Skip to content
2000
image of Unlocking the Catalytic Potential of Encapsulated Metal Oxide Nanocomposites for Domino Heterocyclization of Medicinal Privileged Scaffolds

Abstract

Introduction

Encapsulated metal oxide nanocomposites actively engaged in heterocyclic transformations represent a potent and adaptable notion in catalysis. The facile derivatization of metal oxide nanocomposites by surface modification has popularized them as versatile catalysts for domino heterocyclization.

Methods

With the emergence of multicomponent domino reactions (MDRs) as frontier synthetic tools for medicinally relevant heterocycles, optimally satisfying one-step syntheses is the domain of current research.

Results

The search for a suitable catalyst for the domino multiple bond-forming synthesis of medicinal heterocyclic scaffolds has become a central evolving theme. In particular, metal oxide nanocomposites have drawn considerable attention as viable catalytic alternatives to conventional materials because of their facile adaptability in stabilizing functional cores or activating surfaces.

Discussion

This review discusses the catalytic potential of derivatized metal oxide nanocomposites immobilized into or supported on various materials (metals, inorganic and organic nanocomposites, .) for domino heterocyclization.

Conclusion

This review highlights how the encapsulation of moieties on the surface of metal oxide nanoparticles has improved their catalytic recovery and reusability, as well as product yield, especially in domino synthesis. Furthermore, this review summarizes the domino synthesis of heterocycles with privileged medicinal scaffolds. The present review provides new insights into designing domino protocols that utilize metal oxide nanocomposites as vital catalysts for drug discovery at the industrial level.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372393349250826060305
2025-09-03
2025-09-27
Loading full text...

Full text loading...

References

  1. a Flick A.C. Leverett C.A. Ding H.X. McInturff E. Fink S.J. Helal C.J. O’Donnell C.J. Synthetic approaches to the new drugs approved during 2017. J. Med. Chem. 2019 62 16 7340 7382 10.1021/acs.jmedchem.9b00196 30939001
    [Google Scholar]
  2. b Hall D.G. Rybak T. Verdelet T. Multicomponent hetero[4+2] cycloaddition/allylboration reaction: From natural product synthesis to drug discovery. Acc. Chem. Res. 2016 49 11 2489 2500 10.1021/acs.accounts.6b00403 27753496
    [Google Scholar]
  3. c Martin S.F. Natural products and their mimics as targets of opportunity for discovery. J. Org. Chem. 2017 82 20 10757 10794 10.1021/acs.joc.7b01368 28738152
    [Google Scholar]
  4. a Zhi S. Ma X. Zhang W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem. 2019 17 33 7632 7650 10.1039/C9OB00772E 31339143
    [Google Scholar]
  5. b Banfi L. Lambruschini C. Moni L. Riva R. Renewable starting materials, biocatalysis, and multicomponent reactions: A powerful trio for the green synthesis of highly valued chemicals. Green synthetic Proc. and Proc. Cambridge (UK) Royal Society of Chemistry 2019 115 140
    [Google Scholar]
  6. c Padwa A. Bur S.K. The domino way to heterocycles. Tetrahedron 2007 63 25 5341 5378 10.1016/j.tet.2007.03.158 17940591
    [Google Scholar]
  7. Döndaş H.A. Retamosa M.G. Sansano J.M. Recent development in palladium-catalyzed domino reactions: Access to materials and biologically important carbo- and heterocycles. Organometallics 2019 38 9 1828 1867 10.1021/acs.organomet.9b00110
    [Google Scholar]
  8. Pellissier H. Stereocontrolled domino reactions. Chem. Rev. 2013 113 1 442 524 10.1021/cr300271k 23157479
    [Google Scholar]
  9. a Gu Y. Multicomponent reactions in unconventional solvents: State of the art. Green Chem. 2012 14 8 2091 2128 10.1039/c2gc35635j
    [Google Scholar]
  10. b Rotstein B.H. Zaretsky S. Rai V. Yudin A.K. Small heterocycles in multicomponent reactions. Chem. Rev. 2014 114 16 8323 8359 10.1021/cr400615v 25032909
    [Google Scholar]
  11. a Horváth I.T. Anastas P.T. Innovations and green chemistry. Chem. Rev. 2007 107 6 2169 2173 10.1021/cr078380v 17564478
    [Google Scholar]
  12. b Cioc R.C. Ruijter E. Orru R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014 16 6 2958 2975 10.1039/C4GC00013G
    [Google Scholar]
  13. a Huang Z. Gong J. Nie Z. Symmetry-breaking synthesis of multicomponent nanoparticles. Acc. Chem. Res. 2019 52 4 1125 1133 10.1021/acs.accounts.9b00038 30943008
    [Google Scholar]
  14. b Yang H. Bradley S.J. Wu X. Chan A. Waterhouse G.I.N. Nann T. Zhang J. Kruger P.E. Ma S. Telfer S.G. General synthetic strategy for libraries of supported multicomponent metal nanoparticles. ACS Nano 2018 12 5 4594 4604 10.1021/acsnano.8b01022 29667838
    [Google Scholar]
  15. c Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 2013 113 3 2139 2181 10.1021/cr3002752 23190123
    [Google Scholar]
  16. a Wang D. Astruc D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014 114 14 6949 6985 10.1021/cr500134h 24892491
    [Google Scholar]
  17. b Elwahy A.H.M. Shaaban M.R. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials. RSC Advances 2015 5 92 75659 75710 10.1039/C5RA11421G
    [Google Scholar]
  18. a Astruc D. Lu F. Aranzaes J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005 44 48 7852 7872 10.1002/anie.200500766 16304662
    [Google Scholar]
  19. b Sapsford K.E. Algar W.R. Berti L. Gemmill K.B. Casey B.J. Oh E. Stewart M.H. Medintz I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013 113 3 1904 2074 10.1021/cr300143v 23432378
    [Google Scholar]
  20. c Pourjavadi A. Hosseini S.H. Doulabi M. Fakoorpoor S.M. Seidi F. Multilayer functionalized poly(ionic liquid) coated magnetic nanoparticles: Highly recoverable and magnetically separable brønsted acid catalyst. ACS Catal. 2012 2 6 1259 1266 10.1021/cs300140j
    [Google Scholar]
  21. a de Clippel F. Dusselier M. Van de Vyver S. Peng L. Jacobs P.A. Sels B.F. Tailoring nanohybrids and nanocomposites for catalytic applications. Green Chem. 2013 15 6 1398 1430 10.1039/c3gc37141g
    [Google Scholar]
  22. b Zeng H.C. Integrated Nanocatalysts. Acc. Chem. Res. 2013 46 2 226 235 10.1021/ar3001662 23214436
    [Google Scholar]
  23. a Gawande M.B. Nano‑magnetite (Fe₃O₄) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev 2013 42 8 3371 3393 10.1039/C3CS35480F
    [Google Scholar]
  24. b Jamkhande P.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019 53 101174 10.1016/j.jddst.2019.101174
    [Google Scholar]
  25. Mabate T.P. Maqunga N.P. Ntshibongo S. Maumela M. Bingwa N. Metal oxides and their roles in heterogeneous catalysis: Special emphasis on synthesis protocols, intrinsic properties, and their influence in transfer hydrogenation reactions. SN Appl. Sci. 2023 5 7 196 10.1007/s42452‑023‑05416‑6
    [Google Scholar]
  26. a Chen M.N. Mo L.P. Cui Z.S. Zhang Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem. 2019 15 27 37 10.1016/j.cogsc.2018.08.009
    [Google Scholar]
  27. b Kazemi M. Mohammadi M. Magnetically recoverable catalysts: Catalysis in synthesis of polyhydroquinolines. Appl. Organometal. Chem. 2019 e5400 e5401
    [Google Scholar]
  28. a Kaur M. Sharma A. Singh Y. Singh A. Kaur H. Kumar S. Kaushal S. Badru R. Pd supported Al-BDC MOF for efficient and selective N-methylation of amines under solventless conditions. Emergent Mater. 2024 7 4 1683 1693 10.1007/s42247‑024‑00669‑2
    [Google Scholar]
  29. b Kaushal S. Kaur S.K.A. Kaur G. Singh P.P. Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review. Int. J. Hydrogen Energy 2024 46 15820 15849
    [Google Scholar]
  30. Arya A.K. Arya K. Kumar S. A mini-review on functionalized ionic liquid immobilized magnetic nanoparticles promoted one-pot domino synthesis of diverse heterocyclic systems. Mini Rev. Org. Chem. 2023 20 1 35 44 10.2174/1570193X19666220413104920
    [Google Scholar]
  31. Arya K. Kumar S. Arya A.K. Kumar M. Ionic liquid [PyN(CH2)4SO3H][CH3PhSO3] mediated and promoted eco‐friendly one‐pot domino synthesis of benzothiazolopyrano/chromenopyrimidine derivatives. Curr. Organocatal. 2019 5 3 222 228 10.2174/2213337205666181003142757
    [Google Scholar]
  32. Kumar M. Arya A.K. George J. Arya K. Pardasani R.T. DFT studied hetero diels–alder cycloaddition for the domino synthesis of spiroheterocycles fused to benzothiazole and chromene/pyrimidine rings in aqueous media. J. Heterocycl. Chem. 2017 54 6 3418 3426 10.1002/jhet.2964
    [Google Scholar]
  33. a Kumar M. Sharma K. Sharma D.K. Arya A.K. An efficient, ionic liquid mediated one-pot, three component sequential synthesis of 3-benzothiazolyl-2-styrylquinazolin-4(3H)-ones. Tetrahedron Lett. 2013 54 8 878 882 10.1016/j.tetlet.2012.11.104
    [Google Scholar]
  34. b Kumar M. Sharma K. Arya A.K. Use of SO3H-functionalized halogenfree ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles. Tetrahedron Lett. 2012 53 34 4604 4608 10.1016/j.tetlet.2012.06.085
    [Google Scholar]
  35. c Arya A.K. Gupta S.K. Kumar M. A domino protocol for the efficient synthesis of structurally diverse benzothiazolylquinoline-2,5-diones and their spiro analogues. Tetrahedron Lett. 2012 53 45 6035 6038 10.1016/j.tetlet.2012.08.099
    [Google Scholar]
  36. a Arya A.K. Kumar M. An efficient green chemical approach for the synthesis of structurally diverse spiroheterocycles with fused heterosystems. Green Chem. 2011 13 5 1332 1338 10.1039/c1gc00008j
    [Google Scholar]
  37. b Arya A.K. Kumar M. Base catalyzed multicomponent synthesis of spiroheterocycles with fused heterosystems. Mol. Divers. 2011 15 3 781 789 10.1007/s11030‑011‑9309‑2 21424596
    [Google Scholar]
  38. c Pal N. Arya A.K. An efficient and facile synthesis of Zn(II) complexes with 2-substituted benzothiazoles and glycine- and alanine-based ligands having antifungal and antibacterial activities. Res. Chem. Intermed. 2013 39 2 553 560 10.1007/s11164‑012‑0578‑x
    [Google Scholar]
  39. a Sharma K. An efficient and ecocompatible synthesis of annulated benzothiazoloquinazolines in SO₃H‑functionalized ionic liquid. Res. Chem. Intermed. 2015 41 4133 4139 10.1007/s11164‑013‑1517‑1
    [Google Scholar]
  40. b Gupta S. A tandem and domino protocol for synthesis of chromeno-, pyrano- and quinolino-fused spiro[pyrazolo[3,4-b]pyridine-indolines]. Current Organic Chemistry 2014 18 2555 2560
    [Google Scholar]
  41. c Arya A.K. A facile synthesis and anticancer activity evaluation of spiro analogues of benzothiazolylchromeno/pyrano derivatives. 2014 11 594 600
    [Google Scholar]
  42. Thambidurai S. Gowthaman P. Venkatachalam M. Suresh S. Enhanced bactericidal performance of nickel oxide-zinc oxide nanocomposites synthesized by facile chemical co-precipitation method. J. Alloys Compd. 2020 830 154642 10.1016/j.jallcom.2020.154642
    [Google Scholar]
  43. Paul D. Mangla S. Neogi S. Antibacterial study of CuO-NiO-ZnO trimetallic oxide nanoparticle. Mater. Lett. 2020 271 127740 127742 10.1016/j.matlet.2020.127740
    [Google Scholar]
  44. Kaushal S. Badru R. Kumar S. Sharma P.K. Mittal S.K. Singh P. Electrochemical behavior of a membrane based on zirconium( iv ) phosphoborate nanocomposite and its application in dye removal. RSC Advances 2016 6 112 111606 111615 10.1039/C6RA16282G
    [Google Scholar]
  45. a Bano K. Mittal S.K. Singh P.P. Kaushal S. Sunlight driven photocatalytic degradation of organic pollutants using a MnV 2 O 6 /BiVO 4 heterojunction: Mechanistic perception and degradation pathways. Nanoscale Adv. 2021 3 22 6446 6458 10.1039/D1NA00499A 36133498
    [Google Scholar]
  46. b Li Puma G. Bono A. Krishnaiah D. Collin J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008 157 2-3 209 219 10.1016/j.jhazmat.2008.01.040 18313842
    [Google Scholar]
  47. Jiang T. Yin N. Bai Z. Dai P. Yu X. Wu M. Li G. Wet chemical synthesis of S doped Co3O4 nanosheets/reduced graphene oxide and their application in dye sensitized solar cells. Appl. Surf. Sci. 2018 450 219 227 10.1016/j.apsusc.2018.04.148
    [Google Scholar]
  48. a Mirzaei A. Neri G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuators B Chem. 2016 237 749 775 10.1016/j.snb.2016.06.114
    [Google Scholar]
  49. b Karthik K. Dhanuskodi S. Gobinath C. Prabukumar S. Sivaramakrishnan S. Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: Enhanced photocatalytic and antibacterial activities. J. Mater. Sci. Mater. Electron. 2018 29 7 5459 5471 10.1007/s10854‑017‑8513‑y
    [Google Scholar]
  50. a Lonkar S.P. Pillai V. Abdala A. Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity. Appl. Surf. Sci. 2019 465 1107 1113 10.1016/j.apsusc.2018.09.264
    [Google Scholar]
  51. b Thankachan R.M. Rahman M.M. Sultana I. Glushenkov A.M. Thomas S. Kalarikkal N. Chen Y. Enhanced lithium storage in ZnFe2O4–C nanocomposite produced by a low-energy ball milling. J. Power Sources 2015 282 462 470 10.1016/j.jpowsour.2015.02.039
    [Google Scholar]
  52. Eisavi R. Ghadernejad S. NiFe 2 O 4 @SiO 2 –Cu as a novel and efficient magnetically recoverable nanocatalyst for regioselective synthesis of β-thiol-1,2,3-triazoles under benign conditions. RSC Advances 2023 13 40 27984 27996 10.1039/D3RA05433K 37736561
    [Google Scholar]
  53. Nguyen T.T. Thi Le N.P. Nguyen T.T. Tran P.H. An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Advances 2019 9 65 38148 38153 10.1039/C9RA08074K 35541774
    [Google Scholar]
  54. a Veisi H. Pirhayati M. Mohammadi P. Tamoradi T. Hemmati S. Karmakar B. Recent advances in the application of magnetic nanocatalysts in multicomponent reactions. RSC Advances 2023 13 30 20530 20556 10.1039/D3RA01208E 37435379
    [Google Scholar]
  55. b Rajmane A. Kumbhar A. Nano-biocomposites: A versatile combination of nanocomposites and biopolymers for the synthesis of heterocycles via multicomponent reactions. Curr. Org. Chem. 2024 28 4 241 285 10.2174/0113852728268779240102101311
    [Google Scholar]
  56. Zeleke D. Damena T. Advance in green synthesis of pharmacological important heterocycles using multicomponent reactions and magnetic nanocatalysts (MNCs). The results. Chem 2024 7 101283 101289
    [Google Scholar]
  57. a Li Y. Zhou Y. Zhang J. Liu R. Zhao X. Wang Y. A DFT study on gold-catalyzed domino cyclization for post-Ugi synthesis of spiroindolines: Insights on the origin of remarkable diastereoselectivity. Catal. Sci. Technol. 2022 12 5 1678 1684 10.1039/D1CY01453F
    [Google Scholar]
  58. b Zolfigol M.A. Afsharnadery F. Baghery S. Salehzadeh S. Maleki F. Catalytic applications of (HMIM)C(NO2)3: As a nano ionic liquid for the synthesis of pyrazole derivatives under green conditions and a mechanistic investigation with a new approach. RSC Advances 2015 5 92 75555 75568 10.1039/C5RA16289K
    [Google Scholar]
  59. Ghasemzadeh M.A. Abdollahi-Basir M.H. Babaei M. Fe 3 O 4 @SiO 2 –NH 2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media. Green Chem. Lett. Rev. 2015 8 3-4 40 49 10.1080/17518253.2015.1107139
    [Google Scholar]
  60. Singh N.G. Lily M. Devi S.P. Rahman N. Ahmed A. Chandra A.K. Nongkhlaw R. Synthetic, mechanistic and kinetic studies on the organo-nanocatalyzed synthesis of oxygen and nitrogen containing spiro compounds under ultrasonic conditions. Green Chem. 2016 18 15 4216 4227 10.1039/C6GC00724D
    [Google Scholar]
  61. Rezayati S. Moghadam M.M. Naserifar Z. Ramazani A. Schiff Base complex of copper immobilized on core–shell magnetic nanoparticles catalyzed one-pot syntheses of polyhydroquinoline derivatives under mild conditions supported by a DFT Study. Inorg. Chem. 2024 63 3 1652 1673 10.1021/acs.inorgchem.3c03861 38194483
    [Google Scholar]
  62. Rajesh U.C. Wang J. Prescott S. Tsuzuki T. Rawat D.S. RGO/ZnO Nanocomposite: An efficient, sustainable, heterogeneous, amphiphilic catalyst for synthesis of 3-substituted indoles in water. 2015 3 1 9 18 10.1021/sc500594w
    [Google Scholar]
  63. Kalantari F. Esmailipour H. Ahankar H. Ramazani A. Aghahosseini H. Kaszubowski O. Ślepokura K. SO3H-Functionalized epoxy-immobilized Fe3O4 core–shell magnetic nanoparticles as an efficient, reusable, and eco-friendly catalyst for the sustainable and green synthesis of pyran and pyrrolidinone derivatives. ACS Omega 2023 8 29 25780 25798 10.1021/acsomega.3c01068 37521605
    [Google Scholar]
  64. Saeedi S. Rahmati A. MNP–cellulose–OSO 3 H as an efficient and biodegradable heterogeneous catalyst for green synthesis of trisubstituted imidazoles. RSC Advances 2022 12 19 11740 11749 10.1039/D2RA01348G 35481103
    [Google Scholar]
  65. Amini Moqadam Z. Allahresani A. Hassani H. An efficiently and quickly synthesized NiO@g-C3N4 nanocomposite-catalyzed green synthesis of spirooxindole derivatives. Res. Chem. Intermed. 2020 46 1 299 311 10.1007/s11164‑019‑03951‑9
    [Google Scholar]
  66. Kolvari E. Koukabi N. Hosseini M.M. Vahidian M. Ghobadi E. Nano-ZrO 2 sulfuric acid: A heterogeneous solid acid nano catalyst for Biginelli reaction under solvent free conditions. RSC Advances 2016 6 9 7419 7425 10.1039/C5RA19350H
    [Google Scholar]
  67. Nasseri M.A. Kazemnejadi M. Mahmoudi B. Assadzadeh F. Alavi S.A. Allahresani A. Efficient preparation of 1,8-dioxo-octahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO2/SO42−/Co) nanoparticles. J. Nanopart. Res. 2019 21 10 214 10.1007/s11051‑019‑4643‑x
    [Google Scholar]
  68. Singh R. Singh A. Bhardwaj D. Selective and solvent‐free synthesis of isoxazole‐containing spiro‐thiazolidinones using TiO 2 ‐SO 3 H as solid catalyst. ChemistrySelect 2019 4 33 9600 9607 10.1002/slct.201901942
    [Google Scholar]
  69. Amoozadeh A. Golian S. Rahmani S. TiO 2 -coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. RSC Advances 2015 5 57 45974 45982 10.1039/C5RA06515A
    [Google Scholar]
  70. Maleki B. Reiser O. Esmaeilnezhad E. Choi H.J. SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@D NH (CH2)4SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron 2019 162 129 141 10.1016/j.poly.2019.01.055
    [Google Scholar]
  71. Thirumurthy K. Thirunarayanan G. A facilely designed, highly efficient green synthetic strategy of a peony flower-like SO 4 2− –SnO 2 -fly ash nano-catalyst for the three component synthesis of a serendipitous product with dimedone in water. RSC Advances 2015 5 42 33595 33606 10.1039/C5RA04006J
    [Google Scholar]
  72. Arefi M. Saberi D. Karimi M. Heydari A. Superparamagnetic Fe(OH)3@Fe3O4 nanoparticles: An efficient and recoverable catalyst for tandem oxidative amidation of alcohols with amine hydrochloride salts. ACS Comb. Sci. 2015 17 6 341 347 10.1021/co5001844 25946638
    [Google Scholar]
  73. Hayati P. Eghbali K. Rezaei R. Magnetic nanoparticles tris(hydrogensulfato) boron as an efficient heterogeneous acid catalyst for the synthesis of α,ά‑benzylidene bis(4‑hydroxycoumarin) derivatives under solvent‑free condition. Res. Chem. Intermed. 2019 45 5067 5089
    [Google Scholar]
  74. Azizi K. Karimi M. Heydari A. Oxidative coupling of formamides with β-dicarbonyl compounds and the synthesis of 2-aminobenzothiazole using Cu(II)-functionalized Fe3O4 nanoparticles. Tetrahedron Lett. 2015 56 6 812 816 10.1016/j.tetlet.2014.12.110
    [Google Scholar]
  75. Akbarzadeh P. Koukabi N. Hosseini M.M. Magnetic carbon nanotube as a highly stable and retrievable support for the heterogenization of sulfonic acid and its application in the synthesis of 2‐(1 H ‐tetrazole‐5‐yl) acrylonitrile derivatives. J. Heterocycl. Chem. 2020 57 6 2455 2465 10.1002/jhet.3961
    [Google Scholar]
  76. Sharma N. Chowhan B. Gupta M. Kouser M. NiFe 2 O 4 @B,N,F-tridoped CeO 2 (NFTDNC): A mesoporous nanocatalyst in the synthesis of pyrazolopyranopyrimidine and 1 H -pyrazolo[1,2- b ]phthalazine-5,10-dione derivatives and as an adsorbent. Dalton Trans. 2022 51 36 13795 13807 10.1039/D2DT01216B 36039659
    [Google Scholar]
  77. Hajizadeh Z.A. Halloysite nanotubes modified by Fe3O4 nanoparticles and applied as a natural and efficient nanocatalyst for the symmetrical Hantzsch reaction. Silicon 2020 12 1247 1256 10.1007/s12633‑019‑00224‑3
    [Google Scholar]
  78. Kalhor M. Zarnegar Z. Fe 3 O 4 /SO 3 H@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives. RSC Advances 2019 9 34 19333 19346 10.1039/C9RA02910A 35519374
    [Google Scholar]
  79. Dani S.H. Pratap U.R. Cu@MTPOF as an efficient catalyst for the C–S coupling of 2-mercaptobenzimidazole with aryl halides and 2-halobenzoic acids. Catal. Lett. 2023 153 6 1708 1718 10.1007/s10562‑022‑04092‑2
    [Google Scholar]
  80. Zolfagharinia S. Kolvari E. Koukabi N. Hosseini M.M. Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four-component reactions. Arab. J. Chem. 2020 13 1 227 241 10.1016/j.arabjc.2017.04.004
    [Google Scholar]
  81. Hosseinzadeh Z. Ramazani A. Ahankar H. Ślepokura K. Lis T. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as a reusable catalyst for the preparation of pyrrolidinone derivatives under eco-friendly conditions. Silicon 2019 11 6 2933 2943 10.1007/s12633‑019‑0087‑2
    [Google Scholar]
  82. Maleki A. Synthesis of Imidazo[1,2‐a]pyridines using Fe3O4@SiO2 as an efficient nanomagnetic catalyst via a one‐pot multicomponent reaction. Helv. Chim. Acta 2014 97 4 587 593 10.1002/hlca.201300244
    [Google Scholar]
  83. Amarloo F. Zhiani R. Mehrzad J. Novel Fe3O4/SiO2/PPA Magnetic nanoparticles: Preparation, characterization, and first catalytic application to the solvent- free synthesis of tetrahydrobenzo[a]xanthene-11-ones. Russ. J. Org. Chem. 2019 55 10 1584 1590 10.1134/S1070428019100191
    [Google Scholar]
  84. Singh P. Yadav P. Mishra A. Awasthi S.K. Green and mechanochemical one-pot multicomponent synthesis of bioactive 2-amino-4H-benzo[b]pyrans via highly efficient amine-functionalized SiO2@Fe3O4 nanoparticles. ACS Omega 2020 5 8 4223 4232 10.1021/acsomega.9b04117 32149252
    [Google Scholar]
  85. F.M.A.; Khelif, A.; Chandra, S.; Jain, V.; Menon, S. V.; Verma, A.; Kumari, B. CuFe2O4@PDMA/Cu (II) MNPs: a novel nanomagnetic catalyst for the synthesis ofdihydropyrano[3,2-c]chromenes. Monatsh. Chem. 2022 156 315 327 10.1007/s00706‑025‑03289‑6
    [Google Scholar]
  86. Shabade A.B. Sharma D.M. Bajpai P. Gonnade R.G. Vanka K. Punji B. Room temperature chemoselective hydrogenation of CC, CO and CN bonds by using a well-defined mixed donor Mn( i ) pincer catalyst. Chem. Sci. 2022 13 46 13764 13773 10.1039/D2SC05274A 36544725
    [Google Scholar]
  87. Motahari S. Khazaei A. Preparation and characterization of Co (II) supported on modified magnetic Fe3O4 nanoparticles and its application as catalyst for the synthesis of 2-amino-3-cyanopyridines. Polycycl. Aromat. Compd. 2023 43 1 945 956 10.1080/10406638.2021.2021253
    [Google Scholar]
  88. Ghasemzadeh M.A. Abdollahi-Basir M.H. Ultrasound-assisted one-pot multi-component synthesis of 2-pyrrolidinon-3-olates catalyzed by Co 3 O 4 @SiO 2 core–shell nanocomposite. Green Chem. Lett. Rev. 2016 9 3 156 165 10.1080/17518253.2016.1204013
    [Google Scholar]
  89. Mohammadi M. Ghorbani-Choghamarani A. Hussain-Khil N. l–aspartic acid chelan–Cu (II) complex coted on ZrFe2O4 MNPs catalyzed one–pot annulation and cooperative geminal-vinylogous anomeric–based oxidation reactions. J. Phys. Chem. Solids 2023 177 111300 111301 10.1016/j.jpcs.2023.111300
    [Google Scholar]
  90. Hosseinzadeh Z. Ramazani A. Ahankar H. Ślepokura K. Lis T. Synthesis of 2-amino-4,6-diarylnicotinonitrile in the presence of CoFe2O4@SiO2-SO3H as a reusable solid acid nanocatalyst under microwave irradiation in solvent-freeconditions. Silicon 2019 11 4 2169 2176 10.1007/s12633‑018‑0034‑7
    [Google Scholar]
  91. Geedkar D. Kumar A. Reen G.K. Sharma P. Titania‐silica nanoparticles ensemblies assisted heterogeneous catalytic strategy for the synthesis of pharmacologically significant 2,3‐diaryl‐3,4‐dihydroimidazo[4,5‐b]indole scaffolds. J Het. Chem 2020 57 1963 1973
    [Google Scholar]
  92. Kohzadian A. Filian H. Production and characterization of Fe3O4@SiO2@TMEDA-Pd as a very effectual interphase catalyst for the rapid preparation of di-aryl sulfides and pyrido-dipyrimidines. Silicon 2023 15 10 4539 4554 10.1007/s12633‑023‑02372‑z
    [Google Scholar]
  93. Rana P. Dixit R. Sharma S. Dutta S. Yadav S. Arora B. Priyanka Kaushik B. Gawande M.B. Sharma R.K. Insights into the catalytic potential of a rationally designed magnetic boron nitride nanosheet supported nickel catalyst for the efficient synthesis of 1,4-dihydropyridines. React. Chem. Eng. 2022 8 1 244 253 10.1039/D2RE00246A
    [Google Scholar]
  94. Mohammadi M. Ghorbani-Choghamarani A. Ramish S.M. [ZrFe2O4@SiO2–N–(TMSP)–ASP–Pd(0)] Complex: Synthesis, characterizations, and its application as a nanomagnetic catalyst in cross-coupling and click reactions. J. Mol. Struct. 2023 1292 136115 10.1016/j.molstruc.2023.136115
    [Google Scholar]
  95. Keshani R. Hazeri N. Faroughi Niya H. Fatahpour M. Synthesis of benzo[b]pyran and pyrano[2,3-d]pyrimidine derivatives using a new superparamagnetic nanocatalyst Fe3O4@gly@Furfural@Co(NO3)2. Res. Chem. Intermed. 2023 49 8 3461 3479 10.1007/s11164‑023‑05044‑0
    [Google Scholar]
  96. Mohammadi M. Ghorbani-Choghamarani A. Complexation of guanidino containing l-arginine with nickel on silica-modified Hercynite MNPs: A novel catalyst for the Hantzsch synthesis of polyhydroquinolines and 2,3-Dihydroquinazolin-4(1H)-ones. Res. Chem. Intermed. 2022 48 6 2641 2663 10.1007/s11164‑022‑04706‑9
    [Google Scholar]
  97. Dharmendra D. Chundawat P. Vyas Y. Chaubisa P. Ameta C. Greener design and characterization of biochar/Fe 3 O 4 @SiO 2 –Ag magnetic nanocomposite as efficient catalyst for synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Advances 2023 13 21 14594 14613 10.1039/D3RA00869J 37188256
    [Google Scholar]
  98. Wieszczycka K. Staszak K. Woźniak-Budych M.J. Litowczenko J. Maciejewska B.M. Jurga S. Surface functionalization – The way for advanced applications of smart materials. Coord. Chem. Rev. 2021 436 213846 213848 10.1016/j.ccr.2021.213846
    [Google Scholar]
  99. Behrouz S. Highly efficient three-component synthesis of 5-substituted-1H-tetrazoles from aldehydes, hydroxylamine, and tetrabutylammonium azide using doped nano-sized copper(I) oxide (Cu2O) on melamine–formaldehyde resin. J. Saudi Chem. Soc. 2017 21 2 220 228 10.1016/j.jscs.2016.08.003
    [Google Scholar]
  100. Baghbanian S.M. Synthesis, characterization, and application of Cu 2 O and NiO nanoparticles supported on natural nanozeolite clinoptilolite as a heterogeneous catalyst for the synthesis of pyrano[3,2-b]pyrans and pyrano[3,2-c]pyridones. RSC Advances 2014 4 103 59397 59404 10.1039/C4RA10537K
    [Google Scholar]
  101. Partovi M. Rezayati S. Ramazani A. Ahmadi Y. Taherkhani H. Recyclable mesalamine-functionalized magnetic nanoparticles (mesalamine/GPTMS@SiO 2 @Fe 3 O 4 ) for tandem Knoevenagel–Michael cyclocondensation: Grinding technique for the synthesis of biologically active 2-amino-4 H -benzo[ b ]pyran derivatives. RSC Advances 2023 13 48 33566 33587 10.1039/D3RA06560J 38020042
    [Google Scholar]
  102. Khan M.U. Siddiqui Z.N. Ce@STANPs/ZrO2 as Nanocatalyst for multicomponent synthesis of isatin-derived imidazoles under green reaction conditions. ACS Omega 2018 3 8 10357 10364 10.1021/acsomega.8b01043 31459163
    [Google Scholar]
  103. Rezaie Kahkhaie M. Hazeri N. Maghsoodlou M.T. Yazdani-Elah-Abadi A. Synthesis and characterization of a novel and reusable Fe3O4@THAM-CH2CH2-SCH2CO2H magnetic nanocatalyst for highly efficient preparation of xanthenes and 3-aminoisoxazoles in green conditions. Res. Chem. Intermed. 2021 47 12 5007 5025 10.1007/s11164‑021‑04558‑9
    [Google Scholar]
  104. Farahmand T. Hashemian S. Sheibani A. Efficient one-pot synthesis of pyrano[2,3-d]pyrimidinone and pyrido [2,3-d] pyrimidine derivatives by using of Mn-ZIF-8@ZnTiO3 nanocatalyst. J. Mol. Struct. 2020 1206 127667 10.1016/j.molstruc.2019.127667
    [Google Scholar]
  105. Ghanbari Z. Naeimi H. Tetrazol-Cu( i ) immobilized on nickel ferrite catalyzed green synthesis of indenopyridopyrimidine derivatives in aqueous media. RSC Advances 2021 11 50 31377 31384 10.1039/D1RA05889D 35496835
    [Google Scholar]
  106. Zeynizadeh B. Rahmani S. Immobilized copper-layered nickel ferrite on acid-activated montmorillonite, [(NiFe 2 O 4 @Cu)(H + -Mont)], as a superior magnetic nanocatalyst for the green synthesis of xanthene derivatives. RSC Advances 2019 9 48 28038 28052 10.1039/C9RA04320A 35558991
    [Google Scholar]
  107. Safari J. Hosseini Nasab N. Fe3O4 magnetic nanoparticles in the layers of montmorillonite as a valuable heterogeneous nanocatalyst for the one-pot synthesis of indeno[1,2-b]indolone derivatives in aqueous media. Res. Chem. Intermed. 2019 45 3 1025 1038 10.1007/s11164‑018‑3659‑7
    [Google Scholar]
  108. Lu J. Ma E.Q. Liu Y.H. Li Y.M. Mo L.P. Zhang Z.H. One-pot three-component synthesis of 1,2,3-triazoles using magnetic NiFe 2 O 4 –glutamate–Cu as an efficient heterogeneous catalyst in water. RSC Advances 2015 5 73 59167 59185 10.1039/C5RA09517D
    [Google Scholar]
  109. Jamatia R. Gupta A. Pal A.K. Nano-FGT: A green and sustainable catalyst for the synthesis of spirooxindoles in aqueous medium. RSC Advances 2016 6 25 20994 21000 10.1039/C5RA27552K
    [Google Scholar]
  110. Eshghi H. Khojastehnezhad A. Moeinpour F. Rezaeian S. Bakavoli M. Teymouri M. Rostami A. Haghbeen K. Nanomagnetic organic–inorganic hybrid (Fe@Si-Gu-Prs): A novel magnetically green catalyst for the synthesis of tetrahydropyridine derivatives at room temperature under solvent-free conditions. Tetrahedron 2015 71 3 436 444 10.1016/j.tet.2014.12.010
    [Google Scholar]
  111. Eivazzadeh-Keihan R. Noruzi E.B. Radinekiyan F. Bani S.M. Maleki A. Shaabani B. Haghpanahi M. Synthesis of core-shell magnetic supramolecular nanocatalysts based on amino-functionalized calix[4] arenes for the synthesis of 4H-chromenes by ultrasonic waves. ChemistryOpen 2020 9 7 735 742 10.1002/open.202000005 32626643
    [Google Scholar]
  112. Majumdar B. Sarma D. Jain S. Sarma T.K. One-pot magnetic iron oxide–carbon nanodot composite-catalyzed cyclooxidative aqueous tandem synthesis of quinazolinones in the presence of tert-Butyl hydroperoxide. ACS Omega 2018 3 10 13711 13719 10.1021/acsomega.8b01794 31458072
    [Google Scholar]
  113. Akbarzadeh P. Koukabi N. Kolvari E. Anchoring of triethanolamine–Cu(II) complex on magnetic carbon nanotube as a promising recyclable catalyst for the synthesis of 5-substituted 1H-tetrazoles from aldehydes. Mol. Divers 2020 24 319 333 10.1007/s11030‑019‑09951‑6 30968245
    [Google Scholar]
  114. Nguyen T.T. Tran P.H. One-pot multicomponent synthesis of thieno[2,3- b ]indoles catalyzed by a magnetic nanoparticle-supported [Urea] 4 [ZnCl 2 ] deep eutectic solvent. RSC Advances 2020 10 16 9663 9671 10.1039/D0RA00773K 35497228
    [Google Scholar]
  115. Nasab N.H. Safari J. Synthesis of a wide range of biologically important spiropyrans and spiroacenaphthylenes, using NiFe₂O₄@SiO₂@Melamine magnetic nanoparticles as an efficient, green and reusable nanocatalyst. J. Mol. Struct. 2019 1193 118 124 10.1016/j.molstruc.2019.05.023
    [Google Scholar]
  116. Bodaghifard M.A. Organic base grafted on magnetic nanoparticles as a recoverable catalyst for the green synthesis of hydropyridine rings. J. Indian Chem. Soc. 2020 17 2 483 492 10.1007/s13738‑019‑01788‑y
    [Google Scholar]
  117. Shaabani B. Maleki H. Rakhtshah J. Environmentally benign synthesis of pyranopyrazole derivatives by cobalt Schiff-base complexes immobilized on magnetic iron oxide nanoparticles. J. Organomet. Chem. 2019 897 139 147 10.1016/j.jorganchem.2019.06.030
    [Google Scholar]
  118. Hosseini Mohtasham N. Gholizadeh M. Nano silica extracted from horsetail plant as a natural silica support for the synthesis of H3PW12O40 immobilized on aminated magnetic nanoparticles (Fe3O4@SiO2-EP-NH-HPA): A novel and efficient heterogeneous nanocatalyst for the green one-pot synthesis of pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed. 2020 46 6 3037 3066 10.1007/s11164‑020‑04133‑8
    [Google Scholar]
  119. Taheri-Ledari R. Rahimi J. Maleki A. Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: Applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives. Ultrason. Sonochem. 2019 59 104737 10.1016/j.ultsonch.2019.104737 31473427
    [Google Scholar]
  120. Nongrum R. Nongthombam G.S. Kharkongor M. Rani J.W.S. Rahman N. Kathing C. Myrboh B. Nongkhlaw R. A nano-organo catalyzed route towards the efficient synthesis of benzo[b]pyran derivatives under ultrasonic irradiation. RSC Advances 2016 6 108384 108392 10.1039/C6RA24108E
    [Google Scholar]
  121. Dutta A. Rahman N. Khongriah W. Nongrum R. Joshi S.R. Nongkhlaw R. l‐Glutamine supported on core–shell silica iron oxide nanoparticles: A highly efficient organocatalyst for synthesis of spirooxoindoles. ChemistrySelect 2019 4 42 12399 12408 10.1002/slct.201902279
    [Google Scholar]
  122. Rahnamafar R. Moradi L. Khoobi M. Synthesis of benzo[b]xanthene‐triones and tetrahydrochromeno[2,3‐b]xanthene tetraones via three‐ or pseudo–five‐component reactions using Fe3O4@SiO2/PEtOx as a novel, magnetically recyclable, and eco‐friendly nanocatalyst. J Het. Chem 2020 57 1825 1837
    [Google Scholar]
  123. Fekri L.Z. Nikpassand M. Khakshoor S.N. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@ -proline reusable catalyst in aqueous media. J. Organomet. Chem. 2019 894 18 27 10.1016/j.jorganchem.2019.05.004
    [Google Scholar]
  124. Mohammadi P. Sheibani H. Synthesis and characterization of Fe3O4@SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes in water. Mater. Chem. Phys. 2019 228 140 146 10.1016/j.matchemphys.2018.11.058
    [Google Scholar]
  125. Rostami H. Shiri L. CoFe2O4@SiO2-PA-CC-guanidine nanoparticles: A novel, efficient, and recyclable catalyst for the synthesis of 3,5-disubstituted-2,6-dicyanoaniline derivatives. Appl Organometal Chem. 2020 34 5 e5599 10.1002/aoc.5599
    [Google Scholar]
  126. Rostami H. Shiri L. CoFe2O4@SiO2‐PA‐CC‐Guanidine MNPs as an efficient catalyst for the one‐pot, four‐component synthesis of pyrazolopyranopyrimidines. sulfonated caspian sea sand: A promising heterogeneous solid acid catalyst in comparison with -SO3H functionalized NiFe2O4@SiO2@KIT‐6. ChemistrySelect 2019 4 29 8410 8415 10.1002/slct.201901925
    [Google Scholar]
  127. Mardani F. Khorshidi A. Gholampoor S. Sulfonated caspian sea sand: A promising heterogeneous solid acid catalyst in comparison with –SO3H functionalized NiFe2O4@SiO2@KIT‐6. ChemistrySelect 2019 4 27 8015 8020 10.1002/slct.201901694
    [Google Scholar]
  128. Rostami H. Shiri L. Fe3O4@SiO2-CPTMS-Guanidine-SO3H-catalyzed One-pot multicomponent synthesis of polysubstituted pyrrole derivatives under solvent-free conditions. Russ. J. Org. Chem. 2019 55 8 1204 1211 10.1134/S1070428019080207
    [Google Scholar]
  129. Mohammadi H. Shaterian H.R. Sulfonated magnetic nanocatalyst and application for synthesis of novel Spiro[acridine-9,5′-thiazole]-1,4′-dione derivatives. Res. Chem. Intermed. 2020 46 2 1109 1125 10.1007/s11164‑019‑04022‑9
    [Google Scholar]
  130. Nikoofar K. Peyrovebaghi S.S. Ultrasound‐assisted synthesis of 3‐(1‐(2‐(1 H ‐indol‐3‐yl)ethyl)‐2‐aryl‐6,6‐dimethyl‐4‐oxo‐4,5,6,7‐tetrahydro‐1 H ‐indol‐3‐yl)indolin‐2‐ones by novel core‐shell bio‐based nanocatalyst anchoring sulfonated L ‐histidine on magnetized silica (SO 3 H‐ L ‐His@SiO 2 ‐nano Fe 3 O 4 ). J. Chin. Chem. Soc. (Taipei) 2020 67 7 1303 1313 10.1002/jccs.201900365
    [Google Scholar]
  131. Maleki A. Rahimi J. Valadi K. Sulfonated Fe 3 O 4 @PVA superparamagnetic nanostructure: Design, in-situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic–inorganic Bronsted acid catalyst. 2019 18 100264 100267 10.1016/j.nanoso.2019.100264
    [Google Scholar]
  132. Arghan M. Koukabi N. Kolvari E. Sulfonated-polyvinyl amine coated on Fe3O4 nanoparticles: A high-loaded and magnetically separable acid catalyst for multicomponent reactions. J. Indian Chem. Soc. 2019 16 11 2333 2350 10.1007/s13738‑019‑01700‑8
    [Google Scholar]
  133. Mohammadian N. Akhlaghinia B. Magnetic calcined oyster shell functionalized with taurine immobilized on β-cyclodextrin (Fe3O4/COS@β-CD-SO3H NPs) as green and magnetically reusable nanocatalyst for efficient and rapid synthesis of spirooxindoles. Res. Chem. Intermed. 2019 45 10 4737 4756 10.1007/s11164‑019‑03860‑x
    [Google Scholar]
  134. Khaleghi-Abbasabadi M. Azarifar D. Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): A novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3,2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-ones. Res. Chem. Intermed. 2019 45 4 2095 2118 10.1007/s11164‑018‑03722‑y
    [Google Scholar]
  135. Hassanzadeh-Afruzi F. Amiri-Khamakani Z. Saeidirad M. Salehi M.M. Taheri-Ledari R. Maleki A. Facile synthesis of pyrazolopyridine pharmaceuticals under mild conditions using an algin-functionalized silica-based magnetic nanocatalyst (Alg@SBA-15/Fe 3 O 4 ). RSC Advances 2023 13 15 10367 10378 10.1039/D2RA07228A 37020883
    [Google Scholar]
  136. Azizi S. Soleymani J. Hasanzadeh M. Iron oxide magnetic nanoparticles supported on amino propyl‐functionalized KCC‐1 as robust recyclable catalyst for one pot and green synthesis of tetrahydrodipyrazolopyridines and cytotoxicity evaluation. Appl Organometal Chem. 2020 34 3 e5440 10.1002/aoc.5440
    [Google Scholar]
  137. Javanmiri K. Karimian R. Green synthesis of benzimidazoloquinazolines and 1,4-dihydropyridines using magnetic cyanoguanidine-modified chitosan as an efficient heterogeneous nanocatalyst under various conditions. Monatsh. Chem. 2020 151 2 199 212 10.1007/s00706‑019‑02542‑z
    [Google Scholar]
  138. Babaei E. Fatemeh Mirjalili B.B. Fe3O4@nano-dextrin/Ti(IV): A unique and recyclable catalyst for aqueous pseudo-four-component reaction. J. Organomet. Chem. 2020 906 121055 121058 10.1016/j.jorganchem.2019.121055
    [Google Scholar]
  139. Arghan M. Koukabi N. Kolvari E. Polyvinyl amine as a modified and grafted shell for Fe3O4 nanoparticles: As a strong solid base catalyst for the synthesis of various dihydropyrano[2,3-c]pyrazole derivatives and the Knoevenagel condensation. J. Saudi Chem. Soc. 2019 23 2 150 161 10.1016/j.jscs.2018.05.008
    [Google Scholar]
  140. Maleki A. Niksefat M. Rahimi J. Hajizadeh Z. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines. BMC Chem. 2019 13 1 19 10.1186/s13065‑019‑0538‑2 31384768
    [Google Scholar]
  141. Maleki A. Niksefat M. Rahimi J. Taheri-Ledari R. Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater. Today Chem. 2019 13 110 120 10.1016/j.mtchem.2019.05.001
    [Google Scholar]
  142. Ashraf M.A. Liu Z. Peng W.X. Gao C. New copper complex on Fe3O4 nanoparticles as a highly efficient reusable nanocatalyst for synthesis of polyhydroquinolines in water. Catal. Lett. 2020 150 3 683 701 10.1007/s10562‑019‑02986‑2
    [Google Scholar]
  143. Verma P. Pal S. Chauhan S. Mishra A. Sinha I. Singh S. Srivastava V. Starch functionalized magnetite nanoparticles: A green, biocatalyst for one-pot multicomponent synthesis of imidazopyrimidine derivatives in aqueous medium under ultrasound irradiation. J. Mol. Struct. 2020 1203 127410 10.1016/j.molstruc.2019.127410
    [Google Scholar]
  144. Mirhashemi F. Ali Amrollahi M. Decoration of β-CD on Fe3O4@Ag core–shell nanoparticles as a new magnetically recoverable and reusable catalyst for the synthesis of 3,4-dihydropyrimidinones and 2,4-dihydropyrano[2,3-c]pyrazoles in H2O. Inorg. Chim. Acta 2019 486 568 575 10.1016/j.ica.2018.11.009
    [Google Scholar]
  145. Kumari M. Jain Y. Yadav P. Laddha H. Gupta R. Synthesis of Fe3O4-DOPA-Cu magnetically separable nanocatalyst: A versatile and robust catalyst for an array of sustainable multicomponent reactions under microwave irradiation. Catal. Lett. 2019 149 8 2180 2194 10.1007/s10562‑019‑02794‑8
    [Google Scholar]
  146. Girija D. Bhojya Naik H.S. Vinay Kumar B. Sudhamani C.N. Harish K.N. Fe3O4 nanoparticle supported Ni(II) complexes: A magnetically recoverable catalyst for Biginelli reaction. Arab. J. Chem. 2019 12 3 420 428 10.1016/j.arabjc.2014.08.008
    [Google Scholar]
  147. Fekri L.Z. Pour K.H. Zeinali S. Synthesis, characterization and application of Copper/Schiff-base complex immobilized on KIT-6-NH2 magnetic nanoparticles for the synthesis of dihydropyridines. J. Organomet. Chem. 2020 915 121232 10.1016/j.jorganchem.2020.121232
    [Google Scholar]
  148. Fekri L.Z. Zeinali S. Copper/Schiff‐base complex immobilized on amine functionalized silica mesoporous magnetic nanoparticles under solvent‐free condition: A facile and new avenue for the synthesis of thiazolidin‐4‐ones. Appl. Organomet. Chem. 2020 34 6 e5629 10.1002/aoc.5629
    [Google Scholar]
  149. Rafiee F. Khavari P. One-pot three-component synthesis of propargylamines using an efficient and reusable copper bio-functionalized magnetic graphene oxide nanocomposite. Polyhedron 2020 177 114309 114313 10.1016/j.poly.2019.114309
    [Google Scholar]
  150. Babaei B. Mamaghani M. Mokhtary M. Sustainable approach to the synthesis of 1,4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst. React. Kinet. Mech. Catal. 2019 128 1 379 394 10.1007/s11144‑019‑01636‑3
    [Google Scholar]
  151. Rostamizadeh S. Daneshfar Z. Khazaei A. Ferric sulfasalazine sulfa drug complex supported on cobalt ferrite cellulose; Evaluation of its activity in MCRs. Catal. Lett. 2020 150 7 2091 2114 10.1007/s10562‑020‑03101‑6
    [Google Scholar]
  152. Safari J. Tavakoli M. Ghasemzadeh M.A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functionalized chitosan@Co3O4 as a novel and green catalyst. J. Organomet. Chem. 2019 880 75 82 10.1016/j.jorganchem.2018.10.028
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372393349250826060305
Loading
/content/journals/cocat/10.2174/0122133372393349250826060305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test