Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Nitrogen mustards exert their anticancer activity by alkylating DNA. However, except for alkylating DNA, nitrogen mustards may alkylate other biomolecules to cause off-target effects due to their highly active functional groups. So, more exposure of DNA from chromosomes can facilitate the binding of nitrogen mustards to DNA to present stronger anticancer activity, simultaneously avoiding more side effects.

Objectives

To design and synthesize the 4-phenylbutanoic acid-chlorambucil conjugates and valproic acid-chlorambucil conjugates. Upon cellular internalization, the two conjugates can more strongly damage the DNA of cancer cells due to the more exposure of cellular DNA caused by 4-phenylbutanoic acid or valproic acid.

Methods

To validate this hypothesis, we designed and synthesized two hybrids of chlorambucil with 4-phenylbutanoic acid and valproic acid, denoted as compound and compound respectively. The antitumor activity of the aforementioned hybrids was evaluated by the MTT method, mitochondrial membrane potential analysis, apoptosis assay, DNA damage assay, and scratch assay respectively.

Results

Compound and compound were synthesized esterification. The results of bioactivity evaluation showed compound and compound had stronger cytotoxicity against breast cancer MDA-MB-231 cells and MCF-7 cells than chlorambucil. More importantly, toward triple negative breast cancer MDA-MB-231 cells, compound exhibited significantly greater cytotoxicity compared to both compound and chlorambucil. Further studies were conducted on MDA-MB-231 cells, showing that compound could more strongly decrease the mitochondrial membrane potential, induce cell apoptosis, and damage cellular DNA compared to compound and chlorambucil. Interestingly, in combating the migration of MDA-MB-231 cells, the results exhibited that compound had a much stronger anti-migratory effect than compound , inconsistent with the aforementioned cytotoxicity.

Conclusion

These findings demonstrate that the combination of nitrogen mustards with histone deacetylase inhibitors is an effective strategy to exert synergistic anti-tumor effects.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794351301241217074232
2025-02-07
2025-10-16
Loading full text...

Full text loading...

References

  1. LiY. DNA adducts in cancer chemotherapy.J. Med. Chem.20246775113514310.1021/acs.jmedchem.3c02476 38552031
    [Google Scholar]
  2. LiangY. LiangM. LiC. WangD. GongX. ZhengK. Synthesis of nitrogen mustard-based fluorophores for cell imaging and cytotoxicity studies.J. Adv. Pharm. Technol. Res.202314161110.4103/japtr.japtr_574_22 36950465
    [Google Scholar]
  3. DixitP. JeyaseelanC. GuptaD. Nitrogen mustard: A promising class of anti-cancer chemotherapeutics - A review.Biointerface Res. Appl. Chem.2023132
    [Google Scholar]
  4. AhmedS. NadeemM. HussainI. FatimaS. RizviM.M.A. TabishM. Preparation, characterization and biochemical studies of nanoformulations of chlorambucil to enhance anticancer efficacy.New J. Chem.20234744204762048910.1039/D3NJ03760F
    [Google Scholar]
  5. GoedeV. EichhorstB. FischerK. WendtnerC.M. HallekM. Past, present and future role of chlorambucil in the treatment of chronic lymphocytic leukemia.Leuk. Lymphoma20155661585159210.3109/10428194.2014.963077 25219593
    [Google Scholar]
  6. BaiH. PadronA.S. DengY. LiaoY.J. MurrayC.J. OntiverosC. KariS.J. KancharlaA. KornepatiA.V.R. GarciaM. ReyesR.M. GuptaH.B. Conejo-GarciaJ.R. CurielT. Pharmacological tumor PDL1 depletion with chlorambucil treats ovarian cancer and melanoma: Improves antitumor immunity and renders anti-PDL1-resistant tumors anti-PDL1-sensitive through NK cell effects.J. Immunother. Cancer2023112e00487110.1136/jitc‑2022‑004871 36759012
    [Google Scholar]
  7. VoseJ.M. Classification and clinical course of low-grade non-Hodgkin’s lymphomas with overview of therapy.Ann. Oncol.19967Suppl. 6S13S1910.1093/annonc/7.suppl_6.S13 9010574
    [Google Scholar]
  8. MoreG.S. ThomasA.B. ChitlangeS.S. NandaR.K. GajbhiyeR.L. Nitrogen mustards as alkylating agents: A review on chemistry, mechanism of action and current USFDA status of drugs.Anticancer. Agents Med. Chem.20191991080110210.2174/1871520619666190305141458 30834842
    [Google Scholar]
  9. SinghR.K. KumarS. PrasadD.N. BhardwajT.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.Eur. J. Med. Chem.201815140143310.1016/j.ejmech.2018.04.001 29649739
    [Google Scholar]
  10. KumarD. KaratiD. MahadikK.R. TrivediP. Alkylating agents, the road less traversed, changing anticancer therapy.Anticancer. Agents Med. Chem.20222281478149510.2174/1871520621666210811105344 34382529
    [Google Scholar]
  11. SahuK. LangehU. SinghC. SinghA. Crosstalk between anticancer drugs and mitochondrial functions.Curr. Res. Pharmacol. Drug Discov.2021210004710.1016/j.crphar.2021.100047 34909674
    [Google Scholar]
  12. ZhylkibayevA. UngT.T. MobleyJ. AtharM. GorbatyukM. The involvement of unfolded protein response in the mechanism of nitrogen mustard–induced ocular toxicity.J. Pharmacol. Exp. Ther.2024388251852510.1124/jpet.123.001814 37914413
    [Google Scholar]
  13. LiG. MargueronR. HuG. StokesD. WangY.H. ReinbergD. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo.Mol. Cell2010381415310.1016/j.molcel.2010.01.042 20385088
    [Google Scholar]
  14. LiangT. WangF. ElhassanR.M. ChengY. TangX. ChenW. FangH. HouX. Targeting histone deacetylases for cancer therapy: Trends and challenges.Acta Pharm. Sin. B20231362425246310.1016/j.apsb.2023.02.007 37425042
    [Google Scholar]
  15. Aparecida dos Santos FranceF. MaedaD.K. RodriguesA.B. OnoM. Lopes Nogueira MarchettiF. MarchettiM.M. Faustino MartinsA.C. GomesR.S. RainhoC.A. Exploring fatty acids from royal jelly as a source of histone deacetylase inhibitors: From the hive to applications in human well-being and health.Epigenetics2024191240042310.1080/15592294.2024.2400423 39255363
    [Google Scholar]
  16. Ritika; Liao, Z-Y.; Chen, P-Y.; Rao, N.V.; Mathew, J.; Sharma, R.; Grewal, A.S.; Singh, G.; Mehan, S.; Liou, J.P.; Pan, C.H.; Nepali, K. Rationally designed febuxostat-based hydroxamic acid and its pH-Responsive nanoformulation elicits anti-tumor activity.Eur. J. Med. Chem.202427911686610.1016/j.ejmech.2024.116866
    [Google Scholar]
  17. XuT. FangY. GuY. XuD. HuT. YuT. XuY.Y. ShenH.Y. MaP. ShuY. HDAC inhibitor SAHA enhances antitumor immunity via the HDAC1/JAK1/FGL1 axis in lung adenocarcinoma.J. Immunother. Cancer20241210e01007710.1136/jitc‑2024‑010077 39384195
    [Google Scholar]
  18. IwamotoM. FriedmanE.J. SandhuP. AgrawalN.G.B. RubinE.H. WagnerJ.A. Clinical pharmacology profile of vorinostat, a histone deacetylase inhibitor.Cancer Chemother. Pharmacol.201372349350810.1007/s00280‑013‑2220‑z 23820962
    [Google Scholar]
  19. ZagniC. FlorestaG. MonciinoG. RescifinaA. The search for potent, small‐molecule HDACIs in cancer treatment: A decade after vorinostat.Med. Res. Rev.20173761373142810.1002/med.21437 28181261
    [Google Scholar]
  20. SureshP.S. DevarajV.C. SrinivasN.R. MullangiR. Review of bioanalytical assays for the quantitation of various HDAC inhibitors such as vorinostat, belinostat, panobinostat, romidepsin and chidamine.Biomed. Chromatogr.2017311e380710.1002/bmc.3807 27511598
    [Google Scholar]
  21. MolifeL.R. de BonoJ.S. Belinostat: Clinical applications in solid tumors and lymphoma.Expert Opin. Investig. Drugs201120121723173210.1517/13543784.2011.629604 22046971
    [Google Scholar]
  22. Garnock-JonesK.P. Panobinostat: First global approval.Drugs201575669570410.1007/s40265‑015‑0388‑8 25837990
    [Google Scholar]
  23. EckschlagerT. PlchJ. StiborovaM. HrabetaJ. Histone deacetylase inhibitors as anticancer drugs.Int. J. Mol. Sci.2017187141410.3390/ijms18071414 28671573
    [Google Scholar]
  24. WahiA. JainP. SinhariA. JadhavH.R. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents.Naunyn Schmiedebergs Arch. Pharmacol.2024397267570210.1007/s00210‑023‑02674‑4 37615708
    [Google Scholar]
  25. VerzaF.A. DasU. FachinA.L. DimmockJ.R. MarinsM. Roles of histone deacetylases and inhibitors in anticancer therapy.Cancers2020126166410.3390/cancers12061664 32585896
    [Google Scholar]
  26. DrzewieckaM. Gajos-MichniewiczA. HoserG. JaśniakD. Barszczewska-PietraszekG. SitarekP. CzarnyP. PiekarskiJ. RadekM. CzyżM. SkorskiT. ŚliwińskiT. Histone deacetylases (HDAc) inhibitor—valproic acid sensitizes human melanoma cells to dacarbazine and PARP inhibitor.Genes2023146129510.3390/genes14061295 37372475
    [Google Scholar]
  27. QiuX. XiaoX. LiN. LiY. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases.Prog. Neuropsychopharmacol. Biol. Psychiatry201772607210.1016/j.pnpbp.2016.09.002 27614213
    [Google Scholar]
  28. ZhangY. WongC.H. LoongH.H.F. Synergistic activities of the histone deacetylase inhibitors with conventional cytotoxic chemotherapies in angiosarcomas.Invest. New Drugs202240486886910.1007/s10637‑022‑01239‑1 35404017
    [Google Scholar]
  29. StabergM. MichaelsenS.R. RasmussenR.D. VillingshøjM. PoulsenH.S. HamerlikP. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine.Cell. Oncol.2017401213210.1007/s13402‑016‑0301‑9 27766591
    [Google Scholar]
  30. SinatraL. BandolikJ.J. RoatschM. SönnichsenM. SchoederC.T. HamacherA. SchölerA. BorkhardtA. MeilerJ. BhatiaS. KassackM.U. HansenF.K. Hydroxamic acids immobilized on resins (HAIRs): Synthesis of dual‐targeting HDAC inhibitors and HDAC degraders (PROTACs).Angew. Chem. Int. Ed.20205950224942249910.1002/anie.202006725 32780485
    [Google Scholar]
  31. XieR. TangP. YuanQ. Rational design and characterization of a DNA/HDAC dual-targeting inhibitor containing nitrogen mustard and 2-aminobenzamide moieties.MedChemComm20189234435210.1039/C7MD00476A 30108928
    [Google Scholar]
  32. SongY. ParkS.Y. WuZ. LiuK.H. SeoY.H. Hybrid inhibitors of DNA and HDACs remarkably enhance cytotoxicity in leukaemia cells.J. Enzyme Inhib. Med. Chem.20203511069107910.1080/14756366.2020.1754812 32314611
    [Google Scholar]
  33. SanaeiM. KavoosiF. Profound inhibitory and apoptotic effects of histone deacetylase inhibitor valproic acid on different cancers.Crescent J. Med. Biol. Sci.201964441448
    [Google Scholar]
  34. Luna-PalenciaG.R. Correa-BasurtoJ. Vasquez-MoctezumaI. Valproic acid as a sensitizing agent for cancer treatment.Gac. Med. Mex.20191554417422 31486780
    [Google Scholar]
  35. WawruszakA. HalasaM. OkonE. Kukula-KochW. StepulakA. Valproic acid and breast cancer: State of the art in 2021.Cancers20211314340910.3390/cancers13143409 34298623
    [Google Scholar]
  36. ChenJ. WangG. WangL. KangJ. WangJ. Curcumin p38-dependently enhances the anticancer activity of valproic acid in human leukemia cells.Eur. J. Pharm. Sci.201041221021810.1016/j.ejps.2010.06.011 20600877
    [Google Scholar]
  37. LinC.T. LaiH.C. LeeH.Y. LinW.H. ChangC.C. ChuT.Y. LinY.W. LeeK.D. YuM.H. Valproic acid resensitizes cisplatin‐resistant ovarian cancer cells.Cancer Sci.20089961218122610.1111/j.1349‑7006.2008.00793.x 18429963
    [Google Scholar]
  38. ChenZ. WuF. LiJ. DongJ. HeH. LiX. LuQ. ZhangW. ShaoC. YaoZ. LinN. YeZ. XuJ. LiH. Investigating the synergy of Shikonin and Valproic acid in inducing apoptosis of osteosarcoma cells via ROS-mediated EGR1 expression.Phytomedicine202412615545910.1016/j.phymed.2024.155459 38417243
    [Google Scholar]
  39. HanW. HeW. SongY. ZhaoJ. SongZ. ShanY. HuaW. SunY. Multifunctional platinum(IV) complex bearing HDAC inhibitor and biotin moiety exhibits prominent cytotoxicity and tumor-targeting ability.Dalton Trans.202251187343735110.1039/D2DT00090C 35466968
    [Google Scholar]
  40. KularatneR.N. WashingtonK.E. BulumullaC. CalubaquibE.L. BiewerM.C. OupickyD. StefanM.C. Histone deacetylase inhibitor (HDACi) conjugated polycaprolactone for combination cancer therapy.Biomacromolecules20181931082108910.1021/acs.biomac.8b00221 29485283
    [Google Scholar]
  41. ZhuQ. YuX. ShenQ. ZhangQ. SuM. ZhouY. LiJ. ChenY. LuW. A series of camptothecin prodrugs exhibit HDAC inhibition activity.Bioorg. Med. Chem.201826164706471510.1016/j.bmc.2018.08.008 30115492
    [Google Scholar]
  42. WangH. WuJ. XieK. FangT. ChenC. XieH. ZhouL. ZhengS. Precise engineering of prodrug cocktails into single polymeric nanoparticles for combination cancer therapy: Extended and sequentially controllable drug release.ACS Appl. Mater. Interfaces2017912105671057610.1021/acsami.7b01938 28271714
    [Google Scholar]
  43. DuY. ZhangW. HeR. IsmailM. LingL. YaoC. FuZ. LiX. Dual 7-ethyl-10-hydroxycamptothecin conjugated phospholipid prodrug assembled liposomes with in vitro anticancer effects.Bioorg. Med. Chem.201725123247325810.1016/j.bmc.2017.04.025 28465086
    [Google Scholar]
  44. ChenM. GongN. SunW. HanJ. LiuY. ZhangS. ZhengA. ButtH.J. LiangX.J. WuS. Red‐light‐responsive metallopolymer nanocarriers with conjugated and encapsulated drugs for phototherapy against multidrug‐resistant tumors.Small20221827220167210.1002/smll.202201672 35665442
    [Google Scholar]
  45. Ovejero-ParedesK. Díaz-GarcíaD. Mena-PalomoI. MarcielloM. Lozano-ChamizoL. MoratoY.L. PrasharS. Gómez-RuizS. FiliceM. Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents.Biomater. Adv.202213721282310.1016/j.bioadv.2022.212823 35929238
    [Google Scholar]
  46. SahibA.S. WennasO.N. MahdiB.W. Al abood, R.M. In vivo antitumor activity study of targeted chlorambucil-loaded nanolipid carrier for breast cancer.Pharmacia202269363163610.3897/pharmacia.69.e85390
    [Google Scholar]
  47. ZaibS. KhanI. HayyatA. AliN. GulA. NaveedM. Role of mitochondrial membrane potential and lactate dehydrogenase A in apoptosis.Anticancer. Agents Med. Chem.202222112048206210.2174/1871520621666211126090906 34825878
    [Google Scholar]
  48. ZoharH. LindenboimL. GozlanO. GundersenG.G. WormanH.J. SteinR. Apoptosis-induced translocation of nesprin-2 from the nuclear envelope to mitochondria is associated with mitochondrial dysfunction.Nucleus2024151241350110.1080/19491034.2024.2413501 39402980
    [Google Scholar]
  49. QianY. LiX. LiX. ZhangX. YuanQ. WangZ. ZhangM. HuangM. JiN. TOM5 regulates the mitochondrial membrane potential of alveolar epithelial cells in organizing pneumonia.Redox Rep.2024291235462510.1080/13510002.2024.2354625 38794801
    [Google Scholar]
  50. YinH. FuX.Y. GaoH.Y. MaY.N. YaoJ.F. DuS.S. QiY.K. WangK.W. Design, synthesis and anticancer evaluation of novel oncolytic peptide-chlorambucil conjugates.Bioorg. Chem.202313810667410.1016/j.bioorg.2023.106674 37331169
    [Google Scholar]
  51. VoelckerG. The mechanism of action of cyclophosphamide and its consequences for the development of a new generation of oxazaphosphorine cytostatics.Sci. Pharm.20208844210.3390/scipharm88040042
    [Google Scholar]
  52. PanasciL. XuZ.Y. BelloV. AloyzR. The role of DNA repair in nitrogen mustard drug resistance.Anticancer Drugs200213321122010.1097/00001813‑200203000‑00002 11984064
    [Google Scholar]
  53. HoldenL. CurleyR.C. AvellaG. LongC. KeyesT.E. Targeting mitochondrial guanine quadruplexes for photoactivatable chemotherapy in hypoxic environments.Angew. Chem. Int. Ed.20246341e20240858110.1002/anie.202408581 39012206
    [Google Scholar]
  54. BanE. KimA. PicoGreen assay for nucleic acid quantification - Applications, challenges, and solutions.Anal. Biochem.202469211557710.1016/j.ab.2024.115577 38789006
    [Google Scholar]
  55. PengY. ShiP. WangC. WeiT. YangJ. LiaoX. YangB. GaoC. Synthesis and DNA interactions study of novel fluorinated pyridinium platinum (IV) complexes with tumor targeting activity.ChemistrySelect2024911e20240051110.1002/slct.202400511
    [Google Scholar]
  56. LiuX. ChenY. LiY. ShenY. DongS. TanJ. A novel class I HDAC inhibitor, AW01178, inhibits epithelial–mesenchymal transition and metastasis of breast cancer.Int. J. Mol. Sci.20242513723410.3390/ijms25137234 39000339
    [Google Scholar]
  57. SchiedlauskeK. DeipenbrockA. PfliegerM. HamacherA. HänselJ. KassackM.U. KurzT. TeuschN.E. Novel histone deacetylase (HDAC) inhibitor induces apoptosis and suppresses invasion via E-cadherin upregulation in pancreatic ductal adenocarcinoma (PDAC).Pharmaceuticals202417675210.3390/ph17060752 38931419
    [Google Scholar]
  58. NieJ. WuH. LuanY. WuJ. The development of HDAC and tubulin dual-targeting inhibitors for cancer therapy.Mini Rev. Med. Chem.202424548049010.2174/1389557523666230717110255 37461341
    [Google Scholar]
/content/journals/cos/10.2174/0115701794351301241217074232
Loading
/content/journals/cos/10.2174/0115701794351301241217074232
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test