Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

1,4-oxazepine is a significant structural motif found in several bioactive molecules used in the treatment of diseases such as psychotic disorders.

Methods

Therefore, developing novel methodologies for its preparation is of great interest to medicinal chemists.

Results

These seven-membered heterocycles are generated through the intramolecular cyclization of Betti bases, which are propargylated using propargyl bromide as the source of the triple bond in the presence of a base.

Conclusion

This efficient and straightforward protocol proceeds under mild, metal-free conditions and has been shown to be applicable to a broad range of aldehydes and 2-aminopyridines.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794353226241209175136
2025-02-11
2025-10-16
Loading full text...

Full text loading...

References

  1. (a ChoudharyS. PawarA.P. YadavJ. SharmaD.K. KantR. KumarI. One-pot synthesis of chiral tetracyclic dibenzo [b, f][1, 4] oxazepine-fused 1, 2-dihydropyridines (DHPs) under metal-free conditions.J. Org. Chem.201883169231923910.1021/acs.joc.8b0123229906390
    [Google Scholar]
  2. (b TangJ. LiS. LiuZ. ZhaoY. SheZ. KadamV.D. GaoG. LanJ. YouJ. Cascade C–H annulation of aldoximes with alkynes using O 2 as the sole oxidant: One-Pot access to multisubstituted protoberberine skeletons.Org. Lett.201719360460710.1021/acs.orglett.6b0377228102681
    [Google Scholar]
  3. (c CabreleC. ReiserO. The modern face of synthetic heterocyclic chemistry.J. Org. Chem.20168121101091012510.1021/acs.joc.6b0203427680573
    [Google Scholar]
  4. (d SheikhiE. AdibM. YazzafR. JahaniM. GhavidelM. A domino process for the sustainable synthesis of Quinazolin-4(3H)-ones with direct chemo- and regioselective bromination.Synlett201829152046205010.1055/s‑0037‑1610226
    [Google Scholar]
  5. GouthamK. Ashok KumarD. SureshS. SridharB. NarenderR. KarunakarG.V. Gold-catalyzed intramolecular cyclization of N-propargylic β-enaminones for the synthesis of 1, 4-oxazepine derivatives.J. Org. Chem.20158021111621116810.1021/acs.joc.5b0173326468638
    [Google Scholar]
  6. (a LiuB. LiY. YinM. WuW. JiangH. Palladium-catalyzed tandem reaction of o-aminophenols, bromoalkynes and isocyanides to give 4-amine-benzo[b][1,4]oxazepines.Chem. Commun. (Camb.)20124893114461144810.1039/c2cc35802f23086465
    [Google Scholar]
  7. (b ShiriM. TonekaboniM-S. TanbakouchianZ. MajediS. Synthesis of [1,4]Oxathiepino[5,6-b]quinolines via base-mediated intramolecular hydroalkoxylation.SynOpen20226171010.1055/s‑0040‑1719868
    [Google Scholar]
  8. (a RenY.Y. WangY.Q. LiuS. Asymmetric alkynylation of seven-membered cyclic imines by combining chiral phosphoric acids and Ag(I) catalysts: Synthesis of 11-substituted-10,11-dihydrodibenzo[b,f][1,4]oxazepine derivatives.J. Org. Chem.20147923117591176710.1021/jo502203725375832
    [Google Scholar]
  9. (b KapurS. ChoR. JonesC. McKayG. ZipurskyR.B. Is amoxapine an atypical antipsychotic? positron-emission tomography investigation of its dopamine2 and serotonin2 occupancy.Biol. Psychiatry19994591217122010.1016/S0006‑3223(98)00204‑210331115
    [Google Scholar]
  10. (c IbisO. ZoraM. A facile synthesis of 6-chloro-2-methylene-2,3-dihydro-1,4-oxazepines from N-propargylic β-enaminones.Tetrahedron2020764813165010.1016/j.tet.2020.131650
    [Google Scholar]
  11. FarhidH. NazeriM.T. RostamiM.M. ShaabaniA. NotashB. Consecutive Betti/Bargellini multicomponent reactions: An efficient strategy for the synthesis of naphtho [1, 2-f][1, 4] oxazepine scaffolds.Chem. Pap.202117
    [Google Scholar]
  12. (a KelgokmenY. CayanY. ZoraM. Zinc Chloride mediated synthesis of 1,4‐Oxazepines from N ‐Propargylic β‐Enaminones.Eur. J. Org. Chem.20172017477167717810.1002/ejoc.201701433
    [Google Scholar]
  13. (b Serrano-WuM.H. St LaurentD.R. ChenY. HuangS. LamK-R. MatsonJ.A. MazzuccoC.E. StickleT.M. TullyT.P. WongH.S. VyasD.M. BalasubramanianB.N. Sordarin oxazepine derivatives as potent antifungal agents.Bioorg. Med. Chem. Lett.200212192757276010.1016/S0960‑894X(02)00529‑212217370
    [Google Scholar]
  14. (c GhandiM. OlyaeiA. RaoufmoghaddamS. Synthesis of novel naphth[1,2‐f][1,4]oxazepine‐3,4‐dione heterocycles.J. Heterocycl. Chem.200946591491810.1002/jhet.166
    [Google Scholar]
  15. (d HamidiH. HeraviM.M. TajbakhshM. ShiriM. OskooieH.A. ShintreS.A. KoorbanallyN.A. Synthesis and anti-bacterial evaluation of novel thio- and oxazepino[7,6-b]quinolines.J. Indian Chem. Soc.201512122205221210.1007/s13738‑015‑0698‑5
    [Google Scholar]
  16. (e HallinanE.A. HagenT.J. TsymbalovS. StapelfeldA. SavageM.A. 2,4-Disubstituted oxazoles and thiazoles as latent pharmacophores for diacylhydrazine of SC-51089, a potent PGE2 antagonist.Bioorg. Med. Chem.2001911610.1016/S0968‑0896(00)00229‑711197330
    [Google Scholar]
  17. (f LiaoY. VenhuisB.J. RodenhuisN. TimmermanW. WikströmH. MeierE. BartoszykG.D. BöttcherH. SeyfriedC.A. SundellS. New (sulfonyloxy)piperazinyldibenzazepines as potential atypical antipsychotics: Chemistry and pharmacological evaluation.J. Med. Chem.199942122235224410.1021/jm991005d10377229
    [Google Scholar]
  18. (g Díaz-GavilánM. Rodríguez-SerranoF. Gómez-VidalJ.A. MarchalJ.A. AránegaA. GalloM.Á. EspinosaA. CamposJ.M. Synthesis of tetrahydrobenzoxazepine acetals with electron-withdrawing groups on the nitrogen atom. Novel scaffolds endowed with anticancer activity against breast cancer cells.Tetrahedron20046050115471155710.1016/j.tet.2004.09.072
    [Google Scholar]
  19. (h KelgokmenY. KorkmazE. ZoraM. A facile synthesis of 6-[(4-nitrophenyl)thio]-substituted 2-methylene-2,3-dihydro-1,4-oxazepines from N -propargylic β-enaminones.Synth. Commun.202151454155210.1080/00397911.2020.1837171
    [Google Scholar]
  20. (i YinY. ZhangY.Q. JinB. ShaS. WuX. SanganiC.B. WangS.F. QiaoF. LuA.M. LvP.C. ZhuH.L. 6,7-Dihydrobenzo[f]benzo[4,5]imidazo[1,2-d][1,4]oxazepine derivatives as selective inhibitors of PI3Kα.Bioorg. Med. Chem.20152361231124010.1016/j.bmc.2015.01.05225693787
    [Google Scholar]
  21. (a SmitsR.A. LimH.D. SteginkB. BakkerR.A. de EschI.J.P. LeursR. Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives.J. Med. Chem.200649154512451610.1021/jm051008s16854056
    [Google Scholar]
  22. (b DolsP.P.M.A. FolmerB.J.B. HamersmaH. KuilC.W. LucasH. OlleroL. RewinkelJ.B.M. HermkensP.H.H. SAR study of 2,3,4,14b-tetrahydro-1H-dibenzo[b,f]pyrido[1,2-d][1,4]oxazepines as progesterone receptor agonists.Bioorg. Med. Chem. Lett.20081841461146710.1016/j.bmcl.2007.12.06518226526
    [Google Scholar]
  23. (c AielloF. BrizziA. GarofaloA. GrandeF. RagnoG. DayamR. NeamatiN. Synthesis of novel thiazolothiazepine based HIV-1 integrase inhibitors.Bioorg. Med. Chem.200412164459446610.1016/j.bmc.2004.05.03715265496
    [Google Scholar]
  24. (a LeeC.H. WuW.C. DangateP.S. ShenL.C. ChungW.S. SunC.M. Skeletally diverse synthesis of innovative [2, 1-c]-1, 4-oxazepine and [1, 4]-quinoxaline systems.ACS Comb. Sci.2015171062363010.1021/acscombsci.5b0009326379108
    [Google Scholar]
  25. (b VermaN.K. DempseyE. ConroyJ. OlwellP. McelligottA.M. DaviesA.M. KelleherD. ButiniS. CampianiG. WilliamsD.C. ZistererD.M. LawlerM. VolkovY. A new microtubule-targeting compound PBOX-15 inhibits T-cell migration via post-translational modifications of tubulin.J. Mol. Med. (Berl.)200886445746910.1007/s00109‑008‑0312‑818270678
    [Google Scholar]
  26. KwiecienH. SmistM. WrzesniewskaA. Synthesis of aryl-fused 1, 4-oxazepines and their oxo derivatives: A review.Curr. Org. Synth.20129682885010.2174/157017912803901664
    [Google Scholar]
  27. ZawareN. OhlmeyerM. Recent advances in dibenzo[b, f][1, 4]oxazepine synthesis.Heterocycl. Commun.201420525125610.1515/hc‑2014‑0149
    [Google Scholar]
  28. (a GaoK. YuC.B. LiW. ZhouY.G. ZhangX. Synthesis and enantioselective hydrogenation of seven-membered cyclic imines: Substituted dibenzo[b,f][1,4]oxazepines.Chem. Commun. (Camb.)201147277845784710.1039/c1cc12263k21629945
    [Google Scholar]
  29. (b BalakrishnaB. BauzáA. FronteraA. Vidal-FerranA. Asymmetric hydrogenation of seven‐membered C=N‐containing heterocycles and rationalization of the enantioselectivity.Chemistry20162230106071061310.1002/chem.20160146427333576
    [Google Scholar]
  30. (c LiP. HuangY. HuX. DongX.Q. ZhangX. Access to chiral seven-member cyclic amines via Rh-catalyzed asymmetric hydrogenation.Org. Lett.201719143855385810.1021/acs.orglett.7b0172628671474
    [Google Scholar]
  31. (d MoreG.V. BhanageB.M. Ru-Catalyzed asymmetric transfer hydrogenation of substituted dibenzo[b,f][1,4]oxazepines in water.Org. Biomol. Chem.201715255263526710.1039/C7OB01229B28613337
    [Google Scholar]
  32. (a FandrickD.R. HartC.A. OkaforI.S. MercadanteM.A. SanyalS. MastersJ.T. SarvestaniM. FandrickK.R. StockdillJ.L. GrinbergN. GonnellaN. LeeH. SenanayakeC.H. Copper-catalyzed asymmetric propargylation of cyclic aldimines.Org. Lett.201618236192619510.1021/acs.orglett.6b0325327934338
    [Google Scholar]
  33. (b De MunckL. SukowskiV. VilaC. PedroJ.R. Enantioselective addition of Et2Zn to seven‐membered cyclic imines catalyzed by a (R)-VAPOL-Zn(II) complex.Tetrahedron Lett.201758343358336110.1016/j.tetlet.2017.07.042
    [Google Scholar]
  34. (a RenY.Y. WangY.Q. LiuS. PanK. Organocatalysed asymmetric direct mannich reaction of Acetophenone derivatives and Dibenzo[ b, f][1,4]oxazepines with Azetidine‐2‐carboxylic acid.ChemCatChem20146102985299210.1002/cctc.201402446
    [Google Scholar]
  35. (b WangY.Q. RenY.Y. Highly enantioselective direct Mannich reaction of seven-membered cyclic imines dibenzo[b,f][1,4]oxazepines with acetone via organocatalysis.Chin. J. Catal.2015361939910.1016/S1872‑2067(14)60225‑4
    [Google Scholar]
  36. (a GangloffA.R. BrownJ. de JongR. DouganD.R. GrimshawC.E. HixonM. JenningsA. KamranR. KiryanovA. O’ConnellS. TaylorE. VuP. Discovery of novel benzo[b][1,4]oxazin-3(4H)-ones as poly(ADP-ribose)polymerase inhibitors.Bioorg. Med. Chem. Lett.201323164501450510.1016/j.bmcl.2013.06.05523850199
    [Google Scholar]
  37. (b DasB.C. MadhukumarA.V. AnguianoJ. ManiS. Design, synthesis and biological evaluation of 2H-benzo[b][1,4] oxazine derivatives as hypoxia targeted compounds for cancer therapeutics.Bioorg. Med. Chem. Lett.200919154204420610.1016/j.bmcl.2009.05.11019515559
    [Google Scholar]
  38. ShiF. XuX. ZhengL. DangQ. BaiX. Method development for a pyridobenzodiazepine library with multiple diversification points.J. Comb. Chem.200810215816110.1021/cc700203918260649
    [Google Scholar]
  39. ZahoorA.F. IftikharR. AhmadS. HaqA. NaheedS. Revisiting the synthesis of betti bases: Facile, one-pot, and efficient synthesis of betti bases promoted by FeCl3•6H2O.Curr. Org. Synth.202219556957710.2174/157017941966622012714435235086451
    [Google Scholar]
  40. CardellicchioC. CapozziM.A.M. NasoF. The Betti base: The awakening of a sleeping beauty.Tetrahedron Asymmetry201021550751710.1016/j.tetasy.2010.03.020
    [Google Scholar]
  41. (a Teimuri-MofradR. Gholamhosseini-NazariM. EsmatiS. ShahrisaA. A novel tandem Betti/Ullmann oxidation reaction as an efficient route for synthesis of new oxazepine derivatives.J. Chem. Sci.201712991449145910.1007/s12039‑017‑1343‑x
    [Google Scholar]
  42. (b OlyaeiA. SadeghpourM. Recent advances in the synthesis and synthetic applications of Betti base (aminoalkylnaphthol) and bis-Betti base derivatives.RSC Advances2019932184671849710.1039/C9RA02813G35515249
    [Google Scholar]
  43. (a HashmiA.S.K. HaufeP. SchmidC. Rivas NassA. FreyW. Asymmetric rhodium-catalyzed hydrogenation meets gold-catalyzed cyclization: Enantioselective synthesis of 8-hydroxytetrahydroisoquinolines.Chemistry200612205376538210.1002/chem.20060019216683280
    [Google Scholar]
  44. (b PflästererD. RettenmeierE. SchneiderS. de Las Heras RuizE. RudolphM. HashmiA.S.K. Highly efficient gold-catalyzed synthesis of dibenzocycloheptatrienes.Chemistry201420226752675510.1002/chem.20140201524771698
    [Google Scholar]
  45. (c PflästererD. SchumacherS. RudolphM. HashmiA.S.K. Mechanistic insights into the post‐cyclization isomerization in gold‐catalyzed 7‐ exo ‐ dig ‐Hydroarylations.Chemistry20152132115851158910.1002/chem.20150107526118364
    [Google Scholar]
  46. NebraN. MonotJ. ShawR. Martin-VacaB. BourissouD. Metal–Ligand cooperation in the cycloisomerization of alkynoic acids with Indenediide Palladium Pincer complexes.ACS Catal.20133122930293410.1021/cs401029x
    [Google Scholar]
  47. PandeyS. KumarS.V. KantR. ChauhanP.M.S. Base mediated 7-exo-dig intramolecular cyclization of Ugi–propargyl precursors: A highly efficient and regioselective synthetic approach toward diverse 1,4-benzoxazepine-5(2H)-ones.Org. Biomol. Chem.201412295346535010.1039/C4OB00793J24935166
    [Google Scholar]
  48. ŞendilK. KeskinS. BalciM. Concise design and synthesis of pyridine-fused heterocycles via 6π-Azaelectrocyclization process of iminoalkyne derivatives.Tetrahedron2019754613066010.1016/j.tet.2019.130660
    [Google Scholar]
  49. CuiJ. MengL. ChiX. LiuQ. ZhaoP. ZhangD. ChenL. LiX. DongY. LiuH. A palladium-catalyzed regiocontrollable hydroarylation reaction of allenamides with B 2 pin 2/H 2 O.Chem. Commun. (Camb.)201955304355435810.1039/C9CC00797K30911748
    [Google Scholar]
/content/journals/cos/10.2174/0115701794353226241209175136
Loading
/content/journals/cos/10.2174/0115701794353226241209175136
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test