Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

The study explores the biosynthesis of silver nanoparticles (AgNPs) using extracellular manganese peroxidase enzyme from Trichoderma parestonica. The synthesis was optimized at a 1:1 enzyme and silver nitrate ratio, pH 12, shaking process, and 48-hour synthesis period. The AgNPs were characterized using spectroscopic and microscopic techniques, showing absorbance in UV-spectroscopy between 410-450 nm due to Surface Plasmon Resonance (SPR).

Methods

The stabilization of extracellular manganese peroxidase with the nanoparticles through capping was observed by Fourier Transform Infrared Spectroscopy (FT-IR). The spherical shape of the AgNPs, with an average size of 69.09 nm, is confirmed by the Field Emission Scanning Electron Microscopy (FESEM) study. The size of the nanoparticles was also determined by Dynamic Light Scattering (DLS) to be 75.99 nm. When synthesized AgNPs were used to decolorize Alizarin red S (ARS), Methylene Blue (MB), and Methyl Orange (MO) in the presence of sodium borohydride reducing agent, the results showed that, within 20 minutes, 90% of 0.1 mM ARS, MB, and 75% 0.1 mM MO were degraded.

Results

This study demonstrated the potential of AgNPs synthesized from MnP enzyme in nano-remediation projects, offering a sustainable solution to the problems and issues of dye-induced wastewater pollution and fostering environmental conservation.

Conclusion

Enzymes are being studied in nanotechnology, leading to the development of enzyme nanoparticles, which can be utilized in various fields like biosensors agriculture, drug delivery, and bioremediation.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372366582250115002303
2025-01-21
2025-09-27
Loading full text...

Full text loading...

References

  1. LuoY. ZhaoJ. ZhangX. WangC. WangT. JiangM. ZhuQ. XieT. ChenD. Size controlled fabrication of enzyme encapsulated amorphous calcium phosphate nanoparticle and its intracellular biosensing application.Colloids Surf. B Biointerfaces202120111163810.1016/j.colsurfb.2021.111638 33639505
    [Google Scholar]
  2. BhatM.A. NayakB.K. NandaA. Evaluation of bactericidal activity of biologically synthesised silver nanoparticles from Candida albicans in combination with ciprofloxacin.Mater. Today Proc.2015294395440110.1016/j.matpr.2015.10.036
    [Google Scholar]
  3. Guilger-CasagrandeM. Germano-CostaT. Pasquoto-StiglianiT. FracetoL.F. LimaR. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum.Sci. Rep.2019911435110.1038/s41598‑019‑50871‑0 31586116
    [Google Scholar]
  4. ElamawiR.M. Al-HarbiR.E. HendiA.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi.Egypt. J. Biol. Pest Control20182812810.1186/s41938‑018‑0028‑1
    [Google Scholar]
  5. MaL. SuW. LiuJ.X. ZengX.X. HuangZ. LiW. LiuZ.C. TangJ.X. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions.Mater. Sci. Eng. C20177796397110.1016/j.msec.2017.03.294 28532117
    [Google Scholar]
  6. GuilgerM. Pasquoto-StiglianiT. Bilesky-JoseN. GrilloR. AbhilashP.C. FracetoL.F. LimaR. Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity.Sci. Rep.2017714442110.1038/srep44421 28300141
    [Google Scholar]
  7. HoqueR.A. YadavM. YadavH.S. BoruahR. Purification and characterization of novel manganese peroxidase from Trichoderma parestonica and its bio-conversion study of toxic arylamine.Anal. Chem. Lett.202313664165910.1080/22297928.2023.2299257
    [Google Scholar]
  8. SanghiR. VermaP. PuriS. Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium.Adv. Chem. Enginee. Sci.20111315416210.4236/aces.2011.13023
    [Google Scholar]
  9. Vijay KumarP.P.N. PammiS.V.N. KolluP. SatyanarayanaK.V.V. ShameemU. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity.Ind. Crops Prod.20145256256610.1016/j.indcrop.2013.10.050
    [Google Scholar]
  10. JayaprakashN. Judith VijayaJ. John KennedyL. PriadharsiniK. PalaniP. Antibacterial activity of silver nanoparticles synthesized from serine.Mater. Sci. Eng. C20154931632210.1016/j.msec.2015.01.012 25686955
    [Google Scholar]
  11. SuleimanM. Al AliA. HusseinA. HammoutiB. HaddaT.B. WaradI. Sulfur nanoparticles: Synthesis, characterizations and their applications.J. Mater. Environ. Sci.2013410291033
    [Google Scholar]
  12. HoqueR.A. YadavM. HazarikaA. Sulfur and magnesium-based nanofertilizer: synthesis, characterization, and applications. Nanofertilizer Synth.New YorkElsevier202419521210.1016/B978‑0‑443‑13535‑4.00013‑4
    [Google Scholar]
  13. TavanM. HanachiP. MirjaliliM.H. Dashtbani-RoozbehaniA. Comparative assessment of the biological activity of the green synthesized silver nanoparticles and aqueous leaf extract of Perilla frutescens (L.).Sci. Rep.2023131639110.1038/s41598‑023‑33625‑x 37076588
    [Google Scholar]
  14. GontijoL.A.P. RaphaelE. FerrariD.P.S. FerrariJ.L. LyonJ.P. SchiavonM.A. pH effect on the synthesis of different size silver nanoparticles evaluated by DLS and their size-dependent antimicrobial activity.Materia (Rio J.)2020254e-1284510.1590/s1517‑707620200004.1145
    [Google Scholar]
  15. JarmeloS. RevaI. CareyP.R. FaustoR. Infrared and raman spectroscopic characterization of the hydrogen-bonding network in l-serine crystal.Vib. Spectrosc.200743239540410.1016/j.vibspec.2006.04.025
    [Google Scholar]
  16. AlwhibiM.S. SolimanD.A. AwadM.A. AlangeryA.B. Al DehaishH. AlwaselY.A. Green synthesis of silver nanoparticles: Characterization and its potential biomedical applications.Green Processing and Synthesis202110141242010.1515/gps‑2021‑0039
    [Google Scholar]
  17. ZhangJ. ChiY. FengL. The mechanism of degradation of alizarin red by a white-rot fungus Trametes gibbosa.BMC Biotechnol.20212116410.1186/s12896‑021‑00720‑8 34740358
    [Google Scholar]
  18. KofidisT. StrüberM. WilhelmiM. AnssarM. SimonA. HarringerW. HaverichA. Reversal of severe vasoplegia with single-dose methylene blue after heart transplantation.J. Thorac. Cardiovasc. Surg.2001122482382410.1067/mtc.2001.115153 11581623
    [Google Scholar]
  19. MeissnerP.E. MandiG. CoulibalyB. WitteS. TapsobaT. MansmannU. RengelshausenJ. SchiekW. JahnA. Walter-SackI. MikusG. BurhenneJ. RiedelK.D. SchirmerR.H. KouyatéB. MüllerO. Methylene blue for malaria in Africa: results from a dose-finding study in combination with chloroquine.Malar. J.2006518410.1186/1475‑2875‑5‑84 17026773
    [Google Scholar]
  20. OladoyeP.O. AjiboyeT.O. OmotolaE.O. OyewolaO.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater.Results Eng.20221610067810.1016/j.rineng.2022.100678
    [Google Scholar]
  21. LvY. ZhangJ. AsgodomM.E. LiuD. XieH. QuH. Study on the degradation of accumulated bisphenol S and regeneration of magnetic sludge-derived biochar upon microwave irritation in the presence of hydrogen peroxide for application in integrated process.Bioresour. Technol.201929312207210.1016/j.biortech.2019.122072 31484102
    [Google Scholar]
  22. WangF. TianF. DengY. YangL. ZhangH. ZhaoD. LiB. ZhangX. FanL. Cluster-based multifunctional copper (II) organic framework as a photocatalyst in the degradation of organic dye and as an electrocatalyst for overall water splitting.Cryst. Growth Des.20212174242424810.1021/acs.cgd.1c00479
    [Google Scholar]
  23. GuoX.Z. LinB. XiongG.Z. KrishnaR. ZhangZ.R. LiuQ.Z. ZhangZ.X. FanL. ZhangJ. LiB. Construction of negative electrostatic sugared gourd pore within nickel-based metal-organic framework for one-step purification acetylene from ethylene and carbon dioxide mixture.Chem. Eng. J.202449815473410.1016/j.cej.2024.154734
    [Google Scholar]
  24. BhankharA. GiriM. YadavK. JaggiN. Study on degradation of methyl orange-an azo dye by silver nanoparticles using UV–Visible spectroscopy.Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci.201488111191119610.1007/s12648‑014‑0555‑x
    [Google Scholar]
  25. JabeenU. ShahS.M. KhanS.U. Photo catalytic degradation of Alizarin red S using ZnS and cadmium doped ZnS nanoparticles under unfiltered sunlight.Surf. Interfaces20176404910.1016/j.surfin.2016.11.002
    [Google Scholar]
  26. SoodS. MehtaS.K. UmarA. KansalS.K. The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO 2 nanoparticles.New J. Chem.20143873127313610.1039/C4NJ00179F
    [Google Scholar]
  27. SanthiK. RaniC. KaruppuchamyS. Degradation of Alizarin Red S dye using Ni doped WO3 photocatalyst.J. Mater. Sci. Mater. Electron.20162755033503810.1007/s10854‑016‑4390‑z
    [Google Scholar]
  28. Siva KumarS. RaoV.R. RaoG.N. Efficient photocatalytic degradation of Alizarin red S by silver-impregnated zinc oxide.Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.201383430931510.1007/s40010‑013‑0097‑1
    [Google Scholar]
  29. ColumbusS. HammoucheJ. RamachandranK. DaoudiK. GaidiM. Assessing the efficiency of photocatalytic removal of alizarin red using copper doped zinc oxide nanostructures by combining SERS optical detection.J. Photochem. Photobiol. Chem.202243211412310.1016/j.jphotochem.2022.114123
    [Google Scholar]
  30. NazariN. Jookar KashiF. A novel microbial synthesis of silver nanoparticles: Its bioactivity, Ag/Ca-Alg beads as an effective catalyst for decolorization Disperse Blue 183 from textile industry effluent.Separ. Purif. Tech.202125911811710.1016/j.seppur.2020.118117
    [Google Scholar]
  31. SharmaS.C. ZnO nano-flowers from Carica papaya milk: Degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus.Optik (Stuttg.)2016127166498651210.1016/j.ijleo.2016.04.036
    [Google Scholar]
  32. EswaranG.S. AfridiS.P. VasimalaiN. Effective multi toxic dyes degradation using bio-fabricated silver nanoparticles as a green catalyst.Appl. Biochem. Biotechnol.202319563872388710.1007/s12010‑022‑03902‑y 35435586
    [Google Scholar]
  33. GolaD. TyagiP.K. AryaA. GuptaD. RaghavJ. KaushikA. AgarwalM. ChauhanN. SrivastavaS.K. Antimicrobial and dye degradation application of fungi‐assisted silver nanoparticles and utilization of fungal retentate biomass for dye removal.Water Environ. Res.202193112727273910.1002/wer.1629 34415655
    [Google Scholar]
  34. GuptaS. TejavathK.K. Catalytic reduction of organic dyes with green synthesized silver nanoparticles using aloe vera leaf extract.J. Nanosci. Nanoenginee. Applica.2019992110.37591/jonsnea.v9i2.661
    [Google Scholar]
  35. RajkumarR. EzhumalaiG. GnanadesiganM. A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity.Environ. Technol. Innov.20212110128210.1016/j.eti.2020.101282
    [Google Scholar]
  36. GithalaC.K. RajS. DhakaA. MaliS.C. TrivediR. Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficacy.Front Chem.20221099472110.3389/fchem.2022.994721 36226117
    [Google Scholar]
  37. Al-ZabanM.I. MahmoudM.A. AlHarbiM.A. Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey.Saudi J. Biol. Sci.20212832007201310.1016/j.sjbs.2021.01.003 33732087
    [Google Scholar]
  38. FairuziA.A. BonniaN.N. AkhirR.M. AbraniM.A. AkilH.M. Degradation of methylene blue using silver nanoparticles synthesized from imperata cylindrica aqueous extract.IOP Conf. Ser. Earth Environ. Sci.201810501201810.1088/1755‑1315/105/1/012018
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372366582250115002303
Loading
/content/journals/cocat/10.2174/0122133372366582250115002303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test