsinK. JenoobiF. Al-MohizeaA. Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats.Int. J. Biol. Macromol.20169139439910.1016/j.ijbiomac.2016.05.090 27238589
    [Google Scholar]
  17. RaishM. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway.Int. J. Biol. Macromol.20179754455110.1016/j.ijbiomac.2017.01.074 28109806
    [Google Scholar]
  18. GaoH. WenJ.J. HuJ.L. NieQ.X. ChenH.H. XiongT. NieS.P. XieM.Y. Fermented Momordica charantia L. juice modulates hyperglycemia, lipid profile, and gut microbiota in type 2 diabetic rats.Food Res. Int.201912136737810.1016/j.foodres.2019.03.055 31108759
    [Google Scholar]
  19. JiangY. PengX.R. YuM.Y. WanL.S. ZhuG.L. ZhaoG.T. ZhouL. QiuM.H. LiuJ. Cucurbitane-type triterpenoids from the aerial parts of Momordica charantia L.Phytochem. Lett.20161616416810.1016/j.phytol.2016.04.007
    [Google Scholar]
  20. ZhangF. LinL. XieJ. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia.Int. J. Biol. Macromol.20169224625310.1016/j.ijbiomac.2016.06.101 27377459
    [Google Scholar]
  21. TuanP.A. ParkS.U. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia).J. Plant Physiol.2013170111512010.1016/j.jplph.2012.09.001 23043987
    [Google Scholar]
  22. GiulianiC. TaniC. Maleci BiniL. Micromorphology and anatomy of fruits and seeds of bitter melon (Momordica charantia L., Cucurbitaceae).Acta Soc. Bot. Pol.2016851349010.5586/asbp.3490
    [Google Scholar]
  23. Damasceno SaR. CadenaM.B. Ribeiro PadilhaR.J. AlvesL.C. RandauK.P. Anatomical study and characterization of metabolites in leaves of Momordica charantia I.Pharmacogn. J.201810582382610.5530/pj.2018.5.140
    [Google Scholar]
  24. SowmyaH.M. KolakarS.S. LakshmanaD. NadukeriS. SrinivasaV. JakkeralS.A. Character association and path coefficient analysis in bitter gourd (Momordica charantia L.) genotypes.Int. J. Curr. Microbiol. Appl. Sci.2019852193219710.20546/ijcmas.2019.805.258
    [Google Scholar]
  25. BeheraT.K. JohnJ.K. SimonW.P. StaubJ.E. Bitter Gourd Botany, Horticulture, Breeding. Horticulture Reviews. JanickJ. Wiley Blackwell20103710.1002/9780470543672.ch2
    [Google Scholar]
  26. WeiY. WangY. WuX. ShuS. SunJ. GuoS. Redox and thylakoid membrane proteomic analysis reveals the Momordica (Momordica charantia L.) rootstock-induced photoprotection of cucumber leaves under short-term heat stress.Plant Physiol. Biochem.20191369810810.1016/j.plaphy.2019.01.010 30660678
    [Google Scholar]
  27. ZhangC. HuangM. HongR. ChenH. Preparation of a Momordica charantia L. polysaccharide chromium (III) complex and its anti-hyperglycemic activity in mice with streptozotocin-induced diabetes.Int. J. Biol. Macromol.201912261962710.1016/j.ijbiomac.2018.10.200 30391593
    [Google Scholar]
  28. ShahrajabianM.H. SunW. ChengQ. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science.Appl. Ecol. Environ. Res.2019176133711338210.15666/aeer/1706_1337113382
    [Google Scholar]
  29. ShahrajabianM.H. ChengQ. SunW. The most important medicinal herbs and plants in traditional Chinese and Iranian medicinal sciences with antioxidant activities.Lett. Drug Des. Discov.202219910.2174/1570180819666220414102700
    [Google Scholar]
  30. ShahrajabianM.H. SunW. ChengQ. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities.Mini Rev. Org. Chem.202219329331810.2174/1570178618666210707161025
    [Google Scholar]
  31. SunW. ShahrajabianM.H. LinM. Research progress of fermented functional foods and protein factory-microbial fermentation technology.Fermentation 202281268810.3390/fermentation8120688
    [Google Scholar]
  32. ShahrajabianM.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing.Curr. Org. Chem.202125232885290110.2174/1385272825666211110115656
    [Google Scholar]
  33. ShahrajabianM.H. ChaskiC. PolyzosN. PetropoulosS.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables.Biomolecules202111569810.3390/biom11050698 34067181
    [Google Scholar]
  34. HoraxR. HettiarachchyN. ChenP. Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe).J. Agric. Food Chem.20105874428443310.1021/jf9029578 20225855
    [Google Scholar]
  35. HoraxR. HettiarachchyN. IslamS. Total phenolic contents and phenolic acid constitutions in four varieties of bitter melons (Momordica charantia L.) and antioxidative activity of their extracts.J. Food Sci.20057027528010.1111/j.1365‑2621.2005.tb07173.x
    [Google Scholar]
  36. ShahrajabianM.H. SunW. ShenH. ChengQ. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak.Acta Agric. Scand. B Soil Plant Sci.202070543744310.1080/09064710.2020.1763448
    [Google Scholar]
  37. ShahrajabianM.H. SunW. ChengQ. Traditional herbal medicine for the prevention and treatment of cold and flu in the Autumn of 2020 overlapped with Covid-19.Nat. Prod. Commun.20201581934578X209514310.1177/1934578X20951431
    [Google Scholar]
  38. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  39. ShahrajabianM.H. MarmittD.J. ChengQ. SunW. Natural antioxidants of the underutilized and neglected plant species of Asia and South America.Lett. Drug Des. Discov.202320101512153710.2174/1570180819666220616145558
    [Google Scholar]
  40. MarmittD.J. ShahrajabianM.H. Plant species used in Brazil and Asia regions with toxic properties.Phytother. Res.20213594703472610.1002/ptr.7100 33793002
    [Google Scholar]
  41. MarmittD.J. ShahrajabianM.H. GoettertM.I. RempelC. Clinical trials with plants in diabetes mellitus therapy: A systematic review.Expert Rev. Clin. Pharmacol.202114673574710.1080/17512433.2021.1917380 33884948
    [Google Scholar]
  42. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science.Mini Rev. Med. Chem.202121672473010.2174/18755607MTEx4OTAn5 33245271
    [Google Scholar]
  43. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health.Molecules2023284184510.3390/molecules28041845 36838831
    [Google Scholar]
  44. LiQ.Y. LiangH. ChenH.B. WangB. ZhaoY.Y. A new cucurbitane triterpenoid from Momordica charantia.Chin. Chem. Lett.200718784384510.1016/j.cclet.2007.05.022
    [Google Scholar]
  45. ChenJ.C. LiuW.Q. LuL. QiuM.H. ZhengY.T. YangL.M. ZhangX.M. ZhouL. LiZ.R. Kuguacins F–S, cucurbitane triterpenoids from Momordica charantia.Phytochemistry200970113314010.1016/j.phytochem.2008.10.011 19041990
    [Google Scholar]
  46. LiuP. LuJ.-F. KangL.-P. YuH.-S. ZhangL.-J. SongX.-B. MaB.-P. A new C30 sterol glycoside from the fresh fruits of Momordica charantia.Chin. J. Nat. Med 20121020088009110.3724/SP.J.1009.2012.00088
    [Google Scholar]
  47. MaL. YuA.H. SunL.L. GaoW. ZhangM.M. SuY.L. LiuH. JiT. Two new bidesmoside triterpenoid saponins from the seeds of Momordica charantia L.Molecules20141922238224610.3390/molecules19022238 24566301
    [Google Scholar]
  48. ZengK. HeY.N. YangD. CaoJ.Q. XiaX.C. ZhangS.J. BiX.L. ZhaoY.Q. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B.Eur. J. Med. Chem.20148117618010.1016/j.ejmech.2014.01.066 24836069
    [Google Scholar]
  49. SvobodovaB. BarrosL. CalhelhaR.C. HelenoS. AlvesM.J. WalcottS. BittovaM. KubanV. FerreiraI.C.F.R. Bioactive properties and phenolic profile of Momordica charantia L. medicinal plant growing wild in Trinidad and Tobago.Ind. Crops Prod.20179536537310.1016/j.indcrop.2016.10.046
    [Google Scholar]
  50. CaoJ.Q. ZhangY. CuiJ.M. ZhaoY.Q. Two new cucurbitane triterpenoids from Momordica charantia L.Chin. Chem. Lett.201122558358610.1016/j.cclet.2010.11.033
    [Google Scholar]
  51. IslamM.R. HossainM.S. BhuiyanM.S.R. HusnaA. SyedM.A. Genetic variability and path-coefficient analysis of bitter gourd (Momordica charantia L.).Int J Sustain Agric2009135357
    [Google Scholar]
  52. ShubhaA.S. Medicinal and nutritional importance of bitter melon (Momordica charantia L.): A review article.J. Pharmacogn. Phytochem.2018SP3297300
    [Google Scholar]
  53. VutharadhiS. NadimpalliS.K. Isolation of Momordica charantia seed lectin and glycosidases from the protein bodies: Lectin-glycosidase (β-hexosaminidase) protein body membrane interaction reveals possible physiological function of the lectin.Plant Physiol. Biochem.202319710766310.1016/j.plaphy.2023.107663 36989986
    [Google Scholar]
  54. PaulA. RaychaudhurS.S. Medicinal uses and molecular identification of two Momordica charantia varieties- a review.Electron J Biol2010624351
    [Google Scholar]
  55. SaeedM.K. ShahzadiI. AhmadI. AhmadR. ShahzadK. AshrafM. AbidiS.H. Syed.; Arif, K. Nutritional analysis and antioxidant activity of bitter gourd (Momordica charantia) from Pakistan.Pharmacologyonline2010125226010.36686/Ariviyal.GR.2022.03.07.035
    [Google Scholar]
  56. BudratP. ShotiprukA. Extraction of phenolic compounds from fruits of bitter melon (Momordica charantia) with sub-critical water extraction and antioxidant activities of these extracts.Warasan Khana Witthayasat Maha Witthayalai Chiang Mai200835112313010.1016/j.seppur.2008.11.014
    [Google Scholar]
  57. ChangC.I. ChenC.R. LiaoY.W. ChengH.L. ChenY.C. ChouC.H. Cucurbitane-type triterpenoids from the stems of momordica charantia.J. Nat. Prod.20087181327133010.1021/np070532u 18637688
    [Google Scholar]
  58. TanM.J. YeJ.M. TurnerN. Hohnen-BehrensC. KeC.Q. TangC.P. ChenT. WeissH.C. GesingE.R. RowlandA. JamesD.E. YeY. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway.Chem. Biol.200815326327310.1016/j.chembiol.2008.01.013 18355726
    [Google Scholar]
  59. AdewaleI.O. AdebiyiV.G. FamutimiO.G. DadaO.V. Kinetics of trypsin inhibition by methanolic and solvent-partitioned fractions of two medicinal plants – Momordica charantia and Xylopia aethiopica.S. Afr. J. Bot.202315217418110.1016/j.sajb.2022.11.037
    [Google Scholar]
  60. KrawinkelM.B. KedingG.B. Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia.Nutr. Rev.200664733133710.1111/j.1753‑4887.2006.tb00217.x 16910221
    [Google Scholar]
  61. PatelS. PatelT. ParmarK. BhattY. PatelY. PatelN.M.D. Isolation, characterization and antimicrobial activity of charantin from Momordica charantia linn. fruit.Int J Drug Deve Res201023629634
    [Google Scholar]
  62. PitipanapongJ. ChitprasertS. GotoM. JiratchariyakulW. SasakiM. ShotiprukA. New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction.Separ. Purif. Tech.200752341642210.1016/j.seppur.2005.11.037
    [Google Scholar]
  63. TayyabF. LalS.S. MishraM. KumarU. A review: Medicinal plants and its impact on diabetes.World J. Pharm. Res.20121410191046
    [Google Scholar]
  64. HaixiaZ. XiaozuoZ. YaweiW. MancanqL. ZhideH. Analysis of vicine in bitter melon samples by polyglycol-C8 solid phase with high performance liquid chromatography.Chin. J. Anal. Chem.2004340810.1081/AL‑120021551
    [Google Scholar]
  65. HanC. WangJ. Optimization of conditions for charantin extraction in PEG/Salt aqueous two-phase systems using response surface methodology.Open Complement. Med. J.200911465010.2174/1876391X00901010046
    [Google Scholar]
  66. GaoY. LiuP. WangD. LiuJ. YangL. KangY. HanB. YinJ. ZhuJ. WangK. LiC. Isolation and characterization of a novel protein from Momordica charantia L. Positively regulates lipid metabolism activity in vivo and in vitro .J. Funct. Foods20229610521810.1016/j.jff.2022.105218
    [Google Scholar]
  67. SaeedF. AfzaalM. NiazB. ArshadM.U. TufailT. HussainM.B. JavedA. Bitter melon (Momordica charantia): A natural healthy vegetable.Int. J. Food Prop.20182111270129010.1080/10942912.2018.1446023
    [Google Scholar]
  68. KumarR. BalajiS. SripriyaR. NithyaN. UmaT.S. SehgalP.K. In vitro evaluation of antioxidants of fruit extract of Momordica charantia L. on fibroblasts and keratinocytes.J. Agric. Food Chem.20105831518152210.1021/jf9025986 20070086
    [Google Scholar]
  69. GüdrA. Influence of total anthocyanins from bitter melon (Momordica charantia L.) as antidiabetic and radical scavenging agents.Iran. J. Pharm. Res.2016151301309 27610171
    [Google Scholar]
  70. BakareR.I. MagbagbeolaO.A. AkinwandeA.I. OkunowoO.W. Nutritional and chemical evaluation of Momordica charantia.J. Med. Plants Res.20104212189219310.5897/JMPR10.274
    [Google Scholar]
  71. GhoshS. BhatejaP. RaniJ. SainiA. In vitro evaluation of antioxidant activity of Bitter Melon (Momordica charantia L.).Int. J. Pharm. Tech. Res.20146413741382
    [Google Scholar]
  72. MadalaN.E. PiaterL. DuberyI. SteenkampP. Distribution patterns of flavonoids from three Momordica species by ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry: A metabolomic profiling approach.Rev. Bras. Farmacogn.201626450751310.1016/j.bjp.2016.03.009
    [Google Scholar]
  73. LiuC.H. YenM.H. TsangS.F. GanK.H. HsuH.Y. LinC.N. Antioxidant triterpenoids from the stems of Momordica charantia.Food Chem.2010118375175610.1016/j.foodchem.2009.05.058
    [Google Scholar]
  74. ChenF. HuangG. YangZ. HouY. Antioxidant activity of Momordica charantia polysaccharide and its derivatives.Int. J. Biol. Macromol.201913867368010.1016/j.ijbiomac.2019.07.129 31344411
    [Google Scholar]
  75. ShivanagoudraS.R. PereraW.H. PerezJ.L. AthreyG. SunY. WuC.S. JayaprakashaG.K. PatilB.S. In vitro and in silico elucidation of antidiabetic and anti-inflammatory activities of bioactive compounds from Momordica charantia L.Bioorg. Med. Chem.201927143097310910.1016/j.bmc.2019.05.035 31196754
    [Google Scholar]
  76. BaiJ. ZhuY. DongY. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats.J. Ethnopharmacol.201619471772610.1016/j.jep.2016.10.043 27751827
    [Google Scholar]
  77. BaoB. ChenY.G. ZhangL. Na XuY.L. WangX. LiuJ. QuW. Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues.PLoS One2013812e8407510.1371/journal.pone.0084075 24358329
    [Google Scholar]
  78. ShivanagoudraS.R. PereraW.H. PerezJ.L. AthreyG. SunY. JayaprakashaG.K. PatilB.S. Cucurbitane-type compounds from Momordica charantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches.Bioorg. Chem.201987314210.1016/j.bioorg.2019.02.040 30856374
    [Google Scholar]
  79. RaishM. AhmadA. AnsariM.A. AlkharfyK.M. AljenoobiF.I. JanB.L. Al-MohizeaA.M. KhanA. AliN. Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition.Int. J. Biol. Macromol.201811119319910.1016/j.ijbiomac.2018.01.008 29307809
    [Google Scholar]
  80. AyodhyaS. KusumS. AnjaliS. Hypoglycaemic activity of different extracts of various herbal plants.IJRAP201011212224
    [Google Scholar]
  81. MalviyaN. JainS. MalviyaS. Anti-diabetic potential of medicinal plants.Acta olharm., 201067211311110.5455/spatula.20101223032951
    [Google Scholar]
  82. JosephB. JiniD. A medicinal potency of Capparis decidua- harsh terrain plant.Res. J. Phytochem.20115111310.3923/rjphyto.2011.1.13
    [Google Scholar]
  83. PatelP. HardeP. PillaiJ. DarjiN. PatelB. Antidiabetic herbal drug a review.Pharmacphore201231182910.31638/IJPRS.V1.I1.00018
    [Google Scholar]
  84. ZhangL.J. LiawC.C. HsiaoP.C. HuangH.C. LinM.J. LinZ.H. HsuF.L. KuoY.H. Cucurbitane-type glycosides from the fruits of Momordica charantia and their hypoglycaemic and cytotoxic activities.J. Funct. Foods2014656457410.1016/j.jff.2013.11.025
    [Google Scholar]
  85. PerumalV. KhooW.C. Abdul-HamidA. IsmailA. SaariK. MurugesuS. AbasF. IsmailI.S. LajisN.H. MushtaqM.Y. KhatibA. Evaluation of antidiabetic properties of Momordica charantia in streptozotocin induced diabetic rats using metabolomics approach.Int. Food Res. J.201522312981306
    [Google Scholar]
  86. KavishankarG.B. LakshmideviN. MurtyS.M. PrakashH.S. NiranjanaS.R. Diabetes and medicinal plants- A review.Int J Pharm Biomed2011236585
    [Google Scholar]
  87. HuiH. TangG. GoV. GoV.L.W. Hypoglycemic herbs and their action mechanisms.Chin. Med.200941111410.1186/1749‑8546‑4‑11 19523223
    [Google Scholar]
  88. KellerA.C. MaJ. KavalierA. HeK. BrillantesA.M.B. KennellyE.J. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro .Phytomedicine2011191323710.1016/j.phymed.2011.06.019 22133295
    [Google Scholar]
  89. TakasuN. AsawaT. KomiyaI. NagasawaY. YamadaT. Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for H2O2 as an intermediate.J. Biol. Chem.199126642112211410.1016/S0021‑9258(18)52216‑X 1989973
    [Google Scholar]
  90. YuanX. GuX. TangJ. Optimization of the production of Momordica charantia L. Var. abbreviata Ser. protein hydrolysates with hypoglycemic effect using Alcalase.Food Chem.2008111234034410.1016/j.foodchem.2008.03.070 26047432
    [Google Scholar]
  91. ZhaoL. LiuX. XieL. GaoH. LinD. 1H NMR-based metabonomic analysis of metabolic changes in streptozotocin-induced diabetic rats.Anal. Sci.201026121277128210.2116/analsci.26.1277 21157097
    [Google Scholar]
  92. CummingsE. HundalH.S. WackerhageH. HopeM. BelleM. AdeghateE. SinghJ. Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes.Mol. Cell. Biochem.200426119910410.1023/B:MCBI.0000028743.75669.ab 15362491
    [Google Scholar]
  93. JeongJ. LeeS. HueJ. LeeK. NamS.Y. YunY.W. Effect of bittermelon (Momordica Charantia) on antidiabetic activity in C57BL/6J db/db mice.Korean J. Vet. Res.2008483327336
    [Google Scholar]
  94. ShibibB.A. KhanL.A. RahmanR. Hypoglycaemic activity enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase.Biochem. J.199329226727010.1042/bj2920267 8389127
    [Google Scholar]
  95. UebansoT. AraiH. TaketaniY. FukayaM. YamamotoH. MizunoA. UryuK. HadaT. TakedaE. Extracts of Momordica charantia suppress postprandial hyperglycemia in rats.J. Nutr. Sci. Vitaminol. 200753648248810.3177/jnsv.53.482 18202535
    [Google Scholar]
  96. AbdollahM. ZukiA.B.Z. GohY.M. RezaeizadehA. NoordinM.M. The effects of Momordica charantia on the liver in streptozotocin-induced diabetes in neonatal rats.Afr. J. Biotechnol.20109315004501210.4314/njb.v37i2.12
    [Google Scholar]
  97. AkhtarN. KhanB.A. MajidA. KhanH.M. MahmoodT. Gulfishan; Saeed, T. Pharmaceutical and biopharmaceutical evaluation of extracts from different plant parts of indigenous origin for their hypoglycemic responses in rabbits.Acta Pol. Pharm.201168691992510.1016/j.atherosclerosis.2019.06.436 22125958
    [Google Scholar]
  98. NerurkarP.V. LeeY.K. NerurkarV.R. Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes.BMC Complement. Altern. Med.20101013410.1186/1472‑6882‑10‑34 20587058
    [Google Scholar]
  99. SinghJ. CummingE. ManoharanG. KalaszH. AdeghateE. Medicinal chemistry of the anti-diabetic effects of momordica charantia: Active constituents and modes of actions.Open Med. Chem. J.201152707710.2174/1874104501105010070 21966327
    [Google Scholar]
  100. Lubinska-SzczygełM. RóżańskaA. NamieśnikJ. DymerskiT. SzterkA. LuksirikulP. VearasilpS. KatrichE. GorinsteinS. Influence of steam cooking on pro-health properties of Small and Large variety of Momordica charantia.Food Control201910033534910.1016/j.foodcont.2019.01.027
    [Google Scholar]
  101. Trakoon-osotW. SotanaphunU. PhanachetP. PorasuphatanaS. UdomsubpayakulU. KomindrS. Pilot study: Hypoglycemic and antiglycation activities of bitter melon (Momordica charantia L.) in type 2 diabetic patients.J. Pharm. Res.20136885986410.1016/j.jopr.2013.08.007
    [Google Scholar]
  102. WangH.Y. KanW.C. ChengT.J. YuS.H. ChangL.H. ChuuJ.J. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice.Food Chem. Toxicol.20146934735610.1016/j.fct.2014.04.008 24751968
    [Google Scholar]
  103. SunK. DingM. FuC. LiP. LiT. FangL. XuJ. ZhaoY. Effects of dietary wild bitter melon (Momordica charantia var. abbreviate Ser.) extract on glucose and lipid metabolism in HFD/STZ-induced type 2 diabetic rats.J. Ethnopharmacol.202330611615410.1016/j.jep.2023.116154 36634725
    [Google Scholar]
  104. KellerA.C. HeK. BrillantesA.M. KennellyE.J. A characterized saponin-rich fraction of Momordica charantia shows antidiabetic activity in C57BLK/6 mice fed a high fat diet. Phytomed.Plus20211410013410.1016/j.phyplu.2021.100134
    [Google Scholar]
  105. KimS.K. JungJ. JungJ.H. YoonN. KangS.S. RohG.S. HahmJ.R. Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus.Complement. Ther. Med.20205210252410.1016/j.ctim.2020.102524 32951763
    [Google Scholar]
  106. PereiraC.A.J. OliveiraL.L.S. CoaglioA.L. SantosF.S.O. CezarR.S.M. MendesT. OliveiraF.L.P. ConzensaG. LimaW.S. Anti-helminthic activity of Momordica charantia L. against Fasciola hepatica eggs after twelve days of incubation in vitro .Vet. Parasitol.201622816016610.1016/j.vetpar.2016.08.025 27692319
    [Google Scholar]
  107. OnonujuC.C. NzenwaP.O. Determing the Nematicidal effects of some plant extracts on egg hatchability and control of Meloidogyne spp. In cowpea (Vigna unguiculata (L.) Walp).Afr. J. Plant Sci.2023539410510.9734/bpi/rhas/v7/4086A
    [Google Scholar]
  108. BeloinN. GbeassorM. AkpaganaK. HudsonJ. de SoussaK. KoumagloK. ArnasonJ.T. Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity.J. Ethnopharmacol.2005961-2495510.1016/j.jep.2004.08.009 15588650
    [Google Scholar]
  109. BatistaL.M. BevilaquaC.M.L. MoraesS.M. VieiraL.S. Atividade ovicida e larvicida in vitro das plantas Spigelia anthelmia e Momordica charantia contra o nematodeo Haemonchus contortus.Ciênc. Anim.199926773
    [Google Scholar]
  110. LalJ. ChandraS. RaviprakashV. SabirM. In vitro anthelmintic action of some indigenous medicinal plants on Ascardia galli worms.Indian J. Physiol. Pharmacol.1976202646810.7324/JAPS.2018.8224 965077
    [Google Scholar]
  111. BracaA. SicilianoT. D’ArrigoM. GermanòM.P. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil.Fitoterapia200879212312510.1016/j.fitote.2007.11.002 18164872
    [Google Scholar]
  112. Cervantes CeballosL. Sánchez HoyosF. Gómez EstradaH. Antibacterial activity of Cordia dentata Poir, Heliotropium indicum Linn and Momordica charantia Linn from the Northern colombian coast.Revista Colombiana de Ciencias Químico-Farmacéuticas201746214315910.15446/rcciquifa.v46n2.67933
    [Google Scholar]
  113. MalaikozhundanB. VaseeharanB. VijayakumarS. SudhakaranR. GobiN. ShanthiniG. Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle.Biocatal. Agric. Biotechnol.2016818919610.1016/j.bcab.2016.09.007
    [Google Scholar]
  114. WangS. ZhengY. XiangF. LiS. YangG. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L.J. Food Drug Anal.201624488188710.1016/j.jfda.2016.03.006 28911628
    [Google Scholar]
  115. MishraV. SrivastavaG. PrasadS.M. Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation.Sci. Hortic. 2009120337337810.1016/j.scienta.2008.11.024
    [Google Scholar]
  116. VladC. VladD. PopescuR. PauliucI. FilimonN. CimporescuA. GotiaL. BotauD. DumitrascuV. Determination of antioxidant properties and phenolic content in extracts of Momordica charantia.J. Biotechnol.2014185S10810.1016/j.jbiotec.2014.07.367
    [Google Scholar]
  117. WangL. ClardyA. HuiD. GaoA. WuY. Antioxidant and antidiabetic properties of Chinese and Indian bitter melons (Momordica charantia L.).Food Biosci.201929738010.1016/j.fbio.2019.03.010
    [Google Scholar]
  118. InnihS.O. EzeI.G. OmageK. Evaluation of the haematinic, antioxidant and anti-atherosclerotic potential of Momordica charantia in cholesterol-fed experimental rats.Toxicol. Rep.2022961161810.1016/j.toxrep.2022.03.042 35399217
    [Google Scholar]
  119. ChenF. HuangG. HuangH. Preparation, analysis, antioxidant activities in vivo of phosphorylated polysaccharide from Momordica charantia.Carbohydr. Polym.202125211717910.1016/j.carbpol.2020.117179 33183626
    [Google Scholar]
  120. KubolaJ. SiriamornpunS. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro .Food Chem.2008110488189010.1016/j.foodchem.2008.02.076 26047274
    [Google Scholar]
  121. PerumalV. KhatibA. Uddin AhmedQ. Fathamah UzirB. AbasF. MurugesuS. Zuwairi SaimanM. PrimaharinastitiR. El-SeediH. Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics.Food Chem.2021210001210.1016/j.fochms.2021.100012 35415640
    [Google Scholar]
  122. SagorA.T. ChowdhuryM.R.H. TabassumN. HossainH. RahmanM.M. AlamM.A. Supplementation of fresh ucche (Momordica charantia L. var. muricata Willd) prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats.BMC Complement. Altern. Med.201515111510.1186/s12906‑015‑0636‑1 25884170
    [Google Scholar]
  123. LinK.W. YangS.C. LinC.N. Antioxidant constituents from the stems and fruits of Momordica charantia.Food Chem.2011127260961410.1016/j.foodchem.2011.01.051 23140707
    [Google Scholar]
  124. WuS.J. NgL.T. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan.Lebensm. Wiss. Technol.200841232333010.1016/j.lwt.2007.03.003
    [Google Scholar]
  125. AngamuthuD. PurushothamanI. KothandanS. SwaminathanR. Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to human herpes virus-3.Eur. J. Integr. Med.2019289810810.1016/j.eujim.2019.04.008
    [Google Scholar]
  126. AdedayoA. FamutiA. In-silico studies of Momordica charantia extracts as potential candidates against SARS-CoV-2 targeting human main protease enzyme (Mpro).Inform. Med. Unlocked2023381022910121610.1016/j.imu.2023.101216 36935867
    [Google Scholar]
  127. PoovithaS. ParaniM. Protein extract from the fruit pulp of Momordica charantia potentiate glucose uptake by up-regulating GLUT4 and AMPK.J. Funct. Foods20173750751210.1016/j.jff.2017.08.022
    [Google Scholar]
  128. MurugesanA. YadavS.K.R. DixitA. Anti-hyperglycemic activity of HPLC-fractionated Momordica charantia seed extract enriched in a novel napin-like protein in experimental diabetic rats and its validation with recombinant napin-like protein.Curr. Res. Biotechnol.2022417918910.1016/j.crbiot.2022.03.001
    [Google Scholar]
  129. İlhanM. BolatI.E. Süntarİ. Kutluay KöklüH. Uğar ÇankalD.A. KeleşH. Küpeli AkkolE. Topical application of olive oil macerate of Momordica charantia L. promotes healing of excisional and incisional wounds in rat buccal mucosa.Arch. Oral Biol.201560121708171310.1016/j.archoralbio.2015.09.006 26431827
    [Google Scholar]
  130. AlamS. AsadM. AsdaqS.M.B. PrasadV.S. Antiulcer activity of methanolic extract of Momordica charantia L. in rats.J. Ethnopharmacol.2009123346446910.1016/j.jep.2009.03.024 19501279
    [Google Scholar]
  131. Gürbüzİ. AkyüzÇ. YeşiladaE. ŞenerB. Anti-ulcerogenic effect of Momordica charantia L. fruits on various ulcer models in rats.J. Ethnopharmacol.2000711-2778210.1016/S0378‑8741(99)00178‑6 10904148
    [Google Scholar]
  132. BakarN.A.A. AbdullahM.N.H. LimV. YongY.K. Essential oils derived from Momordica charantia seeds exhibited antiulcer activity against hydrogen chloride/ethanol and indomethacin.Evid. Based Complement. Altern. Med.20212021552558410.1155/2021/5525584
    [Google Scholar]
  133. Rajiv GandhiP. JayaseelanC. KamarajC. Radhika RajasreeS.R. MaryR.R. In vitro antimalarial activity of synthesized TiO<sub>2</sub> nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum.J. Appl. Biomed.201816437838610.1016/j.jab.2018.04.001
    [Google Scholar]
  134. AliM.H. IbrahimI. JasamaiM. EmbiN. SidekH. Anti-malarial effect of Momordica charantia involved modulation of cytokine mediated via GSK3β inhibition in Plasmodium berghei-infected mice.Jordan J. Biol. Sci.202215352352910.54319/jjbs/150322
    [Google Scholar]
  135. BpA. KehindeB.D. AyoolaP.B. IbikunleG.J. OyewandeE.A. ArotayoR.A. AkwuB.P. BelloM.O. Antimalarial activity of the crude extract and solvent fractions of the stem of Momordica charantia in Plasmodium Berghei infected mice.J. Commun. Dis.2022543374710.24321/0019.5138.202288
    [Google Scholar]
  136. WengJ.R. BaiL.Y. ChiuC.F. HuJ.L. ChiuS.J. WuC.Y. Cucurbitane triterpenoid from Momordica charantia induces apoptosis and autophagy in breast cancer cells, in part, through peroxisome proliferator-activated receptor gamma activation.Evid. Based Complement. Alternat. Med.2013201311210.1155/2013/935675 23843889
    [Google Scholar]
  137. HsiaoP.C. LiawC.C. HwangS.Y. ChengH.L. ZhangL.J. ShenC.C. HsuF.L. KuoY.H. Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia.J. Agric. Food Chem.201361122979298610.1021/jf3041116 23432055
    [Google Scholar]
  138. DandawateP.R. SubramaniamD. PadhyeS.B. AnantS. Bitter melon: A panacea for inflammation and cancer.Chin. J. Nat. Med.20161428110010.1016/S1875‑5364(16)60002‑X 26968675
    [Google Scholar]
  139. SomasagaraR.R. DeepG. ShrotriyaS. PatelM. AgarwalC. AgarwalR. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells.Int. J. Oncol.20154641849185710.3892/ijo.2015.2885 25672620
    [Google Scholar]
  140. GroverJ.K. YadavS.P. Pharmacological actions and potential uses of Momordica charantia: A review.J. Ethnopharmacol.200493112313210.1016/j.jep.2004.03.035 15182917
    [Google Scholar]
  141. FangE.F. NgT.B. Bitter gourd (Momordica charantia) is a cornucopia of health: A review of its credited antidiabetic, anti-HIV, and antitumor properties.Curr. Mol. Med.201111541743610.2174/156652411795976583 21568930
    [Google Scholar]
  142. RainaK. KumarD. AgarwalR. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy.Semin. Cancer Biol.201640-4111612910.1016/j.semcancer.2016.07.002 27452666
    [Google Scholar]
  143. FarooqiA.A. KhalidS. TahirF. SabitaliyevichU.Y. YaylimI. AttarR. XuB. Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways.Food Chem. Toxicol.20181199810510.1016/j.fct.2018.05.024 29753870
    [Google Scholar]
  144. EhigieA.F. WeiP. WeiT. YanX. OlorunsogoO.O. OjeniyiF.D. EhigieL.O. Momordica charantia L. induces non-apoptotic cell death in human MDA-MB-436 breast and A549 lung cancer cells by disrupting energy metabolism and exacerbating reactive oxygen species’ generation.J. Ethnopharmacol.202127711403610.1016/j.jep.2021.114036 33753145
    [Google Scholar]
  145. RanasingheK.N.K. PremarathnaA.D. MahakapugeT.A.N. WijesunderaK.K. AmbagaspitiyaA.T. JayasooriyaA.P. KularatneS.A.M. RajapakseR.P.V.J. In vivo anticancer effects of Momordica charantia seed fat on hepatocellular carcinoma in a rat model.J. Ayurveda Integr. Med.202112343544210.1016/j.jaim.2021.03.001 34275705
    [Google Scholar]
  146. SinghA. SinghS.P. BamezaiR. Momordica charantia (Bitter Gourd) peel, pulp, seed and whole fruit extract inhibits mouse skin papillomagenesis.Toxicol. Lett.1998941374610.1016/S0378‑4274(97)00099‑4 9544697
    [Google Scholar]
  147. AgrawalR.C. BeoharT. Chemopreventive and anticarcinogenic effects of Momordica charantia extract.Asian Pac. J. Cancer Prev.2010112371375 20843118
    [Google Scholar]
  148. GangulyC. DeS. DasS. Prevention of carcinogen-induced mouse skin papilloma by whole fruit aqueous extract of Momordica charantia.Eur. J. Cancer Prev.20009428328810.1097/00008469‑200008000‑00009 10958332
    [Google Scholar]
  149. KusamranW.R. RatanavilaA. TepsuwanA. Effects of neem flowers, Thai and Chinese bitter gourd fruits and sweet basil leaves on hepatic monooxygenases and glutathione S-transferase activities, and in vitro metabolic activation of chemical carcinogens in rats.Food Chem. Toxicol.199836647548410.1016/S0278‑6915(98)00011‑8 9674955
    [Google Scholar]
  150. NagasawaH. WatanabeK. InatomiH. Effects of bitter melon (Momordica charantia L.) or ginger rhizome (Zingiber offifinale rosc) on spontaneous mammary tumorigenesis in SHN mice. Am. J. Chin. Med.,20023002n0319520510.1142/S0192415X0200030212230008
    [Google Scholar]
  151. RayR.B. RaychoudhuriA. SteeleR. NerurkarP. Bitter melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis.Cancer Res.20107051925193110.1158/0008‑5472.CAN‑09‑3438 20179194
    [Google Scholar]
  152. RuP. SteeleR. NerurkarP.V. PhillipsN. RayR.B. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model.Cancer Prev. Res. (Phila.)20114122122213010.1158/1940‑6207.CAPR‑11‑0376 21911444
    [Google Scholar]
  153. PitchakarnP. OgawaK. SuzukiS. TakahashiS. AsamotoM. ChewonarinT. LimtrakulP. ShiraiT. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo.Cancer Sci.2010101102234224010.1111/j.1349‑7006.2010.01669.x 20731662
    [Google Scholar]
  154. PitchakarnP. SuzukiS. OgawaK. PompimonW. TakahashiS. AsamotoM. LimtrakulP. ShiraiT. Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf.Cancer Lett.2011306214215010.1016/j.canlet.2011.02.041 21429659
    [Google Scholar]
  155. BrennanV.C. WangC.M. YangW.H. Bitter melon (Momordica charantia) extract suppresses adrenocortical cancer cell proliferation through modulation of the apoptotic pathway, steroidogenesis, and insulin-like growth factor type 1 receptor/RAC-α serine/threonine-protein kinase signaling.J. Med. Food201215432533410.1089/jmf.2011.0158 22191569
    [Google Scholar]
  156. LiawC.C. HuangH.C. HsiaoP.C. ZhangL.J. LinZ.H. HwangS.Y. HsuF.L. KuoY.H. 5β,19-epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity.Planta Med.2014811627010.1055/s‑0034‑1383307 25469855
    [Google Scholar]
  157. MinariJ.B. OkelolaC.A. UgochukwuN.C. Analysis of Kras gene from induced pancreatic cancer rats administered with Momordica charantia and Ocimum ba s ilicum leaf extracts.J. Tradit. Complement. Med.20188228228810.1016/j.jtcme.2017.04.003 29736383
    [Google Scholar]
  158. ChanD.W. YungM.M.H. ChanY.S. XuanY. YangH. XuD. ZhanJ.B. ChanK.K.L. NgT.B. NganH.Y.S. MAP30 protein from Momordica charantia is therapeutic and has synergic activity with cisplatin against ovarian cancer in vivo by altering metabolism and inducing ferroptosis.Pharmacol. Res.202016110515710.1016/j.phrs.2020.105157 32814169
    [Google Scholar]
  159. BeheraT.K. StaubJ.E. BeheraS. SimonP.W. Bitter gourd and human health.Med. Aromat. Plant Sci. Biotechnol.200812224226
    [Google Scholar]
  160. NagaraniG. AbiramiA. SiddhurajuP. Food prospects and nutraceutical attributes of Momordica species: A potential tropical bioresources – A review.Food Sci. Hum. Wellness201433-411712610.1016/j.fshw.2014.07.001
    [Google Scholar]
  161. SorifaA.M. Nutritional compositions, health promoting phytochemicals and value added products of bitter gourd: A review.Int. Food Res. J.201825517631772
    [Google Scholar]
  162. MahwishM. SaeedF. un Nisa, M.; Nadeem, M.T. Minerals and phytochemicals analysis of bitter melon fruits and its components in some indigenous and exotic cultivars.Biosci. J.20183461622163110.14393/BJ‑v34n6a2018‑39827
    [Google Scholar]
  163. UllahM. ChyF.K. SarkarS.K. IslamM.K. NurulA. Nutrient and phytochemical analysis of four varieties of bitter gourd (Momordica charantia) grownt in Chittagong hill tracts, Bangladesh.Asian J. Agric. Res201153186193
    [Google Scholar]
  164. IngleA. KapgatteR. Phytochemical screening and anti-microbial activity of Momordica charantia Linn.Int. J. Pharm. Res2018876365
    [Google Scholar]
  165. KimH.Y. MokS.Y. KwonS.H. LeeD.G. ChoE.J. LeeS. Phytochemical constituents of bitter melon (Momordica charantia).Nat. Prod. Sci.2013194286289
    [Google Scholar]
  166. TanS. StathopoulosC. ParksS. RoachP. An optimized aqueous extract of phenolic compounds from bitter melon with high antioxidant capacity.Antioxidants20143481482910.3390/antiox3040814 26785242
    [Google Scholar]
  167. SutantoH. HimawanE. KusumocahyoS.P. Ultrasound assisted extraction of bitter gourd fruit (Momordica charantia) and vacuum evaporation to concentrate the extract.Procedia Chem.20151625125710.1016/j.proche.2015.12.048
    [Google Scholar]
  168. ZainiA.S. ArisN.A. PutraN.R. Abd HashibS. KamaruddinM.J. IdhamZ. Che YunusM.A. Comparison of charantin extract from Momordica Charantia using modified supercritical carbon dioxide and soxhlet extraction method.Malays. J. Fundam. Appl. Sci.201814446246610.11113/mjfas.v14n4.1092
    [Google Scholar]
  169. ChakrabortyS. UppaluriR. DasC. Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM).Food Bioprod. Process.202012011412210.1016/j.fbp.2020.01.003
    [Google Scholar]
  170. BortolottiM. MercatelliD. PolitoL. Momordica charantia, a nutraceutical approach for inflammatory related diseases.Front. Pharmacol.20191048610.3389/fphar.2019.00486 31139079
    [Google Scholar]
  171. ÇiçekS.S. Momordica charantia L.- Diabetes-related bioactivities, quality control, and safety considerations.Front. Pharmacol.20221390464310.3389/fphar.2022.904643 35656300
    [Google Scholar]
  172. HanC. HuiQ. WangY. Hypoglycaemic activity of saponin fraction extracted fromMomordica charantia in PEG/salt aqueous two-phase systems.Nat. Prod. Res.200822131112111910.1080/14786410802079675 18855210
    [Google Scholar]
  173. NgT.B. WongC.M. LiW.W. YeungH.W. A steryl glycoside fraction from Momordica charantia seeds with an inhibitory action on lipid metabolism in vitro .Biochem. Cell Biol.198664876677110.1139/o86‑104 3021185
    [Google Scholar]
  174. FanT. HuJ. FuL. ZhangL. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology.Carbohydr. Polym.201511570170610.1016/j.carbpol.2014.09.009 25439951
    [Google Scholar]
  175. Soo MayL. SanipZ. Ahmed ShokriA. Abdul KadirA. Md LazinM.R. LazinM. The effects of Momordica charantia (bitter melon) supplementation in patients with primary knee osteoarthritis: A single-blinded, randomized controlled trial.Complement. Ther. Clin. Pract.20183218118610.1016/j.ctcp.2018.06.012 30057048
    [Google Scholar]
  176. GuptaS. RaychaudhuriB. BanerjeeS. DasB. MukhopadhayaS. DattaS.C. Momordicatin purified from fruits of Momordica charantia is effective to act as a potent antileishmania agent.Parasitol. Int.201059219219710.1016/j.parint.2010.01.004 20132905
    [Google Scholar]
  177. OfforU. NaiduE.C. OgedengbeO.O. JegedeA.I. PeterA.I. AzuO.O. Nephrotoxicity and highly active antiretroviral therapy: Mitigating action of Momordica charantia.Toxicol. Rep.201851153116010.1016/j.toxrep.2018.09.003 30627515
    [Google Scholar]
  178. OyeleyeS.I. OlasehindeT.A. FasakinO.W. ObohG. SaliuJ.A.J. Phyllanthus amarus Schumach. & Thonn. and Momordica charantia L extracts improve memory function, attenuate cholinergic and purinergic dysfunction, and suppress oxidative stress in the brain of doxorubicin–treated rats. Phytomed.Plus20222210028310.1016/j.phyplu.2022.100283
    [Google Scholar]
  179. YueJ. SunY. XuJ. CaoJ. ChenG. ZhangH. ZhangX. ZhaoY. Cucurbitane triterpenoids from the fruit of Momordica charantia L. and their anti-hepatic fibrosis and anti-hepatoma activities.Phytochemistry2019157212710.1016/j.phytochem.2018.10.009 30352327
    [Google Scholar]
  180. PlatelK. ShurpalekarK.S. SrinivasanK. Influence of bitter gourd (Momordica charantia) on growth and blood constituents in albino rats.Nahrung199337215616010.1002/food.19930370210 8510714
    [Google Scholar]
  181. VirdiJ. SivakamiS. ShahaniS. SutharA.C. BanavalikarM.M. BiyaniM.K. Antihyperglycemic effects of three extracts from Momordica charantia.J. Ethnopharmacol.200388110711110.1016/S0378‑8741(03)00184‑3 12902059
    [Google Scholar]
  182. BaschE. GabardiS. UlbrichtC. Bitter melon (Momordica charantia): A review of efficacy and safety.Am. J. Health Syst. Pharm.200360435635910.1093/ajhp/60.4.356 12625217
    [Google Scholar]
  183. JabeenU. KhanumA. Isolation and characterization of potential food preservative peptide from Momordica charantia L.Arab. J. Chem.201710S3982S398910.1016/j.arabjc.2014.06.009
    [Google Scholar]
  184. JainV. PareekA. RatanY. SinghN. Standardized fruit extract of Momordica charantia L protect against vincristine induced neuropathic pain in rats by modulating GABAergic action, antimitotoxic, NOS inhibition, anti-inflammatory and antioxidative activity.S. Afr. J. Bot.20159712313210.1016/j.sajb.2014.12.010
    [Google Scholar]
  185. KanwarR. MehtaD.K. Studies on solid matrix priming of seeds in bitter gourd (Momordica charantia L.).J. Appl. Nat. Sci.20179139540110.31018/jans.v9i1.1202
    [Google Scholar]
  186. LiW. LinZ. YangC. WangY. QiaoY. Study on the chemical constituents of Momordica charantia L. leaves and method for their quantitative determination.Biomed. Res.2015263415419
    [Google Scholar]
  187. SasongkoR.E. SuriniS. SaputriF.C. Formulation and characterization of bitter melon extract (Momordica charantia) loaded phytosomes.Pharmacogn. J.20191161235124110.5530/pj.2019.11.192
    [Google Scholar]
  188. ZhaoG.T. LiuJ.Q. DengY.Y. LiH.Z. ChenJ.C. ZhangZ.R. ZhouL. QiuM.H. Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia.Fitoterapia201495758210.1016/j.fitote.2014.03.005 24631764
    [Google Scholar]
  189. SunW. ShahrajabianM.H. PetropoulosS.A. ShahrajabianN. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants.Plants20231213246910.3390/plants12132469 37447031
    [Google Scholar]
  190. SunW. ShahrajabianM.H. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin.Curr. Org. Synth.20232010.2174/1570179420666230607124949 37287298
    [Google Scholar]
  191. CuiH. ShahrajabianM.H. KuangY. ZhangH.Y. SunW. Heterologous expression and function of cholesterol oxidase: A review.Protein Pept. Lett.202330753154010.2174/0929866530666230525162545 37231716
    [Google Scholar]
  192. FujitaR. JinS. MatobaK. HoshinoY. Novel production of β-cryptoxanthin in haskap (Lonicera caerulea subsp. edulis) hybrids: Improvement of carotenoid biosynthesis by interspecific hybridization.Sci. Hortic.202330811154710.1016/j.scienta.2022.111547
    [Google Scholar]
  193. BrahmaD. DuttaD. Antioxidant property of beta-cryptoxanthin produced by Kocuria marina DAGII.Mater. Today Proc.20225741833183710.1016/j.matpr.2022.01.027
    [Google Scholar]
  194. DattaS. DuttaD. An in-silico study to investigate the role of β-cryptoxanthin on obesity.Mater. Today Proc.20225741819182610.1016/j.matpr.2022.01.004
    [Google Scholar]
  195. YoshizawaK. WillettW. Al-ShaarL. Reproducibility and validity of a food frequency questionnaire to measure the consumption of β-Carotene, β-Cryptoxanthin, folate, vitamin D, EPA, and DHA.Curr. Dev. Nutr.20226196310.1093/cdn/nzac067.083
    [Google Scholar]
  196. PetryF.C. MercadanteA.Z. Addition of either gastric lipase or cholesterol esterase to improve both β-cryptoxanthin ester hydrolysis and micellarization during in vitro digestion of fruit pulps.Food Res. Int.202013710969110.1016/j.foodres.2020.109691 33233265
    [Google Scholar]
  197. GaoM. DangF. DengC. β-Cryptoxanthin induced anti-proliferation and apoptosis by G0/G1 arrest and AMPK signal inactivation in gastric cancer.Eur. J. Pharmacol.201985917252810.1016/j.ejphar.2019.172528 31288004
    [Google Scholar]
  198. TuanP.A. KimJ.K. ParkN.I. LeeS.Y. ParkS.U. Carotenoid content and expression of phytoene synthase and phytoene desaturase genes in bitter melon (Momordica charantia).Food Chem.201112641686169210.1016/j.foodchem.2010.12.058 25213945
    [Google Scholar]
  199. MaG. ZhangL. IidaK. MadonoY. YungyuenW. YahataM. YamawakiK. KatoM. Identification and quantitative analysis of β-cryptoxanthin and β-citraurin esters in Satsuma mandarin fruit during the ripening process.Food Chem.201723435636410.1016/j.foodchem.2017.05.015 28551247
    [Google Scholar]
  200. StuliffA. HendrickA. DoengesK. QuinnK. WestcottJ. TangM. BorengasserS. ReisdorphR. FrankD. CampbellW. KrebsN. ResidorphN. Bell peppers provide consistent β-cryptoxanthin content independent of organic status, fresh, or cooked, Noth American country of origin and season. Curr Dev Nutr.,20204204103310.1093/cdn/nzaa041_033
    [Google Scholar]
  201. PopovicL. Hydrolysis of pumpkin oil cake globulin-cucurbitin by pepsin; Antioxidant and functional properties of resulting hydrolysates.J. Biotechnol.201015031510.1016/j.jbiotec.2010.09.294
    [Google Scholar]
  202. MukherjeeP.K. SinghaS. KarA. ChandaJ. BanerjeeS. DasguptaB. HaldarP.K. SharmaN. Therapeutic importance of Cucurbitaceae: A medicinally important family.J. Ethnopharmacol.202228211459910.1016/j.jep.2021.114599 34487849
    [Google Scholar]
  203. PerezJ.L. JayaprakashaG.K. PatilB.S. Metabolite profiling and in vitro biological activities of two commercial bitter melon (Momordica charantia Linn.) cultivars.Food Chem.201928817818610.1016/j.foodchem.2019.02.120 30902279
    [Google Scholar]
  204. AryaP. MunshiM. KumarP. Diosgenin: Chemistry, extraction, quantification and health benefits.Food Chem. Adv.2023210017010.1016/j.focha.2022.100170
    [Google Scholar]
  205. KhushbooM. SanjeevS. MurthyM.K. SunitadeviM. DinataR. BhanushreeB. BidanchiR.M. NisaN. LalrinzualiS. ManikandanB. SaeedA.L. AbinashG. PoriB. AratiC. RoyV.K. GurusubramanianG. Dietary phytoestrogen diosgenin interrupts metabolism, physiology, and reproduction of Swiss albino mice: Possible mode of action as an emerging environmental contaminant, endocrine disruptor and reproductive toxicant.Food Chem. Toxicol.202317611379810.1016/j.fct.2023.113798 37146712
    [Google Scholar]
  206. AryaP. KumarP. Encapsulated diosgenin powder production using binary carrier: Process optimization and powder characterization.Food Hydrocoll. Health2023310013410.1016/j.fhfh.2023.100134
    [Google Scholar]
  207. ZhangX. ZhangY. GuoY. XueP. XueZ. ZhangY. ZhangH. ItoY. DouJ. GuoZ. Research progress of diosgenin extraction from Dioscorea zingiberensis C. H. Wright: Inspiration of novel method with environmental protection and efficient characteristics.Steroids202319210918110.1016/j.steroids.2023.109181 36642106
    [Google Scholar]
  208. YanM. ManS. LiangY. MaL. GuoL. HuangL. GaoW. Diosgenin alleviates nonalcoholic steatohepatitis through affecting liver-gut circulation.Pharmacol. Res.202318710662110.1016/j.phrs.2022.106621 36535571
    [Google Scholar]
  209. KazakovaO. RubanikL. LobovA. PoleshchukN. BaikovaI. KapustinaY. PetrovaA. KorzunT. LopatinaT. FedorovaA. RybalovaT. PolovianenkoD. MiocM. ȘoicaC. Synthesis of erythrodiol C-ring derivatives and their activity against Chlamydia trachomatis.Steroids202117510891210.1016/j.steroids.2021.108912 34480919
    [Google Scholar]
  210. NtchapdaF. TallaE. SakavaP. TanziF. FohouoF.N.T. TanyiJ.M. DimoT. Nitric oxide-dependent vasodilation and Ca2+signalling induced by erythrodiol in rat aorta.Asian Pac. J. Trop. Dis.201551S214S22310.1016/S2222‑1808(15)60892‑1
    [Google Scholar]
  211. NairR.V.R. JayasreeD.V. BijuP.G. BabyS. Anti-inflammatory and anticancer activities of erythrodiol-3-acetate and 2,4-di-tert-butylphenol isolated from Humboldtia unijuga.Nat. Prod. Res.202034162319232210.1080/14786419.2018.1531406 30475646
    [Google Scholar]
  212. Emirdağ-ÖztürkS. KarayıldırımT. Çapcı-KaragözA. Alankuş-ÇalışkanÖ. ÖzmenA. Poyrazoğlu-ÇobanE. Synthesis, antimicrobial and cytotoxic activities, and structure–activity relationships of gypsogenin derivatives against human cancer cells.Eur. J. Med. Chem.20148256557310.1016/j.ejmech.2014.05.084 24941130
    [Google Scholar]
  213. Emirdağ-ÖztürkS. Babahanİ. ÖzmenA. Synthesis, characterization and in vitro anti-neoplastic activity of gypsogenin derivatives.Bioorg. Chem.201453152310.1016/j.bioorg.2013.12.001 24463219
    [Google Scholar]
  214. LuY. VanD. DeibertL. BishopG. BalsevichJ. Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots.Phytochemistry201511310812010.1016/j.phytochem.2014.11.021 25534953
    [Google Scholar]
  215. SerbianI. StröhlD. CsukR. Interconversion of hederagenin and gypsogenin and accessing 4-epi-hedragonic acid.Phytochem. Lett.202039353810.1016/j.phytol.2020.06.005
    [Google Scholar]
  216. McCartyK.D. SullivanM.E. TateishiY. HargroveT.Y. LepeshevaG.I. GuengerichF.P. Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1.J. Biol. Chem.2023299710484110.1016/j.jbc.2023.104841 37209823
    [Google Scholar]
  217. NguyenT.P. WangW. SternishaA.C. CorleyC.D. WangH.Y.L. WangX. OrtizF. LimS.K. AbdullahK.G. ParadaL.F. WilliamsN.S. McBrayerS.K. McDonaldJ.G. De BrabanderJ.K. NijhawanD. Selective and brain-penetrant lanosterol synthase inhibitors target glioma stem-like cells by inducing 24(S),25-epoxycholesterol production.Cell Chem. Biol.2023302214229.e1810.1016/j.chembiol.2023.01.005 36758549
    [Google Scholar]
  218. RüttlerF. HammerschickT. SchlagS. VetterW. Isolation of lanosterol and dihydrolanosterol from the unsaponifiable matter of lanolin by urea complexation and countercurrent chromatography in heart-cut recycling mode.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2022121012347010.1016/j.jchromb.2022.123470 36191441
    [Google Scholar]
  219. HublerZ. FriedrichR.M. SaxJ.L. AllimuthuD. GaoF. Rivera-LeónA.M. PleshingerM.J. BedermanI. AdamsD.J. Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation.Cell Chem. Biol.2021286866875.e510.1016/j.chembiol.2021.01.025 33636107
    [Google Scholar]
  220. TürkmenN.B. YüceH. AydınM. TaşlıdereA. DoğanA. ÖzekD.A. HayalT.B. YaşarŞ. ÇiftçiO. ÜnüvarS. Nerolidol attenuates dehydroepiandrosterone-induced polycystic ovary syndrome in rats by regulating oxidative stress and decreasing apoptosis.Life Sci.202331512138010.1016/j.lfs.2023.121380 36640898
    [Google Scholar]
  221. SunJ. WangX. YuK. ZangY. QuZ. WeiC. YuanW. Expression of the human antiapoptotic protein Bcl-2 increases nerolidol production in engineered yeast.Process Biochem.2022119909510.1016/j.procbio.2022.05.009
    [Google Scholar]
  222. CuccinielloR. TomasiniM. RussoA. FaliveneL. GambutiA. ForinoM. Experimental and theoretical studies on the acetaldehyde reaction with (+)-catechin.Food Chem.202342613655610.1016/j.foodchem.2023.136556 37343411
    [Google Scholar]
  223. ShahrajabianM.H. SunW. Five important seeds in traditional medicine, and pharmacological benefits.Seeds20232329030810.3390/seeds2030022
    [Google Scholar]
  224. SunW. ShahrajabianM.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture.Plants20231217310110.3390/plants12173101 37687348
    [Google Scholar]
  225. ShahrajabianM.H. SunW. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid.Curr. Org. Synth.20232010.2174/1570179420666230803102253 37534487
    [Google Scholar]
  226. ShahrajabianM.H. SunW. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods.Mini Rev. Med. Chem., 20232310.2174/138955752366623081609005437587815
    [Google Scholar]
  227. ShahrajabianM.H. KuangY. CuiH. FuL. SunW. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses.Curr. Org. Chem.202327978280610.2174/1385272827666230807150910
    [Google Scholar]
  228. ZhangH. ShahrajabianM.H. CuiH. KuangY. SunW. Novel aspects and directions in pest control and management-proteins with insecticidal properties.Curr. Green Chem.202310.2174/0122133461275040231026045521
    [Google Scholar]
  229. ShahrajabianM.H. ShahrajabianN. SunW. The beneficial effects of traditional Iranian medicine for cancer therapy.Biol. Life Sci. Forum.202326281410.3390/Foods2023‑15067
    [Google Scholar]
  230. ShahrajabianM.H. SunW. Chinese medicinal plants with antiviral activities for treatment of the common cold and flu.Biol. Life Sci. Form202326272710.3390/Foods2023‑15058
    [Google Scholar]
  231. SunW. ShahrajabianM.H. SoleymaniA. The roles of plant-growth-promoting rhizobacteria (PGPR)-based biostimulants for agricultural production systems.Plants202413561310.3390/plants13050613 38475460
    [Google Scholar]
  232. ShahrajabianM.H. SunW. The significance and importance of dPCR, qPCR, and SYBR Green PCR kit in the detection of numerous diseases.Curr. Pharm. Des.202430316917910.2174/0113816128276560231218090436 38243947
    [Google Scholar]
  233. SunW. ShahrajabianM.H. KuangY. WangN. Amino acids biostimulants and protein hydrolysates in agricultural sciences.Plants202413221010.3390/plants13020210 38256763
    [Google Scholar]
  234. ShahrajabianM.H. SunW. Biochar amendment and its impacts on medicinal and aromatic plants in sustainable agriculture.Curr. Green Chem.202411329631110.2174/0122133461286440240123055247
    [Google Scholar]
  235. KhoshkharamM. ShahrajabianM.H. SunW. Changes in germination parameters, growth and development of three cultivars of corn seedlings under various aqueous extracts of mallow.Curr. Org. Synth.20242111110.2174/0115701794274892231229110318
    [Google Scholar]
  236. SoleymaniA. ShahrajabianM.H. NaranjaniL. Effect of planting dates and different levels of nitrogen on seed yield and yield components of nuts sunflower (Helianthus annuus L.).Afr. J. Agric. Res.201384658025805
    [Google Scholar]
  237. SoleymaniA. ShahrajabianM.H. NaranjaniL. The effect of plant densities and nitrogen fertilization on yield, yield components and grain protein of grain sorghum.J. Food Agric. Environ.201193244246
    [Google Scholar]
/content/journals/cos/10.2174/0115701794285586240523101245
Loading
/content/journals/cos/10.2174/0115701794285586240523101245
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test