Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

This paper presents the synthesis, spectroscopic characterization, and computational modeling of 4-Bromoquinoline-2-carboxaldehyde (4-BQCA), an effective therapeutic compound. 4-BQCA, a quinoline derivative, has drawn interest because of its distinct chemical structure and its medical uses.

Methods

The chemical was produced with excellent yield and purity using a simple, repeatable reaction route. Density functional theory (DFT) studies were carried out to learn more about the compound's molecular characteristics, including its electronic structure, bonding, and stability. The structure and functional groups found in 4-BQCA were verified by spectroscopic investigation, which included UV-Vis, FT-IR, NMR, and mass spectrometry.

Results

The compound's stability and advantageous electrical characteristics are highlighted by the results of both computational and experimental methods, indicating that it may find application in medication design and development.

Conclusion

These results offer a starting point for further investigations into the biological activity and therapeutic effectiveness of 4-BQCA, indicating that it is a viable option for more study in pharmaceutical applications.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372362996241228014644
2025-01-07
2025-09-27
Loading full text...

Full text loading...

References

  1. MorimotoY. MatsudaF. ShirahamaH. Total synthesis of virantmycin and determination of its stereochemistry.Synlett19911991320220310.1055/s‑1991‑20680
    [Google Scholar]
  2. MichaelJ.P. Quinoline, quinazoline and acridone alkaloids.Nat. Prod. Rep.1997141112010.1039/np9971400011 9121729
    [Google Scholar]
  3. MarkeesD.G. DeweyV.C. KidderG.W. Antiprotozoal 4-aryloxy-2-aminoquinolines and related compounds.J. Med. Chem.197013232432610.1021/jm00296a048 5418519
    [Google Scholar]
  4. CampbellS.F. HardstoneJ.D. PalmerM.J. MichaelJ. 2,4-Diamino-6,7-dimethoxyquinoline derivatives as. alpha.1-adrenoceptor antagonists and antihypertensive agents.J. Med. Chem.19883151031103510.1021/jm00400a025 2896245
    [Google Scholar]
  5. SamsonA. JenekheL. MaksudulM. New conjugated polymers with donor-acceptor architectures: Synthesis and photo physics of carbazole-quinoline and phenothiazine-quinoline copolymer and oligomers exhibiting large intramolecular charge transfer.Macromolecules2001347315732410.1021/ma0100448
    [Google Scholar]
  6. AgrawalA.K. JenekheS.A. Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 3. New conjugated polyquinolines with electron-donor or -acceptor side groups.Chem. Mater.19935563364010.1021/cm00029a010
    [Google Scholar]
  7. HayatF. MoseleyE. SalahuddinA. Van ZylR.L. AzamA. Antiprotozoal activity of chloroquinoline based chalcones.Eur. J. Med. Chem.20114651897190510.1016/j.ejmech.2011.02.004 21377771
    [Google Scholar]
  8. BekhitA.A. El-SayedO.A. AboulmagdE. ParkJ.Y. Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents.Eur. J. Med. Chem.200439324925510.1016/j.ejmech.2003.12.005 15051173
    [Google Scholar]
  9. Amin MirM. ManzerM. F.; Andrews, K.; Hasnain, S.M.; Iqbal, A.; Sehar, S.; Younis, A. Molecular dynamic, Hirshfeld surface, molecular docking and drug likeness studies of a potent anti-oxidant, anti-malaria and anti-Inflammatory medicine.Pyrogallol. Results Chem.2023510076310.1016/j.rechem.2023.100763
    [Google Scholar]
  10. KhaliliH.B. MollaaminF. MonajjemiM. Biophysical chemistry of macrocycles for drug delivery: A theoretical study.Russ. Chem. Bull.201160223824110.1007/s11172‑011‑0039‑5
    [Google Scholar]
  11. RajaM. RajM. R.; Muthu, S.; Suresh, M. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide.J. Mol. Struct.2017114128429810.1016/j.molstruc.2017.03.117
    [Google Scholar]
  12. ChocholousovaJ. VladimirS.V. HobzaP. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H…O and improper blue-shifted C-H…O hydrogen bonds.Phys. Chem.200463741
    [Google Scholar]
  13. MollaaminF. MonajjemiM. Carbon nanotubes as biosensors for releasing conjugated bisphosphonates: Metal ions in bone tissue: Targeted drug delivery through the DFT method. C-J.Carbon Res2023926110.3390/c9020061
    [Google Scholar]
  14. PrasadM.V.S. Udaya SriN. VeeraiahV. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV–vis spectra of 2-chloro-3-quinolinecarboxaldehyde.Spectrochim. Acta A Mol. Biomol. Spectrosc.201514816317410.1016/j.saa.2015.03.105 25879986
    [Google Scholar]
  15. MollaaminF. MonajjemiM. Delivery of cations (Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+) into the cells by anthocyanins through physico-chemical assessment: A molecular simulation study.Mol. Cell. Biomech.202421220610.62617/mcb.v21i2.206
    [Google Scholar]
  16. BooB.H. Infrared and raman spectrocopic studies of Tris(trimethylsilyl) silane derivatives of ((CH3)3Si-X)3Si)3Si-X [X 1/4 H, Cl, OH, CH3, OCH3, Si(CH3)3]: Vibrational asignments by Hartree-Fock and density-functional theory calculations.J. Korean Phys. Soc.2011595(1)3192320010.3938/jkps.59.3192
    [Google Scholar]
  17. TintuK. Prasana1, J.C.; Muthu, S.; George1, J. Quantum mechanical calculations and spectroscopic (FT-IR, FT-Raman) investigation on 1- cyclohexyl-1-phenyl-3-(piperidin-1-yl) propan-1-ol, by density functional method.J. Mater. Sci.201712282301
    [Google Scholar]
  18. SureshkumarB. MaryY.S. ResmiK.S. PanickerC.Y. ArmakovićS. ArmakovićS.J. Van AlsenoyC. NarayanaB. SumaS. Spectroscopic analysis of 8-hydroxyquinoline derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations.J. Mol. Struct.2018115633634710.1016/j.molstruc.2017.11.120
    [Google Scholar]
  19. DaisyM. J.; Chithambarabanu, T. Vibrational spectra (FT-IR, FTRaman), NBO and HOMO, LUMO studies of 2-Thiophene carboxylic acid based on density functional method.J. Appl. Chem.20158614
    [Google Scholar]
  20. Amin MirM.; et al.The molecular structural analysis of biologically important catechol molecule: An integrative perspective from experiments and futuristic tools.Curr. Org. Cat.2023121727
    [Google Scholar]
  21. SundarG.N. DominieJ.B. RadjakoumarT. Molecular structure and vibrational spectra of 2-chlorobenzoic acid by density functional theory and abinitio Hartree-Fock calculations.Indian J. Pure Appl. Phy.200947248258
    [Google Scholar]
  22. MirM.A. DFT, hirshfeld surface, molecular docking and drug likeness studies of medicinally important coumarin molecule.Arab. J. Sci. Eng.20234867445746210.1007/s13369‑022‑07476‑z
    [Google Scholar]
  23. RajagopalanN.R. KrishnamoorthyP. JayamoorthyK. AusteriaM. Bis (thiourea) strontium chloride as promising NLO material: An experimental and theoretical study.Karbala Int. J. Mod. Sci.20162421922510.1016/j.kijoms.2016.08.001
    [Google Scholar]
  24. Al-ZaqriN. PooventhiranT. RaoD.J. AlsalmeA. WaradI. ThomasR. Structure, conformational dynamics, quantum mechanical studies and potential biological activity analysis of multiple sclerosis medicine ozanimod.J. Mol. Struct.2021122712968510.1016/j.molstruc.2020.129685
    [Google Scholar]
  25. PolitzerP. LaneP. A computational study of some nitrofluoromethanes.Struct. Chem.199012-315916410.1007/BF00674257
    [Google Scholar]
  26. KarunanidhiM. BalachandranV. NarayanaB. KarnanM. Analyses of quantum chemical parameters, fukui functions, magnetic susceptibility, hyperpolarizability, frontier molecular orbitals, NBO, vibrational and NMR studies of 1(4-Aminophenyl) ethanone.Int. J. Sci. Res.20156155172
    [Google Scholar]
  27. Al-ZaqriN. PooventhiranT. AlharthiF.A. BhattacharyyaU. ThomasR. Structural investigations, quantum mechanical studies on proton and metal affinity and biological activity predictions of selpercatinib.J. Mol. Liq.202132511476510.1016/j.molliq.2020.114765 33746318
    [Google Scholar]
  28. SubramanianN. SundaraganesanN. JayabharathiJ. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method.Spectrochim. Acta A Mol. Biomol. Spectrosc.201076225926910.1016/j.saa.2010.03.033 20413344
    [Google Scholar]
  29. FathimaR. B.; Johanan C.P., S. Muthu, spectroscopic investigation (FT-IR, FT-Raman, UV, NMR), computational analysis (DFT method) and molecular docking studies on 2-[(acetyloxy) methyl]-4-(2-amino-9h-purin-9-yl) butyl acetate.Int. J. Mater. Sci.201712196210
    [Google Scholar]
  30. ChristiansenO. GaussJ. StantonJ.F. Frequency-dependent polarizabilities and first hyperpolarizabilities of CO and H2O from coupled cluster calculations.Chem. Phys. Lett.19993051-214715510.1016/S0009‑2614(99)00358‑9
    [Google Scholar]
  31. KhanapureS. JagadaleM. BansodeP. ChoudhariP. RashinkarG. Anticancer activity of ruthenocenyl chalcones and their molecular docking studies.J. Mol. Struct.2018117314214710.1016/j.molstruc.2018.06.091
    [Google Scholar]
  32. ThomasR. MaryY.S. ResmiK.S. NarayanaB. SarojiniS.B.K. ArmakovićS. ArmakovićS.J. VijayakumarG. AlsenoyC.V. MohanB.J. Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential.J. Mol. Struct.2019118159961210.1016/j.molstruc.2019.01.014
    [Google Scholar]
  33. LarikF.A. SaeedA. FaisalM. ChannarP.A. AzamS.S. IsmailH. DilshadE. MirzaB. Synthesis, molecular docking and comparative efficacy of various alkyl/aryl thioureas as antibacterial, antifungal and α-amylase inhibitors.Comput. Biol. Chem.20187719319810.1016/j.compbiolchem.2018.10.007 30340081
    [Google Scholar]
  34. DineshR. M.; Arulmozhi, S.; Madhavan, J. UV-vis HOMO-LUMO and hyperpolarizability of I-phenylalanine, 1-phenylalaninium benzoic acid.Int. J. Sci. Eng. Res.2014531517
    [Google Scholar]
  35. MullikenR.S. Electronic population analysis on LCAOMO molecular wave functions.J. Chem. Phys.195523101833184010.1063/1.1740588
    [Google Scholar]
  36. AyersP.W. ParrR.G. Variational principles for describing chemical reactions: The fukui function and chemical hardness revisited.J. Am. Chem. Soc.200012292010201810.1021/ja9924039
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372362996241228014644
Loading
/content/journals/cocat/10.2174/0122133372362996241228014644
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test