Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

Novel homochiral -bis-prolinamides and were synthesized from -1,2-diphenylethylenediamine. They were evaluated as organocatalysts in the asymmetric intermolecular aldolic reaction. The reaction was conducted between several ketones (20 equiv) and aromatic aldehydes (1 equiv), using chloroacetic acid (10 mol%), water (10 equiv), and a catalyst loading of 10 mol%, all under wet conditions at 0°C. The best results were obtained with -bis-prolinamide , which yielded the aldolic product from cyclohexanone and 4-nitrobenzaldehyde in 86% yield, with a diastereomeric ratio of 95:5, and an enantioselectivity of 95%, favoring the anti-isomer as major product. Computational studies were performed to calculate the transition state (TS) structure, explaining the effects of water and the stereoselectivity of the major () isomer of the reaction between 4-nitrobenzaldehyde and acetone catalyzed by -bis-prolinamide 1. All structures were optimized and characterized with the Gaussian 16 program, using the M06-2X/6-31G(d,p) method. Gibbs free energy (ΔG) corrections were performed with the M06-2X/6-311++G(2d,2p) level of theory, at 298.15 K and 1 atm.

Objective

The objective of this work is to synthesize chiral organocatalysts from -1,2-diphenylethylenediamine, which were evaluated as organocatalysts in the asymmetric intermolecular aldol reaction.

Methods

In this work, a synthetic route is reported where the reactions were carried out using the best conditions mentioned above (0°C, 4 h) and 10 mol% of chloroacetic acid, in the presence of 10 equiv of water, under humid conditions.

Results

-Bis-prolinamides and were synthesized by an easy and efficient two-step route, from commercially available -1,2-diphenylethylenediamine obtained with good to excellent performance, with overall yields of 93% and 86%, respectively.

Conclusion

Overall, this work demonstrates the efficiency of -bis-prolinamide as an organocatalyst in asymmetric aldol reactions.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372373456250428084314
2025-05-06
2025-12-31
Loading full text...

Full text loading...

References

  1. LygoB. DavisonC. EvansT. GilksJ.A.R. LeonardJ. RoyC.E. Highly enantioselective aldol reactions using a tropos dibenz[c,e]azepine organocatalyst.Tetrahedron20116752101641017010.1016/j.tet.2011.09.101
    [Google Scholar]
  2. TangZ. YangZ.H. ChenX.H. CunL.F. MiA.Q. JiangY.Z. GongL.Z. A highly efficient organocatalyst for direct aldol reactions of ketones with aldehydes.J. Am. Chem. Soc.2005127259285928910.1021/ja0510156 15969611
    [Google Scholar]
  3. TaylorM.S. JacobsenE.N. Asymmetric catalysis by chiral hydrogen-bond donors.Angew. Chem. Int. Ed. Engl.200645101520154310.1002/anie.200503132 16491487
    [Google Scholar]
  4. YuX. WangW. Hydrogen-bond-mediated asymmetric catalysis.Chem. Asian J.20083351653210.1002/asia.200700415 18286564
    [Google Scholar]
  5. DelaneyJ.P. BrozinskiH.L. HendersonL.C. Synergistic effects within a C2-symmetric organocatalyst: The potential formation of a chiral catalytic pocket.Org. Biomol. Chem.201311182951296010.1039/c3ob27250h 23455677
    [Google Scholar]
  6. ChenX.H. YuJ. GongL.Z. The role of double hydrogen bonds in asymmetric direct aldol reactions catalyzed by amino amide derivatives.Chem. Commun.201046356437644810.1039/c0cc00754d 20694218
    [Google Scholar]
  7. VishnumayaM.R. SinghV.K. Highly efficient small organic molecules for enantioselective direct aldol reaction in organic and aqueous media.J. Org. Chem.200974114289429710.1021/jo900548f 19422212
    [Google Scholar]
  8. SamantaS. ZhaoC.G. Asymmetric direct aldol reaction of 1,2-diketones and ketones mediated by proline derivatives.Tetrahedron Lett.200647203383338610.1016/j.tetlet.2006.03.085
    [Google Scholar]
  9. JacobyC.G. VontobelP.H.V. BachM.F. SchneiderP.H. Highly efficient organocatalysts for the asymmetric aldol reaction.New J. Chem.20184297416742110.1039/C7NJ04424K
    [Google Scholar]
  10. ZhaoH.W. YangZ. YueY.Y. LiH.L. SongX.Q. ShengZ.H. MengW. GuoX.Y. Asymmetric direct michael reactions of cyclohexanone with aromatic nitroolefins in water catalyzed by novel axially unfixed biaryl-based bifunctional organocatalysts.Synlett201325229329710.1055/s‑0033‑1340289
    [Google Scholar]
  11. García MancheñoO. WaserM. Recent developments and trends in asymmetric organocatalysis.Eur. J. Org. Chem.2023261e20220095010.1002/ejoc.202200950 37065706
    [Google Scholar]
  12. FerreiraM. DiasL. LeonarczykI. PoloE. de LuccaE. Exploring the aldol reaction in the synthesis of bioactive compounds.Curr. Org. Synth.201512554756410.2174/157017941205150821124901
    [Google Scholar]
  13. AlemánJ. CabreraS. Applications of asymmetric organocatalysis in medicinal chemistry.Chem. Soc. Rev.201342277479310.1039/C2CS35380F 23154582
    [Google Scholar]
  14. KotsukiH. IkishimaH. OkuyamaA. Organocatalytic asymmetric synthesis using proline and related molecules. Part 1.Heterocycles2008753493529
    [Google Scholar]
  15. ReyesE. PrietoL. MilelliA. Asymmetric organocatalysis: A survival guide to medicinal chemists.Molecules202228127110.3390/molecules28010271 36615465
    [Google Scholar]
  16. XuX.Y. TangZ. WangY.Z. LuoS.W. CunL.F. GongL.Z. Asymmetric organocatalytic direct aldol reactions of ketones with α-keto acids and their application to the synthesis of 2-hydroxy-γ-butyrolactones.J. Org. Chem.200772269905991310.1021/jo701868t 18004868
    [Google Scholar]
  17. DalkoP.I. MoisanL. In the golden age of organocatalysis.Angew. Chem. Int. Ed. Engl.200443395138517510.1002/anie.200400650 15455437
    [Google Scholar]
  18. RicciA. Asymmetric organocatalysis at the service of medicinal chemistry.ISRN Org. Chem.2014201412910.1155/2014/531695 24971178
    [Google Scholar]
  19. MacMillanD.W.C. The advent and development of organocatalysis.Nature2008455721130430810.1038/nature07367 18800128
    [Google Scholar]
  20. BerkesselA. In: Asymmetric OrganocatalysisWiley2005436440
    [Google Scholar]
  21. WendeR.C. SchreinerP.R. Evolution of asymmetric organocatalysis: Multi- and retrocatalysis.Green Chem.20121471821184910.1039/c2gc35160a
    [Google Scholar]
  22. WangN. WuZ. WangJ. UllahN. LuY. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis.Chem. Soc. Rev.202150179766979310.1039/D0CS01124J 34286704
    [Google Scholar]
  23. ChengJ.K. XiangS.H. LiS. YeL. TanB. Recent advances in catalytic asymmetric construction of atropisomers.Chem. Rev.202112184805490210.1021/acs.chemrev.0c01306 33775097
    [Google Scholar]
  24. HanB. HeX.H. LiuY.Q. HeG. PengC. LiJ.L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry.Chem. Soc. Rev.20215031522158610.1039/D0CS00196A 33496291
    [Google Scholar]
  25. AlmaşiD. AlonsoD.A. BalaguerA.N. NájeraC. Water versus solvent‐free conditions for the enantioselective inter‐ and intramolecular aldol reaction employing L ‐Prolinamides and L ‐Prolinethioamides as Organocatalysts.Adv. Synth. Catal.20093517-81123113110.1002/adsc.200800814
    [Google Scholar]
  26. BhowmickS. MondalA. GhoshA. BhowmickK.C. Water: the most versatile and nature’s friendly media in asymmetric organocatalyzed direct aldol reactions.Tetrahedron Asymmetry20152621-221215124410.1016/j.tetasy.2015.09.009
    [Google Scholar]
  27. NájeraC. Miguel SansanoJ. Gómez-BengoaE. Heterocycle-based bifunctional organocatalysts in asymmetric synthesis.Pure Appl. Chem.201688656157810.1515/pac‑2016‑0403
    [Google Scholar]
  28. HeT. LiK. WuM.Y. WuM.B. WangN. PuL. YuX.Q. Water promoted enantioselective aldol Reaction by proline-cholesterol and -diosgenin based amphiphilic organocatalysts.Tetrahedron201369255136514310.1016/j.tet.2013.04.078
    [Google Scholar]
  29. HoangM.D. KumarR.A. BuissonD.A. LingW.L. GravelE. DorisE. Self‐assembled polydiacetylene nanoribbons for semi‐heterogeneous and enantioselective organocatalysis of aldol reactions in water.Chem. Cat. Chem.20201241156116010.1002/cctc.201901960
    [Google Scholar]
  30. HongL. SunW. YangD. LiG. WangR. Additive effects on asymmetric catalysis.Chem. Rev.201611664006412310.1021/acs.chemrev.5b00676 26881289
    [Google Scholar]
  31. HuangW.P. ChenJ.R. LiX.Y. CaoY.J. XiaoW.J. Asymmetric organocatalytic direct aldol reactions of cyclohexanone with aldehydes in brine.Can. J. Chem.200785320821310.1139/v07‑012
    [Google Scholar]
  32. JimenoC. Water in asymmetric organocatalytic systems: A global perspective.Org. Biomol. Chem.201614266147616410.1039/C6OB00783J 27215302
    [Google Scholar]
  33. MlynarskiJ. BaśS. Catalytic asymmetric aldol reactions in aqueous media – A 5 year update.Chem. Soc. Rev.201443257758710.1039/C3CS60202H 24150484
    [Google Scholar]
  34. MotekiS.A. HanJ. ArimitsuS. AkakuraM. NakayamaK. MaruokaK. An achiral-acid-induced switch in the enantioselectivity of a chiral cis-diamine-based organocatalyst for asymmetric aldol and Mannich reactions.Angew. Chem. Int. Ed.20125151187119010.1002/anie.201107239 22190385
    [Google Scholar]
  35. MukherjeeS. YangJ.W. HoffmannS. ListB. Asymmetric enamine catalysis.Chem. Rev.2007107125471556910.1021/cr0684016 18072803
    [Google Scholar]
  36. QinY. ZhuL. LuoS. Organocatalysis in inert C–H bond functionalization.Chem. Rev.2017117139433952010.1021/acs.chemrev.6b00657 28697602
    [Google Scholar]
  37. PinakaA. VougioukalakisG.C. DimotikaliD. YannakopoulouE. ChankvetadzeB. PapadopoulosK. Green asymmetric synthesis: β-amino alcohol-catalyzed direct asymmetric aldol reactions in aqueous micelles.Chirality201325211912510.1002/chir.22120 23192785
    [Google Scholar]
  38. XiangS.H. TanB. Advances in asymmetric organocatalysis over the last 10 years.Nat. Commun.2020111378610.1038/s41467‑020‑17580‑z 32728115
    [Google Scholar]
  39. ShaikhI.R. Organocatalysis: Key trends in green synthetic chemistry, challenges, scope towards heterogenization, and importance from research and industrial point of view.J. Catal.20142014402860
    [Google Scholar]
  40. da SilvaT.L. RamboR.S. JacobyC.G. SchneiderP.H. Asymmetric Michael reaction promoted by chiral thiazolidine-thiourea catalyst.Tetrahedron202076513087410.1016/j.tet.2019.130874
    [Google Scholar]
  41. ArslanN. ErcanS. Pı̇rı̇nççı̇oğluN. Proline-based organocatalyst-mediated asymmetric aldol reaction of acetone with substituted aromatic aldehydes: An experimental and theoretical study.Turk. J. Chem.202044233535110.3906/kim‑1908‑3 33488161
    [Google Scholar]
  42. OwolabiI.A. ReddyS.U.V. ChennapuramM. SekiC. OkuyamaY. KwonE. UwaiK. TokiwaM. TakeshitaM. NakanoH. A new type of amino amide organocatalyzed enantioselective crossed aldol reaction of ketones with aromatic aldehydes.Tetrahedron201874364705471110.1016/j.tet.2018.07.016
    [Google Scholar]
  43. XuJ. FuX. WuC. HuX. Simple, inexpensive, and facile l-prolinamide used as a recyclable organocatalyst for highly efficient large-scale asymmetric direct aldol reactions.Tetrahedron Asymmetry201122884085010.1016/j.tetasy.2011.05.008
    [Google Scholar]
  44. WangP. LiH.F. ZhaoJ.Z. DuZ.H. DaC.S. Organocatalytic enantioselective cross-aldol reaction of o-Hydroxyarylketones and Trifluoromethyl Ketones.Org. Lett.201719102634263710.1021/acs.orglett.7b00828 28481099
    [Google Scholar]
  45. ListB. LernerR.A. BarbasC.F. Proline-catalyzed direct asymmetric Aldol reactions.J. Am. Chem. Soc.20001222395239610.1021/ja994280y
    [Google Scholar]
  46. KozmaV. FülöpF. SzőllősiG. 1,2‐diamine‐derived (thio)Phosphoramide Organocatalysts in asymmetric michael additions.Adv. Synth. Catal.2020362122444245810.1002/adsc.202000335
    [Google Scholar]
  47. BerkesselA. OngM.C. NachiM. NeudörflJ.M. Enantiopure monoprotected cis‐1,2‐Diaminocyclohexane: One‐step preparation and application in asymmetric organocatalysis.Chem. Cat. Chem.20102101215121810.1002/cctc.201000104
    [Google Scholar]
  48. LeeH.J. MotekiS.A. ArumugamN. AlmansourA.I. KumarR.S. LiuY. MaruokaK. Practical synthesis of two different pseudoenantiomeric organocatalysts with cis‐Cyclohexanediamine structure from a common chiral source.Asian J. Org. Chem.2017691226123010.1002/ajoc.201700229
    [Google Scholar]
  49. BykovaK.A. KostenkoA.A. KucherenkoA.S. ZlotinS.G. Asymmetric Michael reaction between aldehydes and nitroalkanes promoted by pyrrolidine-containing C2-symmetric organocatalysts.Russ. Chem. Bull.20196871402140610.1007/s11172‑019‑2568‑2
    [Google Scholar]
  50. JuaristiE. Recent developments in next generation (S)-proline-derived chiral organocatalysts.Tetrahedron20218813214310.1016/j.tet.2021.132143
    [Google Scholar]
  51. EmmaM.G. TamburriniA. MartinelliA. LombardoM. QuintavallaA. TrombiniC. A simple and efficient protocol for proline-catalysed asymmetric aldol reaction.Catalysts202010664910.3390/catal10060649
    [Google Scholar]
  52. FoxM.E. GerlachA. LennonI.C. MeekG. PraquinC. A convenient and scaleable synthesis of 11,12-Diamino-9,10-dihydro-9,10-ethanoanthracene and its enantiomers.Synthesis2005200531963198
    [Google Scholar]
  53. HuelgasG. SomanathanR. Hernández PérezJ.M. Rojas CabreraH. de la Higuera MacíasM. Domínguez-HuertaA. SabalaR. Anaya de ParrodiC. Homochiral bifunctional L‐prolinamide‐ and L‐ bis‐prolinamide‐catalyzed asymmetric aldol reactions performed in wet solvent‐free conditions.Chirality2021331223610.1002/chir.23283 33232537
    [Google Scholar]
  54. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. PeterssonG.A. NakatsujiH. LiM.C.X. MarenichA. BloinoJ. JaneskoB.G. GompertsR. MennucciB. HratchianH.P. OrtizJ.V. IzmaylovA.F. SonnenbergJ.L. Williams-YoungD. DingF. LippariniF. EgidiF. GoingsJ. PengB. PetroneA. HendersonT. RanasingheD. ZakrzewskiV.G. GaoJ. RegaN. ZhengG. LiangW. HadaM. EharaM. ToyotaK. FukudaR. HasegawaJ. IshidaM. NakajimaT. HondaY. KitaoO. NakaiH. VrevenT. ThrossellK. MontgomeryJ.A. JrJ.E.P. Gaussian 09, Revision D.01.Wallingford, CTGaussian, Inc.2016
    [Google Scholar]
  55. PeterssonG.A. Al-LahamM.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms.J. Chem. Phys.19919496081609010.1063/1.460447
    [Google Scholar]
  56. PeterssonG.A. BennettA. TensfeldtT.G. Al-LahamM.A. ShirleyW.A. MantzarisJ. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements.J. Chem. Phys.19888942193221810.1063/1.455064
    [Google Scholar]
  57. ZhaoY. TruhlarD.G. Applications and validations of the Minnesota density functionals.Chem. Phys. Lett.20115021-311310.1016/j.cplett.2010.11.060
    [Google Scholar]
  58. McLeanA.D. ChandlerG.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z =11–18.J. Chem. Phys.198072105639564810.1063/1.438980
    [Google Scholar]
  59. KrishnanR. BinkleyJ.S. SeegerR. PopleJ.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions.J. Chem. Phys.198072165065410.1063/1.438955
    [Google Scholar]
  60. MiertušS. ScroccoE. TomasiJ. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects.Chem. Phys.198155111712910.1016/0301‑0104(81)85090‑2
    [Google Scholar]
  61. Miertus̃S. TomasiJ. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes.Chem. Phys.198265223924510.1016/0301‑0104(82)85072‑6
    [Google Scholar]
  62. Pascual-ahuirJ.L. SillaE. TuñonI. GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent‐excluding surface.J. Comput. Chem.199415101127113810.1002/jcc.540151009
    [Google Scholar]
  63. MotekiS.A. MaruyamaH. NakayamaK. LiH.B. PetrovaG. MaedaS. MorokumaK. MaruokaK. Positive effect of water in asymmetric direct aldol reactions with primary amine organocatalyst: Experimental and computational studies.Chem. Asian J.201510102112211610.1002/asia.201500078 25873417
    [Google Scholar]
  64. AratakeS. ItohT. OkanoT. NagaeN. SumiyaT. ShojiM. HayashiY. Highly diastereo- and enantioselective direct aldol reactions of aldehydes and ketones catalyzed by siloxyproline in the presence of water.Chemistry20071336102461025610.1002/chem.200700363 17896333
    [Google Scholar]
  65. Vizcaíno-MillaP. SansanoJ.M. NájeraC. FiserB. Gómez-BengoaE. Pyrimidine‐derived prolinamides as recoverable bifunctional organocatalysts for enantioselective inter‐ and intramolecular aldol reactions under solvent‐free conditions.Eur. J. Org. Chem.20152015122614262110.1002/ejoc.201500007
    [Google Scholar]
  66. KitanosonoT. KobayashiS. Development of chiral catalysts for Mukaiyama aldol reactions in aqueous media.Chem. Rec.201414113014310.1002/tcr.201300040 24449534
    [Google Scholar]
  67. HayashiY. SumiyaT. TakahashiJ. GotohH. UrushimaT. ShojiM. Highly diastereo- and enantioselective direct aldol reactions in water.Angew. Chem. Int. Ed.200645695896110.1002/anie.200502488 16385603
    [Google Scholar]
  68. MaseN. NakaiY. OharaN. YodaH. TakabeK. TanakaF. BarbasC.F. Organocatalytic direct asymmetric aldol reactions in water.J. Am. Chem. Soc.2006128373473510.1021/ja0573312 16417359
    [Google Scholar]
  69. PalomoC. OiarbideM. GarcíaJ.M. Current progress in the asymmetric aldol addition reaction.Chem. Soc. Rev.2004332657510.1039/B202901D 14767502
    [Google Scholar]
  70. TrostB.M. BrindleC.S. The direct catalytic asymmetric aldol reaction.Chem. Soc. Rev.20103951600163210.1039/b923537j 20419212
    [Google Scholar]
  71. FangX. WangC.J. Recent advances in asymmetric organocatalysis mediated by bifunctional amine–thioureas bearing multiple hydrogen-bonding donors.Chem. Commun.20155171185119710.1039/C4CC07909D 25364797
    [Google Scholar]
  72. GimenoM.C. HerreraR.P. Cover feature: Hydrogen bonding and internal or external lewis or brønsted acid assisted (Thio)urea catalysts.Eur. J. Org. Chem.2020202091056105610.1002/ejoc.202000040
    [Google Scholar]
  73. MinC. SeidelD. Asymmetric Brønsted acid catalysis with chiral carboxylic acids.Chem. Soc. Rev.201746195889590210.1039/C6CS00239K 28730207
    [Google Scholar]
  74. GaoJ. BaiS. GaoQ. LiuY. YangQ. Acid controlled diastereoselectivity in asymmetric aldol reaction of cycloketones with aldehydes using enamine-based organocatalysts.Chem. Commun.201147236716671810.1039/c0cc05224h 21556397
    [Google Scholar]
  75. OliveiraV. CardosoM. ForeziL. Organocatalysis: A brief overview on its evolution and applications.Catalysts201881260510.3390/catal8120605
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372373456250428084314
Loading
/content/journals/cocat/10.2174/0122133372373456250428084314
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test