Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

This research introduces an eco-friendly, one-pot multicomponent synthesis of pyrimidopyrimidines (4a-4i) and amino-1,3-dimethylpyrimidines (5a-5d) in an aqueous medium, utilizing citric acid as a catalyst.

Aims

The study aimed to establish a sustainable method for synthesizing these heterocyclic compounds while evaluating their biological activities.

Methods

Structural characterization of the synthesized compounds was conducted through elemental analysis, IR, and NMR spectroscopy. The DPPH, TAC, and ABTS methods assessed the antioxidant properties, revealing their significant potential as bioactive agents. Compound 4i demonstrated the highest antioxidant activity with a DPPH inhibition of 99.13%, while compound 5b exhibited the highest ABTS activity of 100%. Advanced computational analysis using Density Functional Theory (DFT) at the B3LYP/6-311+G(d,p) level provided insights into the compounds' molecular structures, reactivity, and electronic properties.

Results

Key findings include the energy band gap analysis, which revealed compound 4c as the most stable (energy gap 5.102 eV) and compound 4i as the most reactive (energy gap 3.51 eV). These theoretical calculations, aligned with experimental NMR data, validated the molecular structures and confirmed the accuracy of theoretical predictions. Additionally, antibacterial and antifungal assays identified compound 4i as the most effective against Gram-positive and Gram-negative bacteria and Candida albicans.

Conclusion

This work highlights the potential of these derivatives as promising candidates for therapeutic applications and contributes to advancing environmentally benign synthetic methodologies.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794369531250314235011
2025-05-08
2025-10-16
Loading full text...

Full text loading...

References

  1. YerraguntaV. PatilP. AnushaV. SwamyT.K. SumanA. SamhithaT. Pyrimidine and its biological activity: A review.PharmaTutor201313944
    [Google Scholar]
  2. BhatA.R. Organic & medicinal chemistry.Int. J.201722326
    [Google Scholar]
  3. NammalwarB. BunceR.A. Recent advances in pyrimidine-based drugs.Pharmaceuticals (Basel)202417110410.3390/ph17010104 38399360
    [Google Scholar]
  4. SmithP.A.S. KanR.O. Cyclization of isothiocyanates as a route to phthalic and homophthalic acid derivatives 1,2.J. Org. Chem.19642982261226510.1021/jo01031a037
    [Google Scholar]
  5. HussainS. ChoudharyM.I. KhanK.M. Detection of Covid-19 from chest x-ray images using artificial intelligence: An early review.Image. Video. Process.202010543610.48550/arXiv.2004.05436
    [Google Scholar]
  6. ArikkattS.D. MathewB.V. JosephJ. ChandranM. BhatA.R. KrishnakumarK. Highly-efficient conversion of primary amides to nitriles using indium(III) triflate as the catalyst.Int. J. Org. Bioorg. Chem201441510.4236/ijoc.2014.41001
    [Google Scholar]
  7. MahapatraA. PrasadT. SharmaT. Pyrimidine: A review on anticancer activity with key emphasis on SAR.Future J. Pharm. Sci.20217112310.1186/s43094‑021‑00274‑8
    [Google Scholar]
  8. Abu-HashemA.A. YoussefM.M. HusseinH.A.R. Synthesis, antioxidant, antituomer activities of some new thiazolopyrimidines, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives.J. Chin. Chem. Soc. (Taipei)2011581414810.1002/jccs.201190056
    [Google Scholar]
  9. AbdullahiS.R. ShafiA.M. RaghavS. Ma’arufA.M. Pyrimidine derivatives: Recent discoveries and development towards its medicinal impact.GSC Adv. Res. Rev.20242011412810.30574/gscarr.2024.20.1.0248
    [Google Scholar]
  10. SantoshR. PaulP. SelvamM.K. RarilC. KrishnaP.M. ManjunathaJ.G. NagarajaG.K. One‐pot synthesis of pyrimido[4,5‐d]pyrimidine derivatives and investigation of their antibacterial, antioxidant, dna‐binding and voltammetric characteristics.Chem. Sele.20194399099610.1002/slct.201803416
    [Google Scholar]
  11. HaoY. LyuJ. QuR. TongY. SunD. FengF. TongL. YangT. ZhaoZ. ZhuL. DingJ. XuY. XieH. LiH. Design, synthesis, and biological evaluation of pyrimido[4,5-d] pyrimidine-2,4 (1H, 3H)-diones as potent and selective epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M resistance mutation.J. Med. Chem.201861135609562210.1021/acs.jmedchem.8b00346 29906114
    [Google Scholar]
  12. AllardW.J. MateraJ. MillerM.C. RepolletM. ConnellyM.C. RaoC. TibbeA.G.J. UhrJ.W. TerstappenL.W.M.M. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases.Clin. Cancer Res.200410206897690410.1158/1078‑0432.CCR‑04‑0378 15501967
    [Google Scholar]
  13. ThakurA. VermaM. SharmaR. SharmaA. Ultra-sonicated one-pot synthesis of potent bioactive biscoumarin and polycyclic pyranodichromenone scaffolds in aqueous media: A complementary tool to organic synthesis.Synthesis202355193129314410.1055/s‑0042‑1751475
    [Google Scholar]
  14. ThakurA. VermaM. SetiaP. BhartiR. SharmaR. SharmaA. NegiN.P. AnandV. BansalR. DFT analysis and in vitro studies of isoxazole derivatives as potent antioxidant and antibacterial agents synthesized via one-pot methodology.Res. Chem. Intermed.202349385988310.1007/s11164‑022‑04910‑7
    [Google Scholar]
  15. VermaM. ThakurA. KapilS. SharmaR. SharmaA. BhartiR. Antibacterial and antioxidant assay of novel heteroaryl-substituted methane derivatives synthesized via ceric ammonium nitrate (CAN) catalyzed one-pot green approach.Mol. Divers.202327288990010.1007/s11030‑022‑10461‑1 35781657
    [Google Scholar]
  16. ThakurA. VermaM. BhartiR. SharmaR. Recent advances in utilization of deep eutectic solvents: An environmentally friendly pathway for multi-component synthesis.Curr. Org. Chem.202226329932310.2174/1385272826666220126165925
    [Google Scholar]
  17. ThakralA. VermaM. ThakurA. BhartiR. SharmaR. Comprehensive review on one-pot green synthesis of pyran and chromene fused benzo[α]phenazines.Polycycl. Aromat. Compd.2022441697172110.1080/10406638.2023.2203506
    [Google Scholar]
  18. ThakurA. VermaM. SharmaR. BhartiR. Recent advancement in the one-pot synthesis of the tri-substituted methanes (TRSMs) and their biological applications.Curr. Org. Synth.2022198611410.2174/1570179418666210910105342 34515005
    [Google Scholar]
  19. BhartiR. SharmaR. Natural acid catalyzed aqua mediated multicomponent synthesis of tetrahydropyridines and its antioxidant activities.Mater. Today Proc.2021453186319410.1016/j.matpr.2020.12.369
    [Google Scholar]
  20. ThakurA. BhartiR. SharmaR. Effect of methods and catalysts on the one-pot synthesis of tetrahydropyridine derivatives: A mini-review.Orbi. Electr. J. Chem.202113335349
    [Google Scholar]
  21. BhartiR. ParvinT. Molecular diversity from the l-proline-catalyzed, three-component reactions of 4-hydroxycoumarin, aldehyde, and 3-aminopyrazole or 1,3-dimethyl-6-aminouracil.Synth. Commun.201545121442145010.1080/00397911.2015.1023900
    [Google Scholar]
  22. ThakurA. VermaM. BhartiR. SharmaR. Oxazole and isoxazole: From one-pot synthesis to medical applications.Tetrahedron202211913281310.1016/j.tet.2022.132813
    [Google Scholar]
  23. BhartiR. KumariP. ParvinT. ChoudhuryL.H. Molecular diversity from the three-component reaction of 2-hydroxy-1,4-naphthaquinone, aldehydes and 6-aminouracils: A reaction condition dependent MCR.RSC Advances2017773928393310.1039/C6RA18828A
    [Google Scholar]
  24. KumariP. BhartiR. ParvinT. Synthesis of aminouracil-tethered tri-substituted methanes in water by iodine-catalyzed multicomponent reactions.Mol. Divers.201923120521310.1007/s11030‑018‑9862‑z 30109557
    [Google Scholar]
  25. MonierM. Abdel-LatifD. El-MekabatyA. ElattarK.M. Bicyclic 6 + 6 systems: The chemistry of pyrimido[4,5- d]pyrimidines and pyrimido[5,4- d]pyrimidines.RSC Advances2019953308353086710.1039/C9RA05687D 35558733
    [Google Scholar]
  26. ReddyB.P. ReddyK.R. ReddyR.R. ReddyD.M. ReddyK.S.C. Processes for the preparation of sitagliptin and pharmaceutically acceptable salts thereof.Patent US8309724B22010
    [Google Scholar]
  27. RashidiM.R. SmithJ.A. ClarkeS.E. BeedhamC. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver.Drug Metab. Dispos.1997257805813 9224775
    [Google Scholar]
  28. TengR. Ticagrelor: Pharmacokinetic, pharmacodynamic and pharmacogenetic profile: An update.Clin. Pharmacokinet.201554111125113810.1007/s40262‑015‑0290‑2 26063049
    [Google Scholar]
  29. WilsonF.R. VaruA. MitraD. CameronC. IyerS. Systematic review and network meta-analysis comparing palbociclib with chemotherapy agents for the treatment of postmenopausal women with HR-positive and HER2-negative advanced/metastatic breast cancer.Breast Cancer Res. Treat.2017166116717710.1007/s10549‑017‑4404‑4 28752187
    [Google Scholar]
  30. ZikakisJ.P. Process for detecting enzymatically active xanthine oxidase. Patent US4246341A1979
    [Google Scholar]
  31. MishraA. PandeyY.K. TufailF. SinghJ. SinghJ. A convenient and green synthetic approach for benzo[a]pyrano[2,3-c]phenazines via supramolecular catalysis.Catal. Lett.202015061659166810.1007/s10562‑019‑03057‑2
    [Google Scholar]
  32. QuirogaJ. AlvaradoM. InsuastyB. NoguerasM. SánchezA. CoboJ. Synthesis of 6‐cyanopyrido[2,3‐d]pyrimidinones in the reaction of 6‐amino‐4‐pyrimidinones with arylidene derivatives of malonodinitrile.J. Heterocycl. Chem.19983561309131110.1002/jhet.5570350612
    [Google Scholar]
  33. BradshawT.K. HutchinsonD.W. The interactions of the separated strands of satellite DNAs with other DNAs: 1. Conditions for associations of the α-satellite of the guinea pig with heterologous double-stranded DNAs.Nucl. Aci. Res.19778436210.1093/nar/4.1.43
    [Google Scholar]
  34. BhuyanP. BoruahR.C. SandhuJ.S. Studies on uracils. 10. A facile one-pot synthesis of pyrido[2,3-d]- and pyrazolo[3,4-d]pyrimidines.J. Org. Chem.199055256857110.1021/jo00289a033
    [Google Scholar]
  35. HughesD.D. BagleyM.C. One or Two-Step Bohlmann-Rahtz Heteroannulation of 6-Aminouracil Derivatives for the Synthesis of Pyrido[2,3-d]pyrimidines.Synlett2002813321334
    [Google Scholar]
  36. HillM.D. MovassaghiM. New strategies for the synthesis of pyrimidine derivatives.Chemistry200814236836684410.1002/chem.200800014 18384023
    [Google Scholar]
  37. AhmadO.K. HillM.D. MovassaghiM. Synthesis of densely substituted pyrimidine derivatives.J. Org. Chem.200974218460846310.1021/jo9017149 19810691
    [Google Scholar]
  38. GhahremanzadehR. AmanpourT. BazgirA. Pseudo four-component synthesis of benzopyranopyrimidines.Tetrahedron Lett.201051324202420410.1016/j.tetlet.2010.06.014
    [Google Scholar]
  39. AlizadehA. MokhtariJ. AhmadiM. Synthesis of the novel pyrimido[1,6-a]pyrimidine and imidazo[1,2-c]pyrimidine derivatives based on heterocyclic ketene aminals.Tetrahedron201268131932210.1016/j.tet.2011.10.035
    [Google Scholar]
  40. TejedorD. López-ToscoS. García-TelladoF. Synthesis of fully substituted pyrimidines.J. Org. Chem.20137873457346310.1021/jo400090w 23425365
    [Google Scholar]
  41. MoghaddamF.M. KhodabakhshiM.R. AminaeeM. Highly efficient synthesis of pyrimido[4,5-d]pyrimidine-2,4-dione derivatives catalyzed by iodine.Tetrahedron Lett.201455344720472310.1016/j.tetlet.2014.07.006
    [Google Scholar]
  42. El-MoghazyS.M. IbrahimD.A. AbdelgawadN.M. FaragN.A.H. El-KhoulyA.S. Design, synthesis and biological evaluation of novel pyrimido[4,5-d]pyrimidine cdk2 inhibitors as anti-tumor agents.Sci. Pharm.201179342944710.3797/scipharm.1103‑16 21886895
    [Google Scholar]
  43. RoyS.C. GuinC. RanaK.K. MaitiG. Ceric ammonium nitrate mediated selective bromoalkoxylation of activated cinnamyl compounds using lithium bromide. Synlett,2001200120226022710.1055/s‑2001‑10774
    [Google Scholar]
  44. NegrónG.E. PalaciosL.N. AngelesD. LomasL. GaviñoR. A mild and efficient method for the chemoselective synthesis of acylals from aromatic aldehydes and their deprotections catalyzed by sulfated zirconia.J. Braz. Chem. Soc.2005163a49049410.1590/S0103‑50532005000300025
    [Google Scholar]
  45. NairV. PanickerS.B. NairL.G. GeorgeT.G. AugustineA. Carbon-heteroatom bond-forming reactions mediated by cerium( IV) ammonium nitrate: An overview. Synlett,2003120156016510.1055/s‑2003‑36775
    [Google Scholar]
  46. PeterssonG.A. Al-LahamM.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms.J. Chem. Phys.19919496081609010.1063/1.460447
    [Google Scholar]
  47. PeterssonG.A. BennettA. TensfeldtT.G. Al-LahamM.A. ShirleyW.A. MantzarisJ. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements.J. Chem. Phys.19888942193221810.1063/1.455064
    [Google Scholar]
  48. LuT. ChenF. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm.J. Mol. Graph. Model.20123831432310.1016/j.jmgm.2012.07.004 23085170
    [Google Scholar]
  49. Al-AhmaryK.M. HabeebM.M. AljahdaliS.H. Synthesis, spectroscopic studies and DFT/TD-DFT/PCM calculations of molecular structure, spectroscopic characterization and NBO of charge transfer complex between 5-amino-1,3-dimethylpyrazole (5-ADMP) with chloranilic acid (CLA) in different solvents.J. Mol. Liq.201927745347010.1016/j.molliq.2018.12.072
    [Google Scholar]
  50. KoopmansT. About the assignment of wave functions and eigenvalues to the individual electrons of an atom.Physica193411-610411310.1016/S0031‑8914(34)90011‑2
    [Google Scholar]
  51. LeckliderT. Comparison of DFT methods for molecular orbital eigenvalue calculations.EE Eval. Eng.2011503639
    [Google Scholar]
  52. MershaT.B. AlemM.B. DemissieT.B. EswaramoorthyR. AbebeA. Molecular docking, DFT, and antibacterial activity study of a newly synthesized mixed ligand complex of co(II), 1,10-phenanthroline, adenine and acetamide.Chem. Afr.202361833184610.1007/s42250‑023‑00643‑1
    [Google Scholar]
  53. KidwaiM. SinghalK. KukrejaS. One-pot green synthesis for pyrimido[4,5-d]pyrimidine derivatives.Z. Naturforsch. B. J. Chem. Sci.200762573273610.1515/znb‑2007‑0518
    [Google Scholar]
  54. WuY. JiangL. LiuR. YangL. ZouF. ZhangT. FanZ. ZhangT. YangH. YinS. WangR. Synthesis, structure-activity relationship and evaluation of antifungal activity of tryptanthrin derivatives against drug-resistant Candida albicans.Med. Chem. Res.2024331598161010.1007/s00044‑024‑03270‑8
    [Google Scholar]
  55. WuW. LanW. WuC. FeiQ. Synthesis and antifungal activity of pyrimidine derivatives containing an amide moiety.Front Chem.2021969562810.3389/fchem.2021.69562834322475
    [Google Scholar]
/content/journals/cos/10.2174/0115701794369531250314235011
Loading
/content/journals/cos/10.2174/0115701794369531250314235011
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test