Skip to content
2000
image of Improved Process for Esterification Reaction of Carboxylic Acid using N-Bromosuccinimide and Triphenylphosphine as Activating Agents

Abstract

Background

The ester functional group is crucial in organic chemistry as well as in other fields due to its diverse applications. Thus, its synthesis in a simple and effective manner remains an interesting task. In literature, many one-pot reactions are reported for the transformation of carboxylic acid into ester. However, many of them are inapplicable due to their limitations, such as, longer reaction time, harsh reaction conditions, usage of expensive reagents, etc. Hence, a simple as well as effective transformation of carboxylic acid to ester is still desirable.

Objective

The study intends to develop a procedure for esterification reaction in a simple and cost effective manner under a mild reaction condition.

Methods

The demonstration reflects the activation of carboxylic acid employing a combination of triphenylphosphine and N-bromosuccinimide (NBS) at low temperatures. The activated carboxylic acid reacts with alcohol to form the corresponding ester. At elevated temperatures, the reaction can be completed at a faster rate, while at room temperatures the process is relatively slower and takes quite a long time.

Results

Carboxylic acids (containing aromatic and heteroaromatic moieties) were made to react with different alcohols, and the desired esters were obtained quickly under optimum reaction conditions. Good to excellent yields of the desired esters were obtained in most of the reactions.

Conclusion

An ameliorated procedure for the esterification of carboxylic acid is reported. Activation of carboxylic acid was achieved using triphenylphosphine and NBS. The activated acid thus formed, upon reaction with various alcohols, produced the corresponding ester in good yields.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372367716250526102311
2025-06-04
2025-09-03
Loading full text...

Full text loading...

References

  1. Ertl P. Altmann E. McKenna J.M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 2020 63 15 8408 8418 10.1021/acs.jmedchem.0c00754 32663408
    [Google Scholar]
  2. Hulsman N. Medema J.P. Bos C. Jongejan A. Leurs R. Smit M.J. Esch D.I.J.P. Richel D. Wijtmans M. Chemical insights in the concept of hybrid drugs: The antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin. J. Med. Chem. 2007 50 10 2424 2431 10.1021/jm061371e 17441704
    [Google Scholar]
  3. Kitano H. Ito H. Itami K. Palladium-catalyzed esterification of carboxylic acids with aryl iodides. Org. Lett. 2018 20 8 2428 2432 10.1021/acs.orglett.8b00775 29617141
    [Google Scholar]
  4. Basudhar D. Bharadwaj G. Cheng R.Y. Jain S. Shi S. Heinecke J.L. Holland R.J. Ridnour L.A. Caceres V.M. Spadari-Bratfisch R.C. Paolocci N. Velázquez-Martínez C.A. Wink D.A. Miranda K.M. Synthesis and chemical and biological comparison of nitroxyl- and nitric oxide-releasing diazeniumdiolate-based aspirin derivatives. J. Med. Chem. 2013 56 20 7804 7820 10.1021/jm400196q 24102516
    [Google Scholar]
  5. Hossain M.A. Iqbal M.M.A. Julkapli N.M. Kong S.P. Ching J.J. Lee H.V. Development of catalyst complexes for upgrading biomass into ester-based biolubricants for automotive applications: A review. RSC Advances 2018 8 10 5559 5577 10.1039/C7RA11824D 35542409
    [Google Scholar]
  6. Fischer E. Speier A. Darstellung der Ester. Ber. Dtsch. Chem. Ges. 1895 28 3 3252 3258 10.1002/cber.189502803176
    [Google Scholar]
  7. Ishihara K. Nakagawa S. Sakakura A. Bulky diarylammonium arenesulfonates as selective esterification catalysts. J. Am. Chem. Soc. 2005 127 12 4168 4169 10.1021/ja050223v 15783188
    [Google Scholar]
  8. Neises B. Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. Engl. 1978 17 7 522 524 10.1002/anie.197805221
    [Google Scholar]
  9. Wakasugi K. Iida A. Misaki T. Nishii Y. Tanabe Y. Simple, mild, and practical esterification, thioesterification, and amide formation utilizing p-toluenesulfonyl chloride and N-methylimidazole. Adv. Synth. Catal. 2003 345 11 1209 1214 10.1002/adsc.200303093
    [Google Scholar]
  10. Carpino L.A. El-Faham A. Albericio F. Efficiency in peptide coupling: 1-hydroxy-7-azabenzotriazole vs 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine. J. Org. Chem. 1995 60 11 3561 3564 10.1021/jo00116a054
    [Google Scholar]
  11. Abdelmoty I. Albericio F. Carpino L.A. Foxman B.M. Kates S.A. Structural studies of reagents for peptide bond formation: Crystal and molecular structures of HBTU and HATU. Lett. Pept. Sci. 1994 1 2 57 67 10.1007/BF00126274
    [Google Scholar]
  12. Tsakos M. Schaffert E.S. Clement L.L. Villadsen N.L. Poulsen T.B. Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep. 2015 32 4 605 632 10.1039/C4NP00106K 25572105
    [Google Scholar]
  13. Staab H.A. Syntheses using heterocyclic amides (azolides). Angew. Chem. Int. Ed. Engl. 1962 1 7 351 367 10.1002/anie.196203511
    [Google Scholar]
  14. Hughes D.L. Reamer R.A. Bergan J.J. Grabowski E.J.J. A mechanistic study of the Mitsunobu esterification reaction. J. Am. Chem. Soc. 1988 110 19 6487 6491 10.1021/ja00227a032
    [Google Scholar]
  15. Pokluda A. Kohout M. Chudoba J. Krupička M. Cibulka R. Nitrosobenzene: Reagent for the Mitsunobu esterification reaction. ACS Omega 2019 4 3 5012 5018 10.1021/acsomega.8b03551 31459682
    [Google Scholar]
  16. Lipshutz B.H. Chung D.W. Rich B. Corral R. Simplification of the Mitsunobu reaction. Di-p-chlorobenzyl azodicarboxylate: A new azodicarboxylate. Org. Lett. 2006 8 22 5069 5072 10.1021/ol0618757 17048845
    [Google Scholar]
  17. Jia M. Jiang L. Niu F. Zhang Y. Sun X. A novel and highly efficient esterification process using triphenylphosphine oxide with oxalyl chloride. R. Soc. Open Sci. 2018 5 2 171988 10.1098/rsos.171988 29515897
    [Google Scholar]
  18. Salomé C. Kohn H. Triphenylphosphine dibromide: A simple one-pot esterification reagent. Tetrahedron 2009 65 2 456 460 10.1016/j.tet.2008.10.062 20066025
    [Google Scholar]
  19. Cuevas-Yañez E. García M.A. Mora M.A. Muchowski J.M. Almanza R-C. Novel synthesis of α-diazoketones from acyloxyphosphonium salts and diazomethane. Tet. Lett 2003 44 4815 4817
    [Google Scholar]
  20. Baughman T.W. Sworen J.C. Wagener K.B. The facile preparation of alkenyl metathesis synthons. Tetrahedron 2004 60 48 10943 10948 10.1016/j.tet.2004.09.021
    [Google Scholar]
  21. Hosoya M. Ishibashi K. Ohara T. Mori A. Okano K. Catalytic activity of triphenylphosphine for electrophilic aromatic bromination usingN-bromosuccinimide and process safety evaluation. Org Proc. Res. Dev. 2024 28 10 3903 3912 10.1021/acs.oprd.4c00307
    [Google Scholar]
  22. Sun Q. Li R-T. Zhao S. Wu Y. Cheng T-M. Triphenylphosphine N-bromosuccinimide mediated chemoselective cyclodehydration of diols. Synthesis 2015 47 8 1154 1162 10.1055/s‑0034‑1380132
    [Google Scholar]
  23. Gopinath P. Chandrasekaran S. A sequential one pot synthesis of functionalized esters and thioesters through a ring opening acylation of cyclic ethers and thioethers. Eur. J. Org. Chem. 2018 2018 46 6541 6547 10.1002/ejoc.201801225
    [Google Scholar]
  24. Sahoo D. Sarkar S. Jana S. A simple synthesis of ketone from carboxylic acid using tosyl chloride as an activator. Tetrahedron Lett. 2019 60 39 151084 10.1016/j.tetlet.2019.151084
    [Google Scholar]
  25. Mekonnen H.G. Jana S. Simple one pot synthesis of ketone from carboxylic acid using DCC as an activator. Tetrahedron Lett. 2019 60 20 1382 1384 10.1016/j.tetlet.2019.04.030
    [Google Scholar]
  26. Mekonnen H.G. Sahoo D. Jana S. Maji S.K. Exploration of mesyl chloride in a one pot conversionof carboxylic acids to ketones. Curr. Organocatal. 2020 7 3 242 247 10.2174/2213337207999200611160509
    [Google Scholar]
  27. Sahoo D. Jana S. Sahoo S. A simple and modified one pot conversion of carboxylic acid to ketone. Curr. Organocatal. 2023 10 1 58 65 10.2174/2213337210666221223145319
    [Google Scholar]
  28. Jana S. Sanaboina C. Eppakayala L. Efficient microwave-assisted synthesis of N-(tert-butylsulfinyl)imines cata lyzed by amberlist-15. Synlett 2014 25 7 1006 1008 10.1055/s‑0033‑1340858
    [Google Scholar]
  29. Subramanian K. Yedage S.L. Bhanage B.M. An electrochemical method for carboxylic ester synthesis from N-alkoxyamides. J. Org. Chem. 2017 82 19 10025 10032 10.1021/acs.joc.7b01473 28872313
    [Google Scholar]
  30. Bai X.F. Ye F. Zheng L.S. Lai G.Q. Xia C.G. Xu L.W. Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air. Chem. Commun. 2012 48 68 8592 8594 10.1039/c2cc34117d 22814568
    [Google Scholar]
  31. Islam S.M. Ghosh K. Roy A.S. Molla R.A. Polymer supported Pd catalyzed carbonylation of aryl bromides for the synthesis of aryl esters and amides. RSC Advances 2014 4 73 38986 38999 10.1039/C4RA05365F
    [Google Scholar]
  32. Lohre C. Dröge T. Wang C. Glorius F. Nickel-catalyzed cross-coupling of aryl bromides with tertiary Grignard reagents utilizing donor-functionalized N-heterocyclic carbenes (NHCs). Chemistry 2011 17 22 6052 6055 10.1002/chem.201100909 21509842
    [Google Scholar]
  33. Wang Y. Kang Q. Palladium-catalyzed allylic esterification via C-C bond cleavage of a secondary homoallyl alcohol. Org. Lett. 2014 16 16 4190 4193 10.1021/ol501887a 25075757
    [Google Scholar]
  34. This compound is commercially available in Merck 2014
    [Google Scholar]
  35. Munoz S.B. Dang H. Ispizua-Rodriguez X. Mathew T. Prakash G.K.S. Direct access to acyl fluorides from carboxylic acids using a phosphine/fluoride deoxyfluorination reagent system. Org. Lett. 2019 21 6 1659 1663 10.1021/acs.orglett.9b00197 30840474
    [Google Scholar]
  36. Hughes D.L. Reamer R.A. Reamer R.A. The effect of acid strength on the Mitsunobu esterification reaction: Carboxyl vs hydroxyl reactivity. J. Org. Chem. 1996 61 9 2967 2971 10.1021/jo952180e 11667155
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372367716250526102311
Loading
/content/journals/cocat/10.2174/0122133372367716250526102311
Loading

Data & Media loading...

Supplements

NMR spectra of all compounds are available in the supporting information file.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test