Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

Encapsulated metal oxide nanocomposites actively engaged in heterocyclic transformations represent a potent and adaptable notion in catalysis. The facile derivatization of metal oxide nanocomposites by surface modification has popularized them as versatile catalysts for domino heterocyclization.

Methods

With the emergence of multicomponent domino reactions (MDRs) as frontier synthetic tools for medicinally relevant heterocycles, optimally satisfying one-step syntheses is the domain of current research.

Results

The search for a suitable catalyst for the domino multiple bond-forming synthesis of medicinal heterocyclic scaffolds has become a central evolving theme. In particular, metal oxide nanocomposites have drawn considerable attention as viable catalytic alternatives to conventional materials because of their facile adaptability in stabilizing functional cores or activating surfaces.

Discussion

This review discusses the catalytic potential of derivatized metal oxide nanocomposites immobilized into or supported on various materials (metals, inorganic and organic nanocomposites, .) for domino heterocyclization.

Conclusion

This review highlights how the encapsulation of moieties on the surface of metal oxide nanoparticles has improved their catalytic recovery and reusability, as well as product yield, especially in domino synthesis. Furthermore, this review summarizes the domino synthesis of heterocycles with privileged medicinal scaffolds. The present review provides new insights into designing domino protocols that utilize metal oxide nanocomposites as vital catalysts for drug discovery at the industrial level.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372393349250826060305
2025-09-03
2026-01-02
Loading full text...

Full text loading...

References

  1. (a FlickA.C. LeverettC.A. DingH.X. McInturffE. FinkS.J. HelalC.J. O’DonnellC.J. Synthetic approaches to the new drugs approved during 2017.J. Med. Chem.201962167340738210.1021/acs.jmedchem.9b0019630939001
    [Google Scholar]
  2. (b HallD.G. RybakT. VerdeletT. Multicomponent hetero[4+2] cycloaddition/allylboration reaction: From natural product synthesis to drug discovery.Acc. Chem. Res.201649112489250010.1021/acs.accounts.6b0040327753496
    [Google Scholar]
  3. c MartinS.F. Natural products and their mimics as targets of opportunity for discovery.J. Org. Chem.20178220107571079410.1021/acs.joc.7b0136828738152
    [Google Scholar]
  4. (a ZhiS. MaX. ZhangW. Consecutive multicomponent reactions for the synthesis of complex molecules.Org. Biomol. Chem.201917337632765010.1039/C9OB00772E31339143
    [Google Scholar]
  5. (b BanfiL. LambruschiniC. MoniL. RivaR. Renewable starting materials, biocatalysis, and multicomponent reactions: A powerful trio for the green synthesis of highly valued chemicals.Green Synthetic Proc. and Proc.Cambridge (UK)Royal Society of Chemistry2019115140
    [Google Scholar]
  6. c PadwaA. BurS.K. The domino way to heterocycles.Tetrahedron200763255341537810.1016/j.tet.2007.03.15817940591
    [Google Scholar]
  7. DöndaşH.A. RetamosaM.G. SansanoJ.M. Recent development in palladium-catalyzed domino reactions: Access to materials and biologically important carbo- and heterocycles.Organometallics20193891828186710.1021/acs.organomet.9b00110
    [Google Scholar]
  8. PellissierH. Stereocontrolled domino reactions.Chem. Rev.2013113144252410.1021/cr300271k23157479
    [Google Scholar]
  9. (a GuY. Multicomponent reactions in unconventional solvents: State of the art.Green Chem.20121482091212810.1039/c2gc35635j
    [Google Scholar]
  10. (b RotsteinB.H. ZaretskyS. RaiV. YudinA.K. Small heterocycles in multicomponent reactions.Chem. Rev.2014114168323835910.1021/cr400615v25032909
    [Google Scholar]
  11. HorváthI.T. AnastasP.T. Innovations and green chemistry.Chem. Rev.200710762169217310.1021/cr078380v17564478
    [Google Scholar]
  12. (b CiocR.C. RuijterE. OrruR.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis.Green Chem.20141662958297510.1039/C4GC00013G
    [Google Scholar]
  13. HuangZ. GongJ. NieZ. Symmetry-breaking synthesis of multicomponent nanoparticles.Acc. Chem. Res.20195241125113310.1021/acs.accounts.9b0003830943008
    [Google Scholar]
  14. (b YangH. BradleyS.J. WuX. ChanA. WaterhouseG.I.N. NannT. ZhangJ. KrugerP.E. MaS. TelferS.G. General synthetic strategy for libraries of supported multicomponent metal nanoparticles.ACS Nano20181254594460410.1021/acsnano.8b0102229667838
    [Google Scholar]
  15. c ShiJ. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts.Chem. Rev.201311332139218110.1021/cr300275223190123
    [Google Scholar]
  16. (a WangD. AstrucD. Fast-growing field of magnetically recyclable nanocatalysts.Chem. Rev.2014114146949698510.1021/cr500134h24892491
    [Google Scholar]
  17. (b ElwahyA.H.M. ShaabanM.R. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials.RSC Advances2015592756597571010.1039/C5RA11421G
    [Google Scholar]
  18. (a AstrucD. LuF. AranzaesJ.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis.Angew. Chem. Int. Ed.200544487852787210.1002/anie.20050076616304662
    [Google Scholar]
  19. (b SapsfordK.E. AlgarW.R. BertiL. GemmillK.B. CaseyB.J. OhE. StewartM.H. MedintzI.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology.Chem. Rev.201311331904207410.1021/cr300143v23432378
    [Google Scholar]
  20. c PourjavadiA. HosseiniS.H. DoulabiM. FakoorpoorS.M. SeidiF. Multilayer functionalized poly(ionic liquid) coated magnetic nanoparticles: Highly recoverable and magnetically separable brønsted acid catalyst.ACS Catal.2012261259126610.1021/cs300140j
    [Google Scholar]
  21. de ClippelF. DusselierM. Van de VyverS. PengL. JacobsP.A. SelsB.F. Tailoring nanohybrids and nanocomposites for catalytic applications.Green Chem.20131561398143010.1039/c3gc37141g
    [Google Scholar]
  22. (b ZengH.C. Integrated Nanocatalysts.Acc. Chem. Res.201346222623510.1021/ar300166223214436
    [Google Scholar]
  23. (a GawandeM.B. Nano‑magnetite (Fe₃O₄) as a support for recyclable catalysts in the development of sustainable methodologies.Chem. Soc. Rev.20134283371339310.1039/C3CS35480F
    [Google Scholar]
  24. (b JamkhandeP.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  25. MabateT.P. MaqungaN.P. NtshibongoS. MaumelaM. BingwaN. Metal oxides and their roles in heterogeneous catalysis: Special emphasis on synthesis protocols, intrinsic properties, and their influence in transfer hydrogenation reactions.SN Appl. Sci.20235719610.1007/s42452‑023‑05416‑6
    [Google Scholar]
  26. (a ChenM.N. MoL.P. CuiZ.S. ZhangZ.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions.Curr. Opin. Green Sustain. Chem.201915273710.1016/j.cogsc.2018.08.009
    [Google Scholar]
  27. (b KazemiM. MohammadiM. Magnetically recoverable catalysts: Catalysis in synthesis of polyhydroquinolines.Appl. Organometal. Chem.2019e5400e5401
    [Google Scholar]
  28. KaurM. SharmaA. SinghY. SinghA. KaurH. KumarS. KaushalS. BadruR. Pd supported Al-BDC MOF for efficient and selective N-methylation of amines under solventless conditions.Emergent Mater.2024741683169310.1007/s42247‑024‑00669‑2
    [Google Scholar]
  29. (b KaushalS. KaurS.K.A. KaurG. SinghP.P. Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review.Int. J. Hydrogen Energy2024461582015849
    [Google Scholar]
  30. AryaA.K. AryaK. KumarS. A mini-review on functionalized ionic liquid immobilized magnetic nanoparticles promoted one-pot domino synthesis of diverse heterocyclic systems.Mini Rev. Org. Chem.2023201354410.2174/1570193X19666220413104920
    [Google Scholar]
  31. AryaK. KumarS. AryaA.K. KumarM. Ionic liquid [PyN(CH2)4SO3H][CH3PhSO3] mediated and promoted eco‐friendly one‐pot domino synthesis of benzothiazolopyrano/chromenopyrimidine derivatives.Curr. Organocatal.20195322222810.2174/2213337205666181003142757
    [Google Scholar]
  32. KumarM. AryaA.K. GeorgeJ. AryaK. PardasaniR.T. DFT studied hetero diels–alder cycloaddition for the domino synthesis of spiroheterocycles fused to benzothiazole and chromene/pyrimidine rings in aqueous media.J. Heterocycl. Chem.20175463418342610.1002/jhet.2964
    [Google Scholar]
  33. KumarM. SharmaK. SharmaD.K. AryaA.K. An efficient, ionic liquid mediated one-pot, three component sequential synthesis of 3-benzothiazolyl-2-styrylquinazolin-4(3H)-ones.Tetrahedron Lett.201354887888210.1016/j.tetlet.2012.11.104
    [Google Scholar]
  34. (b KumarM. SharmaK. AryaA.K. Use of SO3H-functionalized halogenfree ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles.Tetrahedron Lett.201253344604460810.1016/j.tetlet.2012.06.085
    [Google Scholar]
  35. c AryaA.K. GuptaS.K. KumarM. A domino protocol for the efficient synthesis of structurally diverse benzothiazolylquinoline-2,5-diones and their spiro analogues.Tetrahedron Lett.201253456035603810.1016/j.tetlet.2012.08.099
    [Google Scholar]
  36. AryaA.K. KumarM. An efficient green chemical approach for the synthesis of structurally diverse spiroheterocycles with fused heterosystems.Green Chem.20111351332133810.1039/c1gc00008j
    [Google Scholar]
  37. (b AryaA.K. KumarM. Base catalyzed multicomponent synthesis of spiroheterocycles with fused heterosystems.Mol. Divers.201115378178910.1007/s11030‑011‑9309‑221424596
    [Google Scholar]
  38. c PalN. AryaA.K. An efficient and facile synthesis of Zn(II) complexes with 2-substituted benzothiazoles and glycine- and alanine-based ligands having antifungal and antibacterial activities.Res. Chem. Intermed.201339255356010.1007/s11164‑012‑0578‑x
    [Google Scholar]
  39. SharmaK. An efficient and ecocompatible synthesis of annulated benzothiazoloquinazolines in SO₃H‑functionalized ionic liquid.Res. Chem. Intermed.2015414133413910.1007/s11164‑013‑1517‑1
    [Google Scholar]
  40. (b GuptaS. A tandem and domino protocol for synthesis of chromeno-, pyrano- and quinolino-fused spiro[pyrazolo[3,4-b]pyridine-indolines].Curr. Org. Chem.20141825552560
    [Google Scholar]
  41. c AryaA.K. A facile synthesis and anticancer activity evaluation of spiro analogues of benzothiazolylchromeno/pyrano derivatives.201411594600
    [Google Scholar]
  42. ThambiduraiS. GowthamanP. VenkatachalamM. SureshS. Enhanced bactericidal performance of nickel oxide-zinc oxide nanocomposites synthesized by facile chemical co-precipitation method.J. Alloys Compd.202083015464210.1016/j.jallcom.2020.154642
    [Google Scholar]
  43. PaulD. ManglaS. NeogiS. Antibacterial study of CuO-NiO-ZnO trimetallic oxide nanoparticle.Mater. Lett.202027112774012774210.1016/j.matlet.2020.127740
    [Google Scholar]
  44. KaushalS. BadruR. KumarS. SharmaP.K. MittalS.K. SinghP. Electrochemical behavior of a membrane based on zirconium(iv) phosphoborate nanocomposite and its application in dye removal.RSC Advances2016611211160611161510.1039/C6RA16282G
    [Google Scholar]
  45. BanoK. MittalS.K. SinghP.P. KaushalS. Sunlight driven photocatalytic degradation of organic pollutants using a MnV 2 O 6 /BiVO 4 heterojunction: Mechanistic perception and degradation pathways.Nanoscale Adv.20213226446645810.1039/D1NA00499A36133498
    [Google Scholar]
  46. (b Li PumaG. BonoA. KrishnaiahD. CollinJ.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper.J. Hazard. Mater.20081572-320921910.1016/j.jhazmat.2008.01.04018313842
    [Google Scholar]
  47. JiangT. YinN. BaiZ. DaiP. YuX. WuM. LiG. Wet chemical synthesis of S doped Co3O4 nanosheets/reduced graphene oxide and their application in dye sensitized solar cells.Appl. Surf. Sci.201845021922710.1016/j.apsusc.2018.04.148
    [Google Scholar]
  48. MirzaeiA. NeriG. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review.Sens. Actuators B Chem.201623774977510.1016/j.snb.2016.06.114
    [Google Scholar]
  49. (b KarthikK. DhanuskodiS. GobinathC. PrabukumarS. SivaramakrishnanS. Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: Enhanced photocatalytic and antibacterial activities.J. Mater. Sci. Mater. Electron.20182975459547110.1007/s10854‑017‑8513‑y
    [Google Scholar]
  50. LonkarS.P. PillaiV. AbdalaA. Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity.Appl. Surf. Sci.20194651107111310.1016/j.apsusc.2018.09.264
    [Google Scholar]
  51. (b ThankachanR.M. RahmanM.M. SultanaI. GlushenkovA.M. ThomasS. KalarikkalN. ChenY. Enhanced lithium storage in ZnFe2O4–C nanocomposite produced by a low-energy ball milling.J. Power Sources201528246247010.1016/j.jpowsour.2015.02.039
    [Google Scholar]
  52. EisaviR. GhadernejadS. NiFe 2 O 4 @SiO 2 –Cu as a novel and efficient magnetically recoverable nanocatalyst for regioselective synthesis of β-thiol-1,2,3-triazoles under benign conditions.RSC Advances20231340279842799610.1039/D3RA05433K37736561
    [Google Scholar]
  53. NguyenT.T. Thi LeN.P. NguyenT.T. TranP.H. An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent.RSC Advances2019965381483815310.1039/C9RA08074K35541774
    [Google Scholar]
  54. VeisiH. PirhayatiM. MohammadiP. TamoradiT. HemmatiS. KarmakarB. Recent advances in the application of magnetic nanocatalysts in multicomponent reactions.RSC Advances20231330205302055610.1039/D3RA01208E37435379
    [Google Scholar]
  55. (b RajmaneA. KumbharA. Nano-biocomposites: A versatile combination of nanocomposites and biopolymers for the synthesis of heterocycles via multicomponent reactions.Curr. Org. Chem.202428424128510.2174/0113852728268779240102101311
    [Google Scholar]
  56. ZelekeD. DamenaT. Advance in green synthesis of pharmacological important heterocycles using multicomponent reactions and magnetic nanocatalysts (MNCs). The results.Chem20247101283101289
    [Google Scholar]
  57. (a LiY. ZhouY. ZhangJ. LiuR. ZhaoX. WangY. A DFT study on gold-catalyzed domino cyclization for post-Ugi synthesis of spiroindolines: Insights on the origin of remarkable diastereoselectivity.Catal. Sci. Technol.20221251678168410.1039/D1CY01453F
    [Google Scholar]
  58. (b ZolfigolM.A. AfsharnaderyF. BagheryS. SalehzadehS. MalekiF. Catalytic applications of (HMIM)C(NO2)3: As a nano ionic liquid for the synthesis of pyrazole derivatives under green conditions and a mechanistic investigation with a new approach.RSC Advances2015592755557556810.1039/C5RA16289K
    [Google Scholar]
  59. GhasemzadehM.A. Abdollahi-BasirM.H. BabaeiM. Fe 3 O 4 @SiO 2 –NH 2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media.Green Chem. Lett. Rev.201583-4404910.1080/17518253.2015.1107139
    [Google Scholar]
  60. SinghN.G. LilyM. DeviS.P. RahmanN. AhmedA. ChandraA.K. NongkhlawR. Synthetic, mechanistic and kinetic studies on the organo-nanocatalyzed synthesis of oxygen and nitrogen containing spiro compounds under ultrasonic conditions.Green Chem.201618154216422710.1039/C6GC00724D
    [Google Scholar]
  61. RezayatiS. MoghadamM.M. NaserifarZ. RamazaniA. Schiff Base complex of copper immobilized on core–shell magnetic nanoparticles catalyzed one-pot syntheses of polyhydroquinoline derivatives under mild conditions supported by a DFT study.Inorg. Chem.20246331652167310.1021/acs.inorgchem.3c0386138194483
    [Google Scholar]
  62. RajeshU.C. WangJ. PrescottS. TsuzukiT. RawatD.S. RGO/ZnO Nanocomposite: An efficient, sustainable, heterogeneous, amphiphilic catalyst for synthesis of 3-substituted indoles in water.ACS Sustainable Chem. Eng.20153191810.1021/sc500594w
    [Google Scholar]
  63. KalantariF. EsmailipourH. AhankarH. RamazaniA. AghahosseiniH. KaszubowskiO. ŚlepokuraK. SO3H-Functionalized epoxy-immobilized Fe3O4 core–shell magnetic nanoparticles as an efficient, reusable, and eco-friendly catalyst for the sustainable and green synthesis of pyran and pyrrolidinone derivatives.ACS Omega2023829257802579810.1021/acsomega.3c0106837521605
    [Google Scholar]
  64. SaeediS. RahmatiA. MNP–cellulose–OSO 3 H as an efficient and biodegradable heterogeneous catalyst for green synthesis of trisubstituted imidazoles.RSC Advances20221219117401174910.1039/D2RA01348G35481103
    [Google Scholar]
  65. Amini MoqadamZ. AllahresaniA. HassaniH. An efficiently and quickly synthesized NiO@g-C3N4 nanocomposite-catalyzed green synthesis of spirooxindole derivatives.Res. Chem. Intermed.202046129931110.1007/s11164‑019‑03951‑9
    [Google Scholar]
  66. KolvariE. KoukabiN. HosseiniM.M. VahidianM. GhobadiE. Nano-ZrO 2 sulfuric acid: A heterogeneous solid acid nano catalyst for Biginelli reaction under solvent free conditions.RSC Advances2016697419742510.1039/C5RA19350H
    [Google Scholar]
  67. NasseriM.A. KazemnejadiM. MahmoudiB. AssadzadehF. AlaviS.A. AllahresaniA. Efficient preparation of 1,8-dioxo-octahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO2/SO4 2−/Co) nanoparticles.J. Nanopart. Res.2019211021410.1007/s11051‑019‑4643‑x
    [Google Scholar]
  68. SinghR. SinghA. BhardwajD. Selective and solvent‐free synthesis of isoxazole‐containing spiro‐thiazolidinones using TiO2‐SO3 H as solid catalyst.ChemistrySelect20194339600960710.1002/slct.201901942
    [Google Scholar]
  69. AmoozadehA. GolianS. RahmaniS. TiO 2 -coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions.RSC Advances2015557459744598210.1039/C5RA06515A
    [Google Scholar]
  70. MalekiB. ReiserO. EsmaeilnezhadE. ChoiH.J. SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@D NH (CH2)4SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines.Polyhedron201916212914110.1016/j.poly.2019.01.055
    [Google Scholar]
  71. ThirumurthyK. ThirunarayananG. A facilely designed, highly efficient green synthetic strategy of a peony flower-like SO42− –SnO2-fly ash nano-catalyst for the three component synthesis of a serendipitous product with dimedone in water.RSC Advances2015542335953360610.1039/C5RA04006J
    [Google Scholar]
  72. ArefiM. SaberiD. KarimiM. HeydariA. Superparamagnetic Fe(OH)3@Fe3O4 nanoparticles: An efficient and recoverable catalyst for tandem oxidative amidation of alcohols with amine hydrochloride salts.ACS Comb. Sci.201517634134710.1021/co500184425946638
    [Google Scholar]
  73. HayatiP. EghbaliK. RezaeiR. Magnetic nanoparticles tris(hydrogensulfato) boron as an efficient heterogeneous acid catalyst for the synthesis of α,ά‑benzylidene bis(4‑hydroxycoumarin) derivatives under solvent‑free condition.Res. Chem. Intermed.20194550675089
    [Google Scholar]
  74. AziziK. KarimiM. HeydariA. Oxidative coupling of formamides with β-dicarbonyl compounds and the synthesis of 2-aminobenzothiazole using Cu(II)-functionalized Fe3O4 nanoparticles.Tetrahedron Lett.201556681281610.1016/j.tetlet.2014.12.110
    [Google Scholar]
  75. AkbarzadehP. KoukabiN. HosseiniM.M. Magnetic carbon nanotube as a highly stable and retrievable support for the heterogenization of sulfonic acid and its application in the synthesis of 2‐(1 H‐tetrazole‐5‐yl) acrylonitrile derivatives.J. Heterocycl. Chem.20205762455246510.1002/jhet.3961
    [Google Scholar]
  76. SharmaN. ChowhanB. GuptaM. KouserM. NiFe2O4 @B,N,F-tridoped CeO 2 (NFTDNC): A mesoporous nanocatalyst in the synthesis of pyrazolopyranopyrimidine and 1 H -pyrazolo[1,2- b ]phthalazine-5,10-dione derivatives and as an adsorbent.Dalton Trans.20225136137951380710.1039/D2DT01216B36039659
    [Google Scholar]
  77. HajizadehZ.A. Halloysite nanotubes modified by Fe3O4 nanoparticles and applied as a natural and efficient nanocatalyst for the symmetrical Hantzsch reaction.Silicon2020121247125610.1007/s12633‑019‑00224‑3
    [Google Scholar]
  78. KalhorM. ZarnegarZ. Fe 3 O 4 /SO 3 H@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives.RSC Advances2019934193331934610.1039/C9RA02910A35519374
    [Google Scholar]
  79. DaniS.H. PratapU.R. Cu@MTPOF as an efficient catalyst for the C–S coupling of 2-mercaptobenzimidazole with aryl halides and 2-halobenzoic acids.Catal. Lett.202315361708171810.1007/s10562‑022‑04092‑2
    [Google Scholar]
  80. ZolfaghariniaS. KolvariE. KoukabiN. HosseiniM.M. Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four-component reactions.Arab. J. Chem.202013122724110.1016/j.arabjc.2017.04.004
    [Google Scholar]
  81. HosseinzadehZ. RamazaniA. AhankarH. ŚlepokuraK. LisT. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as a reusable catalyst for the preparation of pyrrolidinone derivatives under eco-friendly conditions.Silicon20191162933294310.1007/s12633‑019‑0087‑2
    [Google Scholar]
  82. MalekiA. Synthesis of Imidazo[1,2‐a]pyridines using Fe3O4@SiO2 as an efficient nanomagnetic catalyst via a one‐pot multicomponent reaction.Helv. Chim. Acta201497458759310.1002/hlca.201300244
    [Google Scholar]
  83. AmarlooF. ZhianiR. MehrzadJ. Novel Fe3O4/SiO2/PPA Magnetic nanoparticles: Preparation, characterization, and first catalytic application to the solvent- free synthesis of tetrahydrobenzo[a]xanthene-11-ones.Russ. J. Org. Chem.201955101584159010.1134/S1070428019100191
    [Google Scholar]
  84. SinghP. YadavP. MishraA. AwasthiS.K. Green and mechanochemical one-pot multicomponent synthesis of bioactive 2-amino-4H-benzo[b]pyrans via highly efficient amine-functionalized SiO2@Fe3O4 nanoparticles.ACS Omega2020584223423210.1021/acsomega.9b0411732149252
    [Google Scholar]
  85. AltalbawyF.M.A. KhelifA. ChandraS. JainV. MenonS. V. VermaA. KumariB. CuFe2O4@PDMA/Cu (II) MNPs: a novel nanomagnetic catalyst for the synthesis ofdihydropyrano[3,2-c]chromenes.Monatsh. Chem.202515631532710.1007/s00706‑025‑03289‑6
    [Google Scholar]
  86. ShabadeA.B. SharmaD.M. BajpaiP. GonnadeR.G. VankaK. PunjiB. Room temperature chemoselective hydrogenation of CC, CO and CN bonds by using a well-defined mixed donor Mn(i) pincer catalyst.Chem. Sci.20221346137641377310.1039/D2SC05274A36544725
    [Google Scholar]
  87. MotahariS. KhazaeiA. Preparation and characterization of Co (II) supported on modified magnetic Fe3O4 nanoparticles and its application as catalyst for the synthesis of 2-amino-3-cyanopyridines.Polycycl. Aromat. Compd.202343194595610.1080/10406638.2021.2021253
    [Google Scholar]
  88. GhasemzadehM.A. Abdollahi-BasirM.H. Ultrasound-assisted one-pot multi-component synthesis of 2-pyrrolidinon-3-olates catalyzed by Co 3 O 4 @SiO 2 core–shell nanocomposite.Green Chem. Lett. Rev.20169315616510.1080/17518253.2016.1204013
    [Google Scholar]
  89. MohammadiM. Ghorbani-ChoghamaraniA. Hussain-KhilN. l–aspartic acid chelan–Cu (II) complex coted on ZrFe2O4 MNPs catalyzed one–pot annulation and cooperative geminal-vinylogous anomeric–based oxidation reactions.J. Phys. Chem. Solids202317711130011130110.1016/j.jpcs.2023.111300
    [Google Scholar]
  90. HosseinzadehZ. RamazaniA. AhankarH. ŚlepokuraK. LisT. Synthesis of 2-amino-4,6-diarylnicotinonitrile in the presence of CoFe2O4@SiO2-SO3H as a reusable solid acid nanocatalyst under microwave irradiation in solvent-freeconditions.Silicon20191142169217610.1007/s12633‑018‑0034‑7
    [Google Scholar]
  91. GeedkarD. KumarA. ReenG.K. SharmaP. Titania‐silica nanoparticles ensemblies assisted heterogeneous catalytic strategy for the synthesis of pharmacologically significant 2,3‐diaryl‐3,4‐dihydroimidazo[4,5‐b]indole scaffolds. J Het. Chem20205719631973
    [Google Scholar]
  92. KohzadianA. FilianH. Production and characterization of Fe3O4@SiO2@TMEDA-Pd as a very effectual interphase catalyst for the rapid preparation of di-aryl sulfides and pyrido-dipyrimidines.Silicon202315104539455410.1007/s12633‑023‑02372‑z
    [Google Scholar]
  93. RanaP. DixitR. SharmaS. DuttaS. YadavS. AroraB. Priyanka KaushikB. GawandeM.B. SharmaR.K. Insights into the catalytic potential of a rationally designed magnetic boron nitride nanosheet supported nickel catalyst for the efficient synthesis of 1,4-dihydropyridines.React. Chem. Eng.20228124425310.1039/D2RE00246A
    [Google Scholar]
  94. MohammadiM. Ghorbani-ChoghamaraniA. RamishS.M. [ZrFe2O4@SiO2–N–(TMSP)–ASP–Pd(0)] Complex: Synthesis, characterizations, and its application as a nanomagnetic catalyst in cross-coupling and click reactions.J. Mol. Struct.2023129213611510.1016/j.molstruc.2023.136115
    [Google Scholar]
  95. KeshaniR. HazeriN. Faroughi NiyaH. FatahpourM. Synthesis of benzo[b]pyran and pyrano[2,3-d]pyrimidine derivatives using a new superparamagnetic nanocatalyst Fe3O4@gly@Furfural@Co(NO3)2. Res. Chem. Intermed.20234983461347910.1007/s11164‑023‑05044‑0
    [Google Scholar]
  96. MohammadiM. Ghorbani-ChoghamaraniA. Complexation of guanidino containing l-arginine with nickel on silica-modified Hercynite MNPs: A novel catalyst for the Hantzsch synthesis of polyhydroquinolines and 2,3-Dihydroquinazolin-4(1H)-ones.Res. Chem. Intermed.20224862641266310.1007/s11164‑022‑04706‑9
    [Google Scholar]
  97. DharmendraD. ChundawatP. VyasY. ChaubisaP. AmetaC. Greener design and characterization of biochar/Fe 3 O 4 @SiO 2 –Ag magnetic nanocomposite as efficient catalyst for synthesis of bioactive benzylpyrazolyl coumarin derivatives.RSC Advances20231321145941461310.1039/D3RA00869J37188256
    [Google Scholar]
  98. WieszczyckaK. StaszakK. Woźniak-BudychM.J. LitowczenkoJ. MaciejewskaB.M. JurgaS. Surface functionalization – The way for advanced applications of smart materials.Coord. Chem. Rev.202143621384621384810.1016/j.ccr.2021.213846
    [Google Scholar]
  99. BehrouzS. Highly efficient three-component synthesis of 5-substituted-1H-tetrazoles from aldehydes, hydroxylamine, and tetrabutylammonium azide using doped nano-sized copper(I) oxide (Cu2O) on melamine–formaldehyde resin.J. Saudi Chem. Soc.201721222022810.1016/j.jscs.2016.08.003
    [Google Scholar]
  100. BaghbanianS.M. Synthesis, characterization, and application of Cu2 O and NiO nanoparticles supported on natural nanozeolite clinoptilolite as a heterogeneous catalyst for the synthesis of pyrano[3,2-b]pyrans and pyrano[3,2-c]pyridones.RSC Advances20144103593975940410.1039/C4RA10537K
    [Google Scholar]
  101. PartoviM. RezayatiS. RamazaniA. AhmadiY. TaherkhaniH. Recyclable mesalamine-functionalized magnetic nanoparticles (mesalamine/GPTMS@SiO2@Fe3O4) for tandem Knoevenagel–Michael cyclocondensation: Grinding technique for the synthesis of biologically active 2-amino-4 H-benzo[ b]pyran derivatives.RSC Advances20231348335663358710.1039/D3RA06560J38020042
    [Google Scholar]
  102. KhanM.U. SiddiquiZ.N. Ce@STANPs/ZrO2 as Nanocatalyst for multicomponent synthesis of isatin-derived imidazoles under green reaction conditions.ACS Omega201838103571036410.1021/acsomega.8b0104331459163
    [Google Scholar]
  103. Rezaie KahkhaieM. HazeriN. MaghsoodlouM.T. Yazdani-Elah-AbadiA. Synthesis and characterization of a novel and reusable Fe3O4@THAM-CH2CH2-SCH2CO2H magnetic nanocatalyst for highly efficient preparation of xanthenes and 3-aminoisoxazoles in green conditions.Res. Chem. Intermed.202147125007502510.1007/s11164‑021‑04558‑9
    [Google Scholar]
  104. FarahmandT. HashemianS. SheibaniA. Efficient one-pot synthesis of pyrano[2,3-d]pyrimidinone and pyrido [2,3-d] pyrimidine derivatives by using of Mn-ZIF-8@ZnTiO3 nanocatalyst.J. Mol. Struct.2020120612766710.1016/j.molstruc.2019.127667
    [Google Scholar]
  105. GhanbariZ. NaeimiH. Tetrazol-Cu( i ) immobilized on nickel ferrite catalyzed green synthesis of indenopyridopyrimidine derivatives in aqueous media.RSC Advances20211150313773138410.1039/D1RA05889D35496835
    [Google Scholar]
  106. ZeynizadehB. RahmaniS. Immobilized copper-layered nickel ferrite on acid-activated montmorillonite, [(NiFe 2 O 4 @Cu)(H + -Mont)], as a superior magnetic nanocatalyst for the green synthesis of xanthene derivatives.RSC Advances2019948280382805210.1039/C9RA04320A35558991
    [Google Scholar]
  107. SafariJ. Hosseini NasabN. Fe3O4 magnetic nanoparticles in the layers of montmorillonite as a valuable heterogeneous nanocatalyst for the one-pot synthesis of indeno[1,2-b]indolone derivatives in aqueous media.Res. Chem. Intermed.20194531025103810.1007/s11164‑018‑3659‑7
    [Google Scholar]
  108. LuJ. MaE.Q. LiuY.H. LiY.M. MoL.P. ZhangZ.H. One-pot three-component synthesis of 1,2,3-triazoles using magnetic NiFe 2 O 4 –glutamate–Cu as an efficient heterogeneous catalyst in water.RSC Advances2015573591675918510.1039/C5RA09517D
    [Google Scholar]
  109. JamatiaR. GuptaA. PalA.K. Nano-FGT: A green and sustainable catalyst for the synthesis of spirooxindoles in aqueous medium.RSC Advances2016625209942100010.1039/C5RA27552K
    [Google Scholar]
  110. EshghiH. KhojastehnezhadA. MoeinpourF. RezaeianS. BakavoliM. TeymouriM. RostamiA. HaghbeenK. Nanomagnetic organic–inorganic hybrid (Fe@Si-Gu-Prs): A novel magnetically green catalyst for the synthesis of tetrahydropyridine derivatives at room temperature under solvent-free conditions.Tetrahedron201571343644410.1016/j.tet.2014.12.010
    [Google Scholar]
  111. Eivazzadeh-KeihanR. NoruziE.B. RadinekiyanF. BaniS.M. MalekiA. ShaabaniB. HaghpanahiM. Synthesis of core-shell magnetic supramolecular nanocatalysts based on amino-functionalized calix[4] arenes for the synthesis of 4H-chromenes by ultrasonic waves.ChemistryOpen20209773574210.1002/open.20200000532626643
    [Google Scholar]
  112. MajumdarB. SarmaD. JainS. SarmaT.K. One-pot magnetic iron oxide–carbon nanodot composite-catalyzed cyclooxidative aqueous tandem synthesis of quinazolinones in the presence of tert-Butyl hydroperoxide.ACS Omega2018310137111371910.1021/acsomega.8b0179431458072
    [Google Scholar]
  113. AkbarzadehP. KoukabiN. KolvariE. Anchoring of triethanolamine–Cu(II) complex on magnetic carbon nanotube as a promising recyclable catalyst for the synthesis of 5-substituted 1H-tetrazoles from aldehydes.Mol. Divers20202431933310.1007/s11030‑019‑09951‑630968245
    [Google Scholar]
  114. NguyenT.T. TranP.H. One-pot multicomponent synthesis of thieno[2,3-b]indoles catalyzed by a magnetic nanoparticle-supported [Urea] 4[ZnCl2] deep eutectic solvent.RSC Advances202010169663967110.1039/D0RA00773K35497228
    [Google Scholar]
  115. NasabN.H. SafariJ. Synthesis of a wide range of biologically important spiropyrans and spiroacenaphthylenes, using NiFe₂O₄@SiO₂@Melamine magnetic nanoparticles as an efficient, green and reusable nanocatalyst.J. Mol. Struct.2019119311812410.1016/j.molstruc.2019.05.023
    [Google Scholar]
  116. BodaghifardM.A. Organic base grafted on magnetic nanoparticles as a recoverable catalyst for the green synthesis of hydropyridine rings.J. Indian Chem. Soc.202017248349210.1007/s13738‑019‑01788‑y
    [Google Scholar]
  117. ShaabaniB. MalekiH. RakhtshahJ. Environmentally benign synthesis of pyranopyrazole derivatives by cobalt Schiff-base complexes immobilized on magnetic iron oxide nanoparticles.J. Organomet. Chem.201989713914710.1016/j.jorganchem.2019.06.030
    [Google Scholar]
  118. Hosseini MohtashamN. GholizadehM. Nano silica extracted from horsetail plant as a natural silica support for the synthesis of H3PW12O40 immobilized on aminated magnetic nanoparticles (Fe3O4@SiO2-EP-NH-HPA): A novel and efficient heterogeneous nanocatalyst for the green one-pot synthesis of pyrano[2,3-c]pyrazole derivatives.Res. Chem. Intermed.20204663037306610.1007/s11164‑020‑04133‑8
    [Google Scholar]
  119. Taheri-LedariR. RahimiJ. MalekiA. Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: Applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives.Ultrason. Sonochem.20195910473710.1016/j.ultsonch.2019.10473731473427
    [Google Scholar]
  120. NongrumR. NongthombamG.S. KharkongorM. RaniJ.W.S. RahmanN. KathingC. MyrbohB. NongkhlawR. A nano-organo catalyzed route towards the efficient synthesis of benzo[b]pyran derivatives under ultrasonic irradiation.RSC Advances2016610838410839210.1039/C6RA24108E
    [Google Scholar]
  121. DuttaA. RahmanN. KhongriahW. NongrumR. JoshiS.R. NongkhlawR. l‐Glutamine supported on core–shell silica iron oxide nanoparticles: A highly efficient organocatalyst for synthesis of spirooxoindoles.ChemistrySelect2019442123991240810.1002/slct.201902279
    [Google Scholar]
  122. RahnamafarR. MoradiL. KhoobiM. Synthesis of benzo[b]xanthene‐triones and tetrahydrochromeno[2,3‐b]xanthene tetraones via three‐ or pseudo–five‐component reactions using Fe3O4@SiO2/PEtOx as a novel, magnetically recyclable, and eco‐friendly nanocatalyst.J. Het Chem.20205718251837
    [Google Scholar]
  123. FekriL.Z. NikpassandM. KhakshoorS.N. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@ -proline reusable catalyst in aqueous media.J. Organomet. Chem.2019894182710.1016/j.jorganchem.2019.05.004
    [Google Scholar]
  124. MohammadiP. SheibaniH. Synthesis and characterization of Fe3O4@SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes in water.Mater. Chem. Phys.201922814014610.1016/j.matchemphys.2018.11.058
    [Google Scholar]
  125. RostamiH. ShiriL. CoFe2O4@SiO2-PA-CC-guanidine nanoparticles: A novel, efficient, and recyclable catalyst for the synthesis of 3,5-disubstituted-2,6-dicyanoaniline derivatives.Appl. Organometal. Chem.2020345e559910.1002/aoc.5599
    [Google Scholar]
  126. RostamiH. ShiriL. CoFe2O4@SiO2‐PA‐CC‐Guanidine MNPs as an efficient catalyst for the one‐pot, four‐component synthesis of pyrazolopyranopyrimidines. sulfonated caspian sea sand: A promising heterogeneous solid acid catalyst in comparison with -SO3H functionalized NiFe2O4@SiO2@KIT‐6.ChemistrySelect20194298410841510.1002/slct.201901925
    [Google Scholar]
  127. MardaniF. KhorshidiA. GholampoorS. Sulfonated caspian sea sand: A promising heterogeneous solid acid catalyst in comparison with –SO3H functionalized NiFe2O4@SiO2@KIT‐6.ChemistrySelect20194278015802010.1002/slct.201901694
    [Google Scholar]
  128. RostamiH. ShiriL. Fe3O4@SiO2-CPTMS-Guanidine-SO3H-catalyzed One-pot multicomponent synthesis of polysubstituted pyrrole derivatives under solvent-free conditions.Russ. J. Org. Chem.20195581204121110.1134/S1070428019080207
    [Google Scholar]
  129. MohammadiH. ShaterianH.R. Sulfonated magnetic nanocatalyst and application for synthesis of novel Spiro[acridine-9,5′-thiazole]-1,4′-dione derivatives.Res. Chem. Intermed.20204621109112510.1007/s11164‑019‑04022‑9
    [Google Scholar]
  130. NikoofarK. PeyrovebaghiS.S. Ultrasound‐assisted synthesis of 3‐(1‐(2‐(1 H ‐indol‐3‐yl)ethyl)‐2‐aryl‐6,6‐dimethyl‐4‐oxo‐4,5,6,7‐tetrahydro‐1 H ‐indol‐3‐yl)indolin‐2‐ones by novel core‐shell bio‐based nanocatalyst anchoring sulfonated L ‐histidine on magnetized silica (SO3 H‐L‐His@SiO2‐nano Fe3O4).J. Chin Chem. Soc. (Taipei)20206771303131310.1002/jccs.201900365
    [Google Scholar]
  131. MalekiA. RahimiJ. ValadiK. Sulfonated Fe3O4@PVA superparamagnetic nanostructure: Design, in-situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic–inorganic Bronsted acid catalyst.Nano-Structures & Nano-Objects20191810026410026710.1016/j.nanoso.2019.100264
    [Google Scholar]
  132. ArghanM. KoukabiN. KolvariE. Sulfonated-polyvinyl amine coated on Fe3O4 nanoparticles: A high-loaded and magnetically separable acid catalyst for multicomponent reactions.J. Indian Chem. Soc.201916112333235010.1007/s13738‑019‑01700‑8
    [Google Scholar]
  133. MohammadianN. AkhlaghiniaB. Magnetic calcined oyster shell functionalized with taurine immobilized on β-cyclodextrin (Fe3O4/COS@β-CD-SO3H NPs) as green and magnetically reusable nanocatalyst for efficient and rapid synthesis of spirooxindoles.Res. Chem. Intermed.201945104737475610.1007/s11164‑019‑03860‑x
    [Google Scholar]
  134. Khaleghi-AbbasabadiM. AzarifarD. Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): A novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3,2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-ones.Res. Chem. Intermed.20194542095211810.1007/s11164‑018‑03722‑y
    [Google Scholar]
  135. Hassanzadeh-AfruziF. Amiri-KhamakaniZ. SaeidiradM. SalehiM.M. Taheri-LedariR. MalekiA. Facile synthesis of pyrazolopyridine pharmaceuticals under mild conditions using an algin-functionalized silica-based magnetic nanocatalyst (Alg@SBA-15/Fe3O4).RSC Advances20231315103671037810.1039/D2RA07228A37020883
    [Google Scholar]
  136. AziziS. SoleymaniJ. HasanzadehM. Iron oxide magnetic nanoparticles supported on amino propyl‐functionalized KCC‐1 as robust recyclable catalyst for one pot and green synthesis of tetrahydrodipyrazolopyridines and cytotoxicity evaluation.Appl. Organometal. Chem.2020343e544010.1002/aoc.5440
    [Google Scholar]
  137. JavanmiriK. KarimianR. Green synthesis of benzimidazoloquinazolines and 1,4-dihydropyridines using magnetic cyanoguanidine-modified chitosan as an efficient heterogeneous nanocatalyst under various conditions.Monatsh. Chem.2020151219921210.1007/s00706‑019‑02542‑z
    [Google Scholar]
  138. BabaeiE. Fatemeh MirjaliliB.B. Fe3O4@nano-dextrin/Ti(IV): A unique and recyclable catalyst for aqueous pseudo-four-component reaction.J. Organomet. Chem.202090612105512105810.1016/j.jorganchem.2019.121055
    [Google Scholar]
  139. ArghanM. KoukabiN. KolvariE. Polyvinyl amine as a modified and grafted shell for Fe3O4 nanoparticles: As a strong solid base catalyst for the synthesis of various dihydropyrano[2,3-c]pyrazole derivatives and the Knoevenagel condensation.J. Saudi Chem. Soc.201923215016110.1016/j.jscs.2018.05.008
    [Google Scholar]
  140. MalekiA. NiksefatM. RahimiJ. HajizadehZ. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines.BMC Chem.20191311910.1186/s13065‑019‑0538‑231384768
    [Google Scholar]
  141. MalekiA. NiksefatM. RahimiJ. Taheri-LedariR. Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles.Mater. Today Chem.20191311012010.1016/j.mtchem.2019.05.001
    [Google Scholar]
  142. AshrafM.A. LiuZ. PengW.X. GaoC. New copper complex on Fe3O4 nanoparticles as a highly efficient reusable nanocatalyst for synthesis of polyhydroquinolines in water.Catal. Lett.2020150368370110.1007/s10562‑019‑02986‑2
    [Google Scholar]
  143. VermaP. PalS. ChauhanS. MishraA. SinhaI. SinghS. SrivastavaV. Starch functionalized magnetite nanoparticles: A green, biocatalyst for one-pot multicomponent synthesis of imidazopyrimidine derivatives in aqueous medium under ultrasound irradiation.J. Mol. Struct.2020120312741010.1016/j.molstruc.2019.127410
    [Google Scholar]
  144. MirhashemiF. Ali AmrollahiM. Decoration of β-CD on Fe3O4@Ag core–shell nanoparticles as a new magnetically recoverable and reusable catalyst for the synthesis of 3,4-dihydropyrimidinones and 2,4-dihydropyrano[2,3-c]pyrazoles in H2O.Inorg. Chim. Acta201948656857510.1016/j.ica.2018.11.009
    [Google Scholar]
  145. KumariM. JainY. YadavP. LaddhaH. GuptaR. Synthesis of Fe3O4-DOPA-Cu magnetically separable nanocatalyst: A versatile and robust catalyst for an array of sustainable multicomponent reactions under microwave irradiation.Catal. Lett.201914982180219410.1007/s10562‑019‑02794‑8
    [Google Scholar]
  146. GirijaD. Bhojya NaikH.S. Vinay KumarB. SudhamaniC.N. HarishK.N. Fe3O4 nanoparticle supported Ni(II) complexes: A magnetically recoverable catalyst for Biginelli reaction.Arab. J. Chem.201912342042810.1016/j.arabjc.2014.08.008
    [Google Scholar]
  147. FekriL.Z. PourK.H. ZeinaliS. Synthesis, characterization and application of Copper/Schiff-base complex immobilized on KIT-6-NH2 magnetic nanoparticles for the synthesis of dihydropyridines.J. Organomet. Chem.202091512123210.1016/j.jorganchem.2020.121232
    [Google Scholar]
  148. FekriL.Z. ZeinaliS. Copper/Schiff‐base complex immobilized on amine functionalized silica mesoporous magnetic nanoparticles under solvent‐free condition: A facile and new avenue for the synthesis of thiazolidin‐4‐ones.Appl. Organomet. Chem.2020346e562910.1002/aoc.5629
    [Google Scholar]
  149. RafieeF. KhavariP. One-pot three-component synthesis of propargylamines using an efficient and reusable copper bio-functionalized magnetic graphene oxide nanocomposite.Polyhedron202017711430911431310.1016/j.poly.2019.114309
    [Google Scholar]
  150. BabaeiB. MamaghaniM. MokhtaryM. Sustainable approach to the synthesis of 1,4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst.React. Kinet. Mech. Catal.2019128137939410.1007/s11144‑019‑01636‑3
    [Google Scholar]
  151. RostamizadehS. DaneshfarZ. KhazaeiA. Ferric sulfasalazine sulfa drug complex supported on cobalt ferrite cellulose; Evaluation of its activity in MCRs.Catal. Lett.202015072091211410.1007/s10562‑020‑03101‑6
    [Google Scholar]
  152. SafariJ. TavakoliM. GhasemzadehM.A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functionalized chitosan@Co3O4 as a novel and green catalyst.J. Organomet. Chem.2019880758210.1016/j.jorganchem.2018.10.028
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372393349250826060305
Loading
/content/journals/cocat/10.2174/0122133372393349250826060305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test