Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Ripasudil hydrochloride or 4-Fluoro-5-{[(2S)-2-Methyl-1,4-diazepan-1-yl] sulfonyl isoquinoline hydrochloride known as K-115 is used for the treatment of glaucoma and ocular hypertension. In the API industry, to achieve and ensure the quality of drug substances, there is a need for impurity identification, synthesis, and characterization. The impurities are formed during the process, either side reaction or degradation or carried over from the starting material.

Objectives

The present study explores two new process impurities of Ripasudil Hydrochloride dihydrate, specifically Impurity-1(4-fluoro-5-{[(3R)-3-methyl-4-(2-nitrolbenzenesulfonyl)-1,4-diazepan-1-yl] sulfonyl} isoquino line) and Impurity-2 (4-fluoro-, -dimethyl isoquinoline-5-sulfonamide). These impurities are critical to the quality of both the drug substance and the final drug product.

Methods

The API crude samples were subjected to LC-mass spectrometry for the identification of unknown impurities and further based on the observed mass values, a strategic synthetic route was designed for the synthesis of unknown impurities. The synthetic routes for these impurities were developed to avoid column purification, achieving high yields and purity.

Results

The above synthesized impurities were subjected to spectral analysis like mass spectrometry, 1H NMR, and 13C NMR and confirmed the desired structure of the unknown impurities. So, as far as we know, the two impurities are new process impurities and have not been reported in the literature.

Conclusion

The two new process impurities have been prepared and used as impurities for the method development and quality evaluation of the Ripasudil drug substance. Given the regulatory significance of Ripasudil hydrochloride, our successful synthesis and characterization efforts have proven to be valuable. This research offers valuable insights into the generic pharmaceutical industry.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794347179250123101111
2025-02-21
2025-10-16
Loading full text...

Full text loading...

References

  1. Gomi, n.; Ohgiya, t.; Shibuya, k. Novel production method for isoquinoline derivatives and salts thereof. WO Patent 2,012,026,529,2012
    [Google Scholar]
  2. HidakaH. NishioM. SumiK. Therapeutic agent for treating glaucoma. US Patent 20,080,064,681,2008
    [Google Scholar]
  3. GomiN. KouketsuA. OhgiyaT. ShibuyaK. A practical synthesis of (s)-tert-butyl 3-methyl-1,4-diazepane-1-carboxylate, the key intermediate of rho–kinase inhibitor k-115.Synthesis201244317110.1055/s‑0032‑1316771
    [Google Scholar]
  4. Impurities in New Drug Substance. ICH Q3A (R2): CPMP/ICH/2737/99,2006314
  5. Validation of Analytical Procedure: Text and methodology Q2. Committee for Medicinal Products for Human Use (R1): 20066/ CPMP/ICH/381/1995.19952632
    [Google Scholar]
  6. PrajapatiP. YAdvendra K Agrawal Journal.Rev. Anal. Chem.201433212313310.1515/revac‑2014‑0001
    [Google Scholar]
  7. DsouzaS.J. SandeepD.S. CharyuluR.N. GowravM.P. PradeepH.K. Impurities in drug substance-an overview of ICH Q3A, Q3C and m7 guidelines.Int. J. Pharm. Investig.202414229930510.5530/ijpi.14.2.37
    [Google Scholar]
  8. YinM. HuY. FanH. WangQ. WangM. WangW. ShiC. Method for trace determination of N‐ nitrosamines impurities in metronidazole benzoate using high‐performance liquid chromatography coupled with atmospheric‐pressure chemical ionization tandem mass spectrometry.J. Sep. Sci.2023465e220022510.1002/jssc.202200225 36562102
    [Google Scholar]
  9. HuiW. SunL. ZhangH. ZouL. ZoulQ. OuyangP. Quantitative analysis of ripasudil hydrochloride hydrate and its impurities by reversed-phase high-performance liquid chromatography after precolumn derivatization: Identification of four impurities.J. Sep. Sci.2016391732753476 27390135
    [Google Scholar]
  10. GomiN. OhgiyaT. ShibuyaK. KatsuyamaJ. MasumotoM. SakaiH. A Practical Synthesis of Novel Rho-Kinase Inhibitor, (S)-4-Fluoro-5-(2-methyl-1,4-diazepan-1-ylsulfonyl)isoquinoline.Heterocycles201183817711781
    [Google Scholar]
  11. SakaiH. SakaiT. MasumotoM. KatsuyamaJ. OnogiK. Water alteration structure applications and methods.Patent US 2009/0209765A1-20092009
    [Google Scholar]
  12. FengY. PhilipV. LoGrasso; olivier defert; rongshi li.J. Med. Chem.20165962269230010.1021/acs.jmedchem.5b00683 26486225
    [Google Scholar]
  13. KhushbuPatel; Rajendra, Kotadiya Advanceme nts in the analytical methods for ripasudil hydrochloride hydrate and timolol maleate; a recently approved FDC.Curr. Pharma. Alaly.202319648749610.2174/1573412919666230807114942
    [Google Scholar]
  14. GomiN. OhgiyaT. ShibuyaK. KatsuyamaJ. MasumoM. SakaiM. ChemInform abstract: a new flavonoid glycoside and potential antifungal activity of isolated constituents from the flowers of lilium lancifolium.ChemInform20114248
    [Google Scholar]
  15. SAWAI, I. Fuji-shi shizuoka 417-8650 (JP), aqueous composition comprising brimonidine and ripasudil. Patent EP 3,231,429 B1,2021
  16. SAWAI, I. Isamu Fuji-shi Shizuoka 417-8650 (JP), Aqueous Composition Comprising Brimonidine and Ripasudil. Patent US 10,376,523 B2,2021
  17. FutterknechtS. ChatzimichailE. GugletaK. PanosG.D. GatzioufasZ. The role of rho kinase inhibitors in corneal diseases dove press.Drug Des. Devel. Ther.1897108
    [Google Scholar]
  18. CeciliaC. Ayala-Aguilera; Teresa, Valero; Álvaro, Lorente-Macías Small molecule kinase inhibitor drugs (1995–2021): Medical indication, pharmacology, and synthesis.J. Med. Chem.65210471131
    [Google Scholar]
  19. ZhaoM. WuX. YuZ. SunY. LiuZ. YuanJ. LiuH. JinY. Identification, synthesis and characterization of avanafil process impurities and determination by UPLC.RSC Advances202212159256926210.1039/D2RA01224C 35424898
    [Google Scholar]
  20. Mitrevska, Ivana Identification and structural characterization of unidentified impurity in bisoprolol film-coated tablets. Hoboken, New Jersey John Wiley & Sons, Inc.201710.1155/2017/3047517
    [Google Scholar]
  21. PatoleSwati GosarAmit ShaikhTabrez Tabrez Shaikh Impurities Characterization.Pharma. Human J. Rev.,2019154
    [Google Scholar]
  22. World Health Organization. Quality Assurance of Pharmaceuticals: A Compendium of Guidelines and Related Materials: Volume2: Good Manufacturing Practices and Inspection, 10thed.2024Available from: https://www.who.int/publications/i/item/ (Accessed Jul 19, 2024).
  23. International conference on harmonization (ich). impurities in new drug substances Q3A (R2)2023Available from: https://www.ich.org/page/quality-guidelines (Accessed Jul 10, 2023).
  24. International conference on harmonization (ich). impurities in new drugproductsq3b (r2).2023Available from: https://www.ich.Org/page/quality-guidelines (Accessed Jul 10, 2023).
  25. International conference on harmonization (ich). assessment and control of dna reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk m7 (r2).2023Available from: https://www.ich.org/page/multidisciplinary-guidelines(open in a new window) (Accessed Jul 13, 2023).
  26. International Conference on Harmonization (ICH). Guideline for Elemental impurities Q3D (R2).2023Available from: https://www.ich.Org/page/quality-guidelines(open in a new window) (Accessed Jul 17, 2023).
  27. International Conference on Harmonization (ICH). Impurities: Guideline for Residual Solvents Q3C (R9).2023Available from: https://www.ich.org/page/quality-guidelines(open in a new window) (Accessed Jul 17, 2023)
  28. MiyamotoK. MizunoH. SugiyamaE. Toyo’okaT. TodorokiK. Machine learning guided prediction of liquid chromatography–mass spectrometry ionization efficiency for genotoxic impurities in pharmaceutical products.J. Pharm. Biomed. Anal.202119411378110.1016/j.jpba.2020.113781 33280999
    [Google Scholar]
  29. HolmR. ElderD.P. Analytical advances in pharmaceutical impurity profiling.Eur. J. Pharm. Sci.20168711813510.1016/j.ejps.2015.12.007 26690047
    [Google Scholar]
  30. HaoY. YinG. WangX. JiangZ. ZhangG. FengZ. SunQ. Application of ICH guidelines for the assessment and control of elemental impurities in parecoxib sodium by graphite-digestion and ICP-MS.Int. J. Anal. Chem.202220221610.1155/2022/9299416 36060533
    [Google Scholar]
  31. ZhangK. PellettJ.D. NarangA.S. WangY.J. ZhangY.T. Reactive impurities in large and small molecule pharmaceutical excipients – A review.Trends Analyt. Chem.2018101344210.1016/j.trac.2017.11.003
    [Google Scholar]
  32. ChahrourO. MaloneJ. CollinsM. SalmonV. GreenanC. BombardierA. MaZ. DunwoodyN. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉.J. Pharm. Biomed. Anal.2017145849010.1016/j.jpba.2017.06.045 28654780
    [Google Scholar]
  33. JurowskiK. FołtaM. TatarB. BerkozM. KrośniakM. The toxicological risk assessment of cu, mn, and zn as essential elemental impurities in herbal medicinal products with valerian root (valeriana officinalis l., radix).Biol. Trace Elem. Res.202220019491955
    [Google Scholar]
  34. BalaramV. Recent advances in the determination of elemental impurities in pharmaceuticals – Status, challenges and moving frontiers.Trends Analyt. Chem.201680839510.1016/j.trac.2016.02.001
    [Google Scholar]
  35. MatmourD. BouaffadA. MeradY. ZianiN.H. From the limit test for trace elements control to the elemental impurities analysis by inductively coupled plasma optical emission spectrometry: Application on six samples of metronidazole api.J. Trace Elem. Miner.2022210001710.1016/j.jtemin.2022.100017
    [Google Scholar]
  36. XuS. ZhangL. BaiQ. WangL. ChenX. Elemental impurities determination in bromhexine hydrochloride injections.J. Pharm. Biomed. Anal.202322911537910.1016/j.jpba.2023.115379 37011549
    [Google Scholar]
  37. XuB. GaoJ. LiP. ZengH. SuW. WangJ. Determination of elemental impurities in lomefloxacin hydrochloride ear drops by inductively coupled plasma‐mass spectrometry using oxygen reaction mode and study of their catalytic effect on photodegradation reaction.Rapid Commun. Mass Spectrom.2023376e946810.1002/rcm.9468 36597261
    [Google Scholar]
  38. ZhuL. XiaoC. TengX. XuM. YinL. An inductively coupled plasma mass spectrometry method for the determination of elemental impurities in calcium carbonate mineral medicine.Spectrochim. Acta B At. Spectrosc.202219210642910.1016/j.sab.2022.106429
    [Google Scholar]
  39. GudibandaC.R. PulipakaS. RallabhandiM.K. KapavarapuM.V.N.R. MannemM.D.B. Quantification of organic volatile impurities in oseltamivir phosphate drug substances by head space gas chromatography.Future J. Pharm. Sci.2022818
    [Google Scholar]
  40. ShakleyaD. MazumderS. PavuralaN. MattsonS. FaustinoP.J. Application of gas chromatography for the analysis of residual solvents in transdermal drug delivery systems (tds).Curr. Pharm. Anal.202218769470310.2174/1573412918666211217144635
    [Google Scholar]
  41. WangM. FangS. LiangX. Natural deep eutectic solvents as eco-friendly and sustainable dilution medium for the determination of residual organic solvents in pharmaceuticals with static headspace-gas chromatography.J. Pharm. Biomed. Anal.201815826226810.1016/j.jpba.2018.06.002 29890483
    [Google Scholar]
  42. ChangS.H. HoH.Y. ChangC.C. ZangC.Z. HsuY.H. LinM.C. TsengS.H. WangD.Y. Evaluation and optimization of a HS-SPME-assisted GC-MS/MS method for monitoring nitrosamine impurities in diverse pharmaceuticals.J. Pharm. Biomed. Anal.202222111500310.1016/j.jpba.2022.115003 36095885
    [Google Scholar]
  43. WangJ. LiuG. ZhuB. TangL. Universal quantification method of degradation impurities in 16-membered macrolides using hplc-cad and study on source of the impurities.J. Pharm. Biomed. Anal.2020184113170
    [Google Scholar]
  44. HanS. Karłowicz-BodalskaK. PotaczekP. WójcikA. OzimekŁ. SzuraD. MusiałW. Identification of unknown impurity of azelaic acid in liposomal formulation assessed by HPLC-ELSD, GC-FID and GC-MS.AAPS PharmSciTech201415111120
    [Google Scholar]
  45. ResendeR.C. VianaO.M.M.S. FreitasJ.T.J. BonfilioR. RuelaA.L.M. AraújoM.B. Analysis of spironolactone polymorphs in active pharmaceutical ingredients and their effect on tablet dissolution profiles.Braz. J. Pharm. Sci.201652461362110.1590/s1984‑82502016000400005
    [Google Scholar]
  46. XuA. XueY. ZengY. LiJ. ZhouH. WangZ. ChenY. ChenH. JinJ. ZhuangT. Isolation and characterization of an unknown process-related impurity in furosemide and validation of a new hplc method.Molecules2023285241510.3390/molecules28052415 36903659
    [Google Scholar]
  47. ElmekawyA. Simultaneous determination of residual palladium and thiol homogeneous scavenger N -Acetylcysteine in active pharmaceutical ingredients using inductive coupled plasma-mass spectrometry.Org. Process Res. Dev.20212561352135910.1021/acs.oprd.0c00542
    [Google Scholar]
  48. NarayanamM. HandaT. SharmaP. JhajraS. MutheP.K. DappiliP.K. ShahR.P. SinghS. Critical practical aspects in the application of liquid chromatography–mass spectrometric studies for the characterization of impurities and degradation products.J. Pharm. Biomed. Anal.20148719121710.1016/j.jpba.2013.04.027 23706957
    [Google Scholar]
  49. FacciJ. DinizL.F. ReisN.F.A. FernandesaC. Evolution of legislation and analytical techniques applied to stability studies for active ingredients and pharmaceutical products.Quim. Nova202043959973
    [Google Scholar]
  50. MalihiF. WangT. An improved analytical method for quantitation of nitrosamine impurities in ophthalmic solutions using liquid chromatography with tandem mass spectrometry.J. Chromatogr. A20222100037
    [Google Scholar]
  51. SinghG. GollapalliR. BlinderA. PatelM. Identification of leachable impurities in an ophthalmic drug product originating from a polymer additive irganox 1010 using mass spectroscopy.J. Pharm. Biomed. Anal.2018152197203
    [Google Scholar]
  52. GallowayS.M. ReddyV.M. McGettiganK. GealyR. BercuJ. Potentially mutagenic impurities: Analysis of structural classes and carcinogenic potencies of chemical intermediates in pharmaceutical syntheses supports alternative methods to the default ttc for calculating safe levels of impurities.Regul. Toxicol. Pharmacol.201366326335
    [Google Scholar]
  53. SnodinD. TeasdaleA. Mutagenic alkyl-sulfonate impurities in sulfonic acid salts: Reviewing the evidence and challenging regulatory perceptions.Org. Process Res. Dev.201519111465148510.1021/op500397h
    [Google Scholar]
  54. PatelR. PurohitS. SolankiR. KhuntD. PatelC. PatelR. ParikhS. Development and validation of an analytical method for trace‐level quantification of genotoxic nitrosamine impurities in losartan and hydrochlorothiazide fixed‐dose combination tablets using ultra performance liquid chromatography triple quadrupole mass spectrometry.Rapid Commun. Mass Spectrom.2023378e948810.1002/rcm.9488
    [Google Scholar]
  55. RadhikaP. JyothiY. A review on genotoxicity, its molecular mechanisms, regulatory testing in drug development process.J. Pharm. Sci. Res.20191040544069
    [Google Scholar]
  56. MartinT.A. BercuJ.P. ThresherA. TennantR.E. ThomasR.F. CrossK. CzichA. WaeseK. NicoletteJ.J. MurrayJ. Use of the bacterial reverse mutation assay to predict carcinogenicity of N-Nitrosamines.Regul. Toxicol. Pharmacol.202213510524710.1016/j.yrtph.2022.105247
    [Google Scholar]
  57. SunY. ZhangX. YanY. TuY. FengX. JiangW. ZhengF. Identification and genotoxicity evaluation of two carbamate impurities in rasagiline.RSC Advances2016610810626810627410.1039/C6RA20810J
    [Google Scholar]
  58. JiZ. SettivariR.S. LeBaronM.J. Pilot studies evaluating the nongenotoxic rodent carcinogens phenobarbital and clofibrate in the rat Pig‐a assay.Environ. Mol. Mutagen.2019601424610.1002/em.22232 30338550
    [Google Scholar]
  59. DoboK.L. CoffingS. GuntherW.C. HomiskiM. 2‐Hydroxypyridine N‐Oxide is not genotoxic in vivo.Environ. Mol. Mutagen.201960758859310.1002/em.22294 31001845
    [Google Scholar]
  60. ZhaoYanfang LiJingkun XieHanyi LiHuijuan Chen, Xiangfeng Covalent organic nanospheres as a fiber coating for solid-phase microextraction of genotoxic impurities followed by analysis using GC-MS.J. Pharm. Anal.2022124583589
    [Google Scholar]
  61. RamanN.V.V.S.S. Determination of genotoxic alkyl methane sulfonates andalkyl paratoluene sulfonates in lamivudine usinghyphenated techniques.J. Pharm. Anal.2012231431810.1016/j.jpha.2012.03.003 29403760
    [Google Scholar]
  62. TzanavarasP.D. ThemistokleousS. ZacharisC.K. Automated fluorimetric determination of the genotoxic impurity hydrazine in allopurinol pharmaceuticals using zone fluidics and on-line solid phase extraction.J. Pharm. Biomed. Anal.202017711288710.1016/j.jpba.2019.112887 31580989
    [Google Scholar]
  63. McGovernT. KramJ.D. Regulation of genotoxic and carcinogenic impurities in drug substances and products.Trends Analyt. Chem.200625879079510.1016/j.trac.2006.06.004
    [Google Scholar]
  64. ReddyA.V.B. JaafarJ. UmarK. MajidZ.A. ArisA.B. TalibJ. MadhaviG. Identification, control strategies, and analytical approaches for the determination of potential genotoxic impurities in pharmaceuticals: A comprehensive review.J. Sep. Sci.201538576477910.1002/jssc.201401143 25556762
    [Google Scholar]
  65. HoT.D. JoshiM.D. SilverM.A. AndersonJ.L. Selective extraction of genotoxic impurities and structurally alerting compounds using polymeric ionic liquid sorbent coatings in solid-phase microextraction: Alkyl halides and aromatics.J. Chromatogr. A20121240294410.1016/j.chroma.2012.03.080 22537606
    [Google Scholar]
  66. SabtiA.B. HarbaliJ. Development and validation of an analytical method for quantitative determination of three potentially genotoxic impurities in vildagliptin drug material using HPLC‐MS.J. Sep. Sci.202144132587259510.1002/jssc.202100136 33934507
    [Google Scholar]
  67. ChenL. ZhangW. HuS. Determination of genotoxic epoxide at trace level in drug substance by direct injection GC/MS.J. Pharm. Biomed. Anal.201714610310810.1016/j.jpba.2017.08.025 28873359
    [Google Scholar]
  68. LiuX.W. ZhangW.P. HanH.Y. SunL. ChenD.Y. Trace determination of mutagenic alkyl toluenesulfonate impurities via derivatization headspace–GC/MS in an active pharmaceutical ingredient of a candidate drug.J. Pharm. Biomed. Anal.201815510410810.1016/j.jpba.2018.03.054 29626717
    [Google Scholar]
  69. ChenX. WuX. LuanT. JiangR. OuyangG. Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review.J. Chromatogr. A2021164046196110.1016/j.chroma.2021.461961 33582515
    [Google Scholar]
  70. GudibandaC.R. PulipakaS. RallabhandiM.K. KapavarapuM.V.N.R. MannemM.D.B. Quantification of organic volatile impurities in Oseltamivir phosphate drug substances by head space gas chromatography.Future Journal of Pharmaceutical Sciences,2022811510.1186/s43094‑022‑00401‑z
    [Google Scholar]
/content/journals/cos/10.2174/0115701794347179250123101111
Loading
/content/journals/cos/10.2174/0115701794347179250123101111
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): API; DMF; HPLC; processes impurities; Ripasudil hydrochloride; water
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test