Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

-Aminophenol derivatives are of particular interest for their diverse biological activities and potential therapeutic applications. Such as, antioxidant, antibacterial, and cytotoxic activities.

Objectives

This study aimed to design and synthesize a series of novel -aminophenol derivatives through an efficient multi-step process, characterize them using modern spectroscopic techniques, and evaluate their antimicrobial, antioxidant, and cytotoxic activities.

Methods

A series of novel derivatives of -aminophenol have been successfully synthesized with very high efficiency through a simple six-step process using readily available chemicals and straightforward reactions. The structures of all products were accurately determined using modern spectroscopic methods such as 1D and 2D NMR, as well as IR, MS spectroscopy, and X-ray methods. The antimicrobial activities of eight -nitrophenol derivatives were assessed against Gram (-) and Gram (+) bacteria as well as fungi. In comparison, antioxidant activities were tested for two -nitrophenol and 11 -aminophenol derivatives using SC and EC assays. Cytotoxicity was evaluated on KB, HepG2, A549, and MCF7 cancer cell lines.

Results

Six synthesized compounds , , , , , exhibited unusual doublet signals in the H8 region of the 1H NMR spectrum, attributed to atropisomer formation. Eight -nitrophenol derivatives demonstrated weak antimicrobial activity, with MIC values ranging from 100 to 200 µg/mL. Compound showed activity against all tested bacterial and fungal strains. In antioxidant testing, eight -aminophenol derivatives , , , , , , , and displayed excellent activity, with SC values between 18.95 and 34.26 µg/mL, approaching ascorbic acid's SC value of 12.60 µg/mL. Three derivatives , , and showed superior antioxidant activity with EC values between 4.00 and 11.25 µg/mL, surpassing quercetin's standard of 9.8 µg/mL. Cytotoxicity assays revealed that -aminophenol derivatives , , , , and exhibited moderate inhibitory effects on KB cell lines with IC values from 32 to 74.94 µg/mL. Compound demonstrated moderate cytotoxic activity against HepG2, A549, and MCF7 cell lines, with IC values of 29.46, 71.29, and 80.02 µg/mL, respectively.

Conclusion

Design, synthesis, antimicrobial activity, DPPH Radical Scavenging, Cytotoxic activity, Evaluation of H8 signal anomalies in certain compounds, and Single crystal X-ray diffraction analysis.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794360303250109065121
2025-02-07
2025-10-16
Loading full text...

Full text loading...

References

  1. AslamM. AnisI. AfzaN. HussainM.T. MehmoodR. HussainA. YousufS. IqbalL. IqbalS. KhanI. Synthesis, X-ray crystallography, molecular docking and biological screening of 2-aminophenol based Schiff bases.J. Chil. Chem. Soc.20135831867187110.4067/S0717‑97072013000300016
    [Google Scholar]
  2. MagadumD.B. YadavG.D. Chemoselective Acetylation of 2-aminophenol using immobilized lipase: Process optimization, mechanism and kinetics.ACS Omega2018312185281853410.1021/acsomega.8b01428
    [Google Scholar]
  3. AshokD. RadhikaG. RaoB.A. SarasijaM. JayashreeA. SadanandamP. Synthesis of benzoxazepine derivatives from pyrazole-chalcone via a simple and convenient protocol using basic alumina as solid support.J. Chil. Chem. Soc.20186323983398710.4067/s0717‑97072018000203983
    [Google Scholar]
  4. ShahidiF. JanithaP.K. WanasundaraP.D. Phenolic antioxidants.Crit. Rev. Food Sci. Nutr.19923216710310.1080/10408399209527581 1290586
    [Google Scholar]
  5. LoginovaN.V. Koval’chukT.V. ZheldakovaR.A. OsipovichN.P. SorokinV.L. PolozovG.I. KsendzovaG.A. GlushonokG.K. ChernyavskayaA.A. ShadyroO.I. Synthesis and biological evaluation of copper (II) complexes of sterically hindered o-aminophenol derivatives as antimicrobial agents.Bioorg. Med. Chem. Lett.200616205403540710.1016/j.bmcl.2006.07.065 16890430
    [Google Scholar]
  6. PakpourF. SafaeiE. AzamiS.M. WojtczakA. KaldunskaK. The role of a redox-active non-innocent ligand in additive-free C-C Glaser-Hay and Suzuki coupling reactions by an o -aminophenol palladium(II) complex.RSC Advances20231353278328910.1039/D2RA07252A 36756395
    [Google Scholar]
  7. HwangC.S. ShemorryA. VarshavskyA. N-terminal acetylation of cellular proteins creates specific degradation signals.Science2010327596897397710.1126/science.1183147 20110468
    [Google Scholar]
  8. OhJ.H. HyunJ.Y. VarshavskyA. Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway.Proc. Natl. Acad. Sci.201711422E4370E437910.1073/pnas.1705898114 28515311
    [Google Scholar]
  9. MondaJ.K. ScottD.C. MillerD.J. LydeardJ. KingD. HarperJ.W. BennettE.J. SchulmanB.A. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes.Structure2013211425310.1016/j.str.2012.10.013 23201271
    [Google Scholar]
  10. BehniaR. PanicB. WhyteJ.R.C. MunroS. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p.Nat. Cell Biol.20046540541310.1038/ncb1120 15077113
    [Google Scholar]
  11. AugsteinJ. CoxD.A. HamA.L. LeemingP.R. Sanrey, M. β.-Adrenoceptor blocking agents. 1. Cardioselective 1-aryloxy-3-(aryloxyalkylamino)propan-2-ols.J. Med. Chem.197316111245125110.1021/jm00269a007 4147835
    [Google Scholar]
  12. OkuboT. YoshikawaR. ChakiS. OkuyamaS. NakazatoA. Design, synthesis and structure-affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands.Bioorg. Med. Chem.200412242343810.1016/j.bmc.2003.10.050 14723961
    [Google Scholar]
  13. VlietinckA.J. Screening methods for detection and evaluation of biological activities of plant preparations.Bio. Meth. Nat. Prod. Res. Drug Dev.199943375210.1007/978‑94‑011‑4810‑8_4
    [Google Scholar]
  14. VandenB.D. VlietinckA.J. Screening methods for antibacterial and antiviral agents from higher plants. Dey, PM, Harbone, JD. Methods in plant biochemistry.LondonAcademic Press19914769
    [Google Scholar]
  15. DoH.N. TranT.N.H. VuD.G. Screening for antiproliferative and antimicrobial activity of total lipids of some marine invertebrates collected from Vietnam’s north central coast.Vietnam J. Chem.2017556E124130
    [Google Scholar]
  16. WilliamsB.W. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  17. KumarP.G. NavyaK. RamyaE.M. VenkataramanaM. AnandT. AnilakumarK.R. DNA damage protecting and free radical scavenging properties of Terminalia arjuna bark in PC-12 cells and plasmid DNA.Free Radic. Antioxid.201331353910.1016/j.fra.2013.04.001
    [Google Scholar]
  18. GorinsteinS. HaruenkitR. ParkY.S. JungS.T. ZachwiejaZ. JastrzebskiZ. KatrichE. TrakhtenbergS. BellosoO.M. Bioactive compounds and antioxidant potential in fresh and dried Jaffa ® sweeties, a new kind of citrus fruit.J. Sci. Food Agric.200484121459146310.1002/jsfa.1800
    [Google Scholar]
  19. SmithR.C. ReevesJ.C. DageR.C. SchnettlerR.A. Antioxidant properties of 2-imidazolones and 2-imidazolthiones.Biochem. Pharmacol.19873691457146010.1016/0006‑2952(87)90110‑9 3579984
    [Google Scholar]
  20. MarxenK. VanselowK.H. LippemeierS. HintzeR. RuserA. HansenU.P. Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements.Sensors20077102080209510.3390/s7102080 28903215
    [Google Scholar]
  21. BuritsM. BucarF. Antioxidant activity of Nigella sativa essential oil.Phytother. Res.200014532332810.1002/1099‑1573(200008)14:5<323::AID‑PTR621>3.0.CO;2‑Q 10925395
    [Google Scholar]
  22. CuendetM. HostettmannK. PotteratO. DyatmikoW. Iridoid glucosides with free radical scavenging properties from Fagraea blumei.Helv. Chim. Acta19978041144115210.1002/hlca.19970800411
    [Google Scholar]
  23. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  24. ScudieroD.A. ShoemakerR.H. PaullK.D. MonksA. TierneyS. NofzigerT.H. CurrensM.J. SeniffD. BoydM.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines.Cancer Res.1988481748274833 3409223
    [Google Scholar]
  25. MalacridaA. CavalloroV. MartinoE. CassettiA. NicoliniG. RigolioR. CavalettiG. MannucciB. VasileF. GiacomoM.D. CollinaS. MilosoM. Anti-multiple myeloma potential of secondary metabolites from Hibiscus sabdariffa.Molecules20192413250010.3390/molecules24132500 31323932
    [Google Scholar]
  26. Agilent TechnologiesU.K. Ltd.Oxfordshire, EnglandYarnton2012
    [Google Scholar]
  27. DolomanovO.V. BourhisL.J. GildeaR.J. HowardJ.A.K. PuschmannH. OLEX2: A complete structure solution, refinement and analysis program.J. Appl. Cryst.200942233934110.1107/S0021889808042726
    [Google Scholar]
  28. SheldrickG.M. SHELXT - Integrated space-group and crystal-structure determination.Acta Crystallogr. A Found. Adv.20157113810.1107/S2053273314026370 25537383
    [Google Scholar]
  29. SheldrickG.M. Crystal structure refinement with SHELXL.Acta Crystallogr. C Struct. Chem.20157113810.1107/S2053229614024218 25567568
    [Google Scholar]
  30. EzeorahC.J. EkowoL.C. EzeS.I. GroutsoT. AtigaS. OkaforS.N. UkwuezeN.N. OkparekeO.C. Synthesis, characterization, and in silico studies of 2-[(E)-(2,5-dimethoxybenzylidene)amino]phenol and 3-[(E)-(2,5-dimethoxybenzylidene)amino]phenol.J. Mol. Struct.2022127013390210.1016/j.molstruc.2022.133902
    [Google Scholar]
  31. RouthollaG. PulyaS. PatelT. AdhikariN. AminA.S. PaulM. BhagavatulaS. BiswasS. JhaT. GhoshB. Design, synthesis and binding mode of interaction of novel small molecule o-hydroxy benzamides as HDAC3-selective inhibitors with promising antitumor effects in 4T1-Luc breast cancer xenograft model.Bioorg. Chem.202111710544610.1016/j.bioorg.2021.105446 34717237
    [Google Scholar]
  32. HazletS.E. DornfeldC.A. The reduction of aromatic nitro compounds with activated iron.J. Am. Chem. Soc.194466101781178210.1021/ja01238a049
    [Google Scholar]
  33. KumarP. RaiL.K. Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation.Chem. Pap.201266877277810.2478/s11696‑012‑0195‑6
    [Google Scholar]
  34. LiZ. XuX. JiangX. LiY. YuZ. ZhangX. Facile reduction of aromatic nitro compounds to aromatic amines catalysed by support-free nanoporous silver.RSC Advances2015538300623006610.1039/C5RA01649E
    [Google Scholar]
  35. LuH. GengZ. LiJ. ZouD. WuY. WuY. Metal-free reduction of aromatic amines with B2pin2 in isopropanol.Org. Lett.201618112774277610.1021/acs.orglett.6b01274 27214590
    [Google Scholar]
  36. GuoZ. TellewJ.E. GrossR.S. DyckB. GreyJ. HaddachM. KiankarimiM. LanierM. LiB.F. LuoZ. McCarthyJ.R. MoorjaniM. SaundersJ. SullivanR. ZhangX. KordZ.S. GrigoriadisD.E. CroweP.D. ChenT.K. WilliamsJ.P. Design and synthesis of tricyclic imidazo[4,5-b]pyridin-2-ones as corticotropin-releasing factor-1 antagonists.J. Med. Chem.200548165104510710.1021/jm050384+ 16078829
    [Google Scholar]
  37. MassahA.R. ToghyaniM. NajafabadiB.H. Green and efficient method for the acylation of amines and phenols in the presence of hydrotalcite in water.J. Chem. Res.2012361060360510.3184/174751912X13460810792101
    [Google Scholar]
  38. GreeneT.W. WutsP.G.M. Protective groups in organic synthesis.3rd edResearchGate200212310.1002/0471220574
    [Google Scholar]
  39. BekdemirY. EfilK. Microwave assisted solvent-free synthesis of some imine derivatives.Org. Chem. Int.2014816487510.1155/2014/816487
    [Google Scholar]
  40. ChoB.T. KangS.K. Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions.Tetrahedron200561245725573410.1016/j.tet.2005.04.039
    [Google Scholar]
  41. GrenierJ.L. CotelleN. CatteauJ.P. CotelleP. Synthesis and physico-chemical properties of nitrocaffeic acids.J. Phys. Org. Chem.200013951151710.1002/1099‑1395(200009)13:9<511::AID‑POC283>3.0.CO;2‑8
    [Google Scholar]
  42. NepaliK. LeeH.Y. LiouJ.P. Nitro-group-containing drugs.J. Med. Chem.20196262851289310.1021/acs.jmedchem.8b00147 30295477
    [Google Scholar]
  43. GuoY. LeeH. JeongH. Gut microbiota in reductive drug metabolism.Prog. Mol. Biol. Transl. Sci.2020171619310.1016/bs.pmbts.2020.04.002 32475528
    [Google Scholar]
  44. JuK.S. ParalesR.E. Nitroaromatic compounds, from synthesis to biodegradation.Microbiol. Mol. Biol. Rev.201074225027210.1128/MMBR.00006‑10 20508249
    [Google Scholar]
/content/journals/cos/10.2174/0115701794360303250109065121
Loading
/content/journals/cos/10.2174/0115701794360303250109065121
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test