Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

The synthesis of bisindolylalkanes has been carried out for more than two decades using several catalysts.

Methods

In the present study, naturally available orange juice has been demonstrated to be an efficient green catalyst for the synthesis of bisindolylalkanes from the reaction of indoles with different carbonyl compounds.

Results

In this one-step process, the products were obtained with excellent yield and in a short reaction time.

Conclusion

This reaction-catalysed by orange juice is a new, inexpensive, and environment-friendly synthetic procedure for the preparation of bisindolylalkanes.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372354804241202082320
2025-01-08
2025-10-26
Loading full text...

Full text loading...

References

  1. SundbergR.J. The Chemistry of IndolesNew YorkAcademic Press1970
    [Google Scholar]
  2. SundbergR.J. IndolesSan Diego, CAAcademic Press1996
    [Google Scholar]
  3. Houlihan, W.J., Ed.; Indoles.New YorkJohn Wiley & Sons, Inc.1972
    [Google Scholar]
  4. JouleJ.A. MillsK. Heterocyclic ChemistryOxford, UKBlackwell Science2000
    [Google Scholar]
  5. KathleenA. MerrillA.G. PCT. Int. Appl. WO 99.Chem. Abstr.1999130276765
    [Google Scholar]
  6. BradfieldC.A. BjeldanesL.F. Structure-activity relationships of dietary indoles: A proposed mechanism of action as modifiers of xenobiotic metabolism.J. Toxicol. Environ. Health198721331132310.1080/152873987095310213495667
    [Google Scholar]
  7. DashwoodR.H. UyetakeL. FongA.T. HendricksJ.D. BaileyG.S. In vivo disposition of the natural anti-carcinogen indole-3-carbinol after PO administration to rainbow trout.Food Chem. Toxicol.198927638539210.1016/0278‑6915(89)90144‑02792968
    [Google Scholar]
  8. FischerE. About some reactions of the indoles.Ber. Dtsch. Chem. Ges.18861922988299110.1002/cber.188601902296
    [Google Scholar]
  9. MorrisS.A. AndersenR.J. Brominated bis(indole) alkaloids from the marine sponge Hexadella sp.Tetrahedron199046371572010.1016/S0040‑4020(01)81355‑7
    [Google Scholar]
  10. OsawaT. NamikiM. Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria.Tetrahedron Lett.198324434719472210.1016/S0040‑4039(00)86237‑1
    [Google Scholar]
  11. FahyE. PottsB.C.M. FaulknerD.J. SmithK. 6-Bromotryptamine derivatives from the gulf of california tunicate Didemnum candidum.J. Nat. Prod.199154256456910.1021/np50074a032
    [Google Scholar]
  12. BellR. CarmeliS. SarN. Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus.J. Nat. Prod.199457111587159010.1021/np50113a0227853008
    [Google Scholar]
  13. BifulcoG. BrunoI. RiccioR. LavayreJ. BourdyG. Further brominated bis- and tris-indole alkaloids from the deep-water New Caledonian marine sponge Orina Sp.J. Nat. Prod.19955881254126010.1021/np50122a0177595591
    [Google Scholar]
  14. OvendenS.P.B. CaponR.J. Echinosulfonic acids A-C and echinosulfone A: Novel bromoindole sulfonic acids and a sulfone from a southern australian marine sponge, Echinodictyum. J. Nat. Prod.19996291246124910.1021/np990102710514306
    [Google Scholar]
  15. GarbeT.R. KobayashiM. ShimizuN. TakesueN. OzawaM. YukawaH. Indolyl carboxylic acids by condensation of indoles with α-keto acids.J. Nat. Prod.200063559659810.1021/np990517s10843566
    [Google Scholar]
  16. VeluriR. OkaI. Wagner-DöblerI. LaatschH. New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus Bio249.J. Nat. Prod.200366111520152310.1021/np030288g14640534
    [Google Scholar]
  17. GeX. YannaiS. RennertG. GruenerN. FaresF.A. 3,3′-Diindolylmethane induces apoptosis in human cancer cells.Biochem. Biophys. Res. Commun.1996228115315810.1006/bbrc.1996.16318912651
    [Google Scholar]
  18. JuliaM. TillyG. Recherches en sirie indolique. XV. Sur l'acide di(indolyl-3) acetique et ses esters et quelques di(indolyl-3) ethyl (et propyl) amines.Bull. Chem. Soc. Fr.196521752182
    [Google Scholar]
  19. GreenbergJ.B. Tryptophan synthetase activity in pea seedling extracts.Plant Physiol.195834548949410.1104/pp.34.5.48916655260
    [Google Scholar]
  20. JonesA. GalstonA.W. Formation of the auxins 3-indolylglycolate and 3, 3′-diindolylacetic acid by reactions between indole and glyoxylate.J. Exp. Bot.196920225727510.1093/jxb/20.2.257
    [Google Scholar]
  21. PorterJ.K. BaconC.W. RobbinsJ.D. HimmelsbachD.S. HigmanH.C. Indole alkaloids from Balansia epichloe (Weese).J. Agric. Food Chem.1977251889310.1021/jf60209a0431002941
    [Google Scholar]
  22. McDougalA. Sethi GuptaM. RamamoorthyK. SunG. SafeS.H. Inhibition of carcinogen-induced rat mammary tumor growth and other estrogen-dependent responses by symmetrical dihalo-substituted analogs of diindolylmethane.Cancer Lett.2000151216917910.1016/S0304‑3835(99)00406‑110738111
    [Google Scholar]
  23. FoldeakS. CzombasJ. MatkovicB. PorszaszJ. Synthesis of substances effecting CNS. 8. Synthesis of new Diindolylmethane derivatives effecting CNS.Acta Phys. Chem.196511115125
    [Google Scholar]
  24. KirkusM. TsaiM.H. GrazuleviciusJ.V. WuC.C. ChiL.C. WongK.T. New indole–carbazole hybrids as glass-forming high-triplet-energy materials.Synth. Met.20091597-872973410.1016/j.synthmet.2008.12.027
    [Google Scholar]
  25. SeebergerP. ChakrabartyM. BasakR. HarigayaY. A sojourn in the synthesis and bioactivity of diindolylalkanes.Heterocycles200155122431244710.3987/REV‑01‑541
    [Google Scholar]
  26. KamT.S. Alkaloids: Chemical and Biological PerspectivesNew York, NYSpringer199110.1007/978‑1‑4612‑3006‑9
    [Google Scholar]
  27. ChenD. YuL. WangP.G. Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones.Tetrahedron Lett.199637264467447010.1016/0040‑4039(96)00958‑6
    [Google Scholar]
  28. BabuG. SridharN. PerumalP.T. A convenient method of synthesis of bis-indolylmethanes: Indium trichloride catalyzed reactions of indole with aldehydes and schiff’s bases.Synth. Commun.20003091609161410.1080/00397910008087197
    [Google Scholar]
  29. JiS.J. ZhouM.F. GuD.G. JiangZ.Q. LohT.P. Efficient FeIII‐catalyzed synthesis of bis(indolyl)methanes in ionic liquids.Eur. J. Org. Chem.2004200471584158710.1002/ejoc.200300719
    [Google Scholar]
  30. JiS-J. GuD-G. JiangZ.Q. ZhouM.F. LohT.P. An efficient synthesis of bis(indolyl)methanes catalyzed by recycled acidic ionic liquid.Synlett2005200560959096210.1055/s‑2005‑865194
    [Google Scholar]
  31. PalC. DeyS. MahatoS.K. VinayagamJ. PradhanP.K. GiriV.S. JaisankarP. HossainT. BaruriS. RayD. BiswasS.M. Eco-friendly synthesis and study of new plant growth promoters: 3,3′-Diindolylmethane and its derivatives.Bioorg. Med. Chem. Lett.200717174924492810.1016/j.bmcl.2007.06.02517583501
    [Google Scholar]
  32. BhirudS. SarodeC. GuptaG. ChaudhariG. An exceptional valorization of CuO nanoparticles in ionic liquids as an efficient medium for the electrophilic substitution of indole towards the formation of bis(indolyl)methanes.Curr. Nanomater.20249214815710.2174/2405461508666230508124607
    [Google Scholar]
  33. MarcantoniE. BartoliG. BoscoM. FogliaG. GiulianiA. SambriL. Solvent-free indoles addition to carbonyl compounds promoted by CeCl3·7H2O-NaI-SiO2: An efficient method for the synthesis of streptindole.Synthesis2004689590010.1055/s‑2004‑815967
    [Google Scholar]
  34. FirouzabadiH. IranpoorN. JafarpourM. GhaderiA. ZrOCl2·8H2O/silica gel as a new efficient and a highly water–tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions.J. Mol. Catal. Chem.20062531-224925110.1016/j.molcata.2006.03.043
    [Google Scholar]
  35. WuZ. WangG. LiZ. FengE. LiangY. ZhanH. LiuW. Solvent-free multi-component synthesis of unsymmetrical bis(indolyl)alkanes with Lewis acid-surfactant-SiO 2 as nanocatalyst.Synth. Commun.20215111010.1080/00397911.2021.1874016
    [Google Scholar]
  36. SeebergerP. ChakrabartyM. MukherjeeR. MukherjiA. ArimaS. HarigayaY. Phosphoric acid-on-silica gel: A green catalyst for the synthesis of symmetrical bis(indolyl)alkanes.Heterocycles20066881659166810.3987/COM‑06‑10783
    [Google Scholar]
  37. YadavJ.S. ReddyB.V.S. SatheeshG. Montmorillonite clay catalyzed alkylation of pyrroles and indoles with cyclic hemi-acetals.Tetrahedron Lett.200445183673367610.1016/j.tetlet.2004.03.039
    [Google Scholar]
  38. ChakrabartyM. GhoshN. BasakR. HarigayaY. Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: A mild, expedient synthesis of diindolylalkanes and vibrindole A.Tetrahedron Lett.200243224075407810.1016/S0040‑4039(02)00682‑2
    [Google Scholar]
  39. KarthikM. TripathiA.K. GuptaN.M. PalanichamyM. MurugesanV. Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: Synthesis of bis(indolyl)methanes.Catal. Commun.20045737137510.1016/j.catcom.2004.04.007
    [Google Scholar]
  40. LiJ. ZhouM. LiB. ZhangG. Synthesis of triindolylmethanes catalyzed by zeolites.Synth. Commun.200434227528010.1081/SCC‑120027263
    [Google Scholar]
  41. FengX.L. GuanC.J. ZhaoC.X. Ion exchange resin catalyzed condensation of indole and carbonyl compounds—synthesis of bis-indolylmethanes.Synth. Commun.200434348749210.1081/SCC‑120027288
    [Google Scholar]
  42. KeB. QinY. WangY. WangF. Amberlyst‐catalyzed reaction of indole: Synthesis of bisindolylalkane.Synth. Commun.20053591209121210.1081/SCC‑200054794
    [Google Scholar]
  43. Rivas-LoaizaJ.A. García-MerinosJ.P. Ramírez-DíazM.I. López-RuizH. LópezY. Synthesis of Bis(indolyl)methanes via thiourea organocatalysts carrying 3,5-bis(trifluoromethyl)phenyl or 3,5-dichlorophenyl moieties.J. Mol. Struct.2022126413320910.1016/j.molstruc.2022.133209
    [Google Scholar]
  44. YelwandeA.A. NavgireM.E. TaydeD.T. LandeM.K. Efficient bis(indoyl)methanes synthesis enabled by SnO 2 /SiO 2 nanocomposite.Phosphorus Sulfur Silicon Relat. Elem.202411210.1080/10426507.2024.2410869
    [Google Scholar]
  45. Mohammadi MetkaziniF. KhorsandiZ. HeydariA. The novel acid-base magnetic recyclable catalyst prepared through carbon disulfide trapping process: Applied for green, one-pot, and efficient synthesis of 2,3-dihydroquinazolin-4 (1H) -ones and bis(indolyl)methanes in large-scale.Molecular Catalysis202150611153210.1016/j.mcat.2021.111532
    [Google Scholar]
  46. ZolfigolM.A. SalehiP. ShiriM. An efficient procedure for the preparation of mono, and di-bis-indolylmethanes catalyzed by molibdatophosphoric acid.Phosphorus Sulfur Silicon Relat. Elem.2004179112273227710.1080/10426500490484904
    [Google Scholar]
  47. SeebergerP. ChakrabartyM. MukherjiA. KarmakarS. ArimaS. HarigayaY. A new catalytic application of a keggin acid in the synthesis of symmetrical bis(indolyl)alkanes.Heterocycles200668233133810.3987/COM‑05‑10587
    [Google Scholar]
  48. MuruganR. KarthikeyanM. PerumalP.T. ReddyB.S.R. A mild, efficient and improved protocol for the synthesis of novel indolyl crown ethers, di(indolyl)pyrazolyl methanes and 3-alkylated indoles using H4[Si(W3O10)3].Tetrahedron20056152122751228110.1016/j.tet.2005.09.108
    [Google Scholar]
  49. LiuS-T. LiaoB-S. ChenJ-T. An efficient preparation of bis(indole)methanes catalyzed by tetrakis[3,5-bis(trifluoromethyl)phenyl]borate salts in aqueous medium.Synthesis20072007203125312810.1055/s‑2007‑990788
    [Google Scholar]
  50. WuP. WanY. CaiJ. Carbohydrate-based tolylsulfonyl hydrazines: Effective catalysts for the mannich reaction and the syntheses of bisindolylalkanes in water.Aust. J. Chem.200861535936310.1071/CH08004
    [Google Scholar]
  51. WangS.Y. JiS.J. Facile synthesis of bis(indolyl)methanes catalyzed by ferric dodecyl sulfonate [Fe(DS)3] in water at room temperature.Synth. Commun.20083881291129810.1080/00397910701873318
    [Google Scholar]
  52. KhannaL. Mansi YadavS. MisraN. KhannaP. “In water” synthesis of bis(indolyl)methanes: A review.Synth. Commun.202151192892292310.1080/00397911.2021.1957113
    [Google Scholar]
  53. MehrazmaS. AziziN. SaidiM. Clean and facile condensations reaction of indoles and carbonyl compounds under solvent-free conditions.Lett. Org. Chem.20063216116410.2174/157017806775224251
    [Google Scholar]
  54. Khalafi-NezhadA. ParhamiA. ZareA. ZareA. HasaninejadA. PanahiF. Trityl chloride as a novel and efficient organic catalyst for room temperature preparation of bis(indolyl)methanes under solvent-free conditions in neutral media.Synthesis20082008461762110.1055/s‑2008‑1032159
    [Google Scholar]
  55. IglesiasL. AguilarC. BandyopadhyayD. BanikB.K. A new bismuth nitrate–catalyzed electrophilic substitution of indoles with carbonyl compounds under solvent-free conditions.Synth. Commun.201040243678368210.1080/00397910903531631
    [Google Scholar]
  56. ZahranM. AbdinY. SalamaH. Eco-friendly and efficient synthesis of bis(indolyl)methanes under microwave irradiation.ARKIVOC200820081125626510.3998/ark.5550190.0009.b25
    [Google Scholar]
  57. XiaM. WangS. YuanW. Lewis acid catalyzed electrophilic substitution of indole with aldehydes and Schiff’s bases under microwave solvent‐free irradiation.Synth. Commun.200434173175318210.1081/SCC‑200028611
    [Google Scholar]
  58. VandanaV. RaoN.L. SwamyK.C. AlapatiM.L.P.R. An indium(III) triflate catalyzed simple and efficient one-pot synthesis of substituted 3,3-diaryloxindoles and bis(indol-3-yl) methanes from indoles and isatins or aryl aldehydes.Synlett2025360435335610.1055/a‑2351‑7008
    [Google Scholar]
  59. NagarajanR. PerumalP.T. Potassium hydrogen sulfate-catalyzed reactions of indoles: A mild, expedient synthesis of bis-indolylmethanes.Chem. Lett.200433328828910.1246/cl.2004.288
    [Google Scholar]
  60. ReddyY.T. ReddyP.N. KumarB.S. RajithaB. Efficient synthesis of bis(indolyl)methanes catalyzed by TiCl4.Indian J. Chem.200544B23932395
    [Google Scholar]
  61. SinghP.R. SinghD.U. SamantS.D. Sulphamic acid - A mild, efficient, and cost‐effective solid acid catalyst for the synthesis of bis(1h‐indol‐3‐yl)methanes.Synth. Commun.200535162133213810.1080/00397910500180428
    [Google Scholar]
  62. LinX.F. CuiS.L. WangY.G. Mild and efficient synthesis of bis-indolylmethanes catalyzed by tetrabutylammonium tribromide.Synth. Commun.200636213153316010.1080/00397910600908819
    [Google Scholar]
  63. WangY-M. ZhangZ-H. YinL. An efficient and practical process for the synthesis of bis(indolyl)methanes catalyzed by zirconium tetrachloride.Synthesis20052005121949195410.1055/s‑2005‑869959
    [Google Scholar]
  64. JaisankarP. PradhanP.K. DeyS. GiriV.S. In Cl3-HMTA as a methylene donor: One-pot synthesis of diindolylmethane (DIM) and its derivatives.Synthesis20052005111779178210.1055/s‑2005‑869897
    [Google Scholar]
  65. BandgarB.P. ShaikhK.A. Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions.Tetrahedron Lett.20034491959196110.1016/S0040‑4039(03)00032‑7
    [Google Scholar]
  66. SharmaG.V.M. Janardhan ReddyJ. Sree LakshmiP. Radha KrishnaP. A versatile and practical synthesis of bis(indolyl)methanes/bis(indolyl)glycoconjugates catalyzed by trichloro-1,3,5-triazine.Tetrahedron Lett.200445417729773210.1016/j.tetlet.2004.08.084
    [Google Scholar]
  67. YadavJ.S. ReddyB.V.S. PadmavaniB. GuptaM.K. Gallium(III) halide-catalyzed coupling of indoles with phenylacetylene: Synthesis of bis(indolyl)phenylethanes.Tetrahedron Lett.200445417577757910.1016/j.tetlet.2004.08.126
    [Google Scholar]
  68. YadavJ.S. ReddyB.V.S. MurthyC.V.S.R. KumarG.M. MadanC. Lithium perchlorate-catalyzed reactions of indoles: An expeditious synthesis of bis(indolyl)methanes.Synthesis2001200150783078710.1055/s‑2001‑12777
    [Google Scholar]
  69. RameshC. RavindranathN. DasB. Electrophilic substitution reactions of indoles with carbonyl compounds using ceric ammonium nitrate: A novel and efficient method for the synthesis of di- and tri-indolylmethanes.J. Chem. Res.200320032727410.3184/030823403103173002
    [Google Scholar]
  70. NagarajanR. PerumalP.T. Electrophilic substitution of indoles catalyzed by triphenylphosphonium perchlorate: Synthesis of 3-acetyl indoles and bis-indolylmethane derivatives.Synth. Commun.200232110510910.1081/SCC‑120001515
    [Google Scholar]
  71. SrinivasaA. Prabhakar VarmaP. HulikalV. MahadevanK.M. Antimony(III) sulfate catalyzed condensation reaction of indoles with carbonyl compounds.Monatsh. Chem.2008139211111510.1007/s00706‑007‑0697‑z
    [Google Scholar]
  72. FirouzabadiH. IranpoorN. JafariA.A. Aluminumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives.J. Mol. Catal. Chem.20062441-216817210.1016/j.molcata.2005.09.005
    [Google Scholar]
  73. RajuB.C. RaoJ.M. p-TsOH catalyzed efficient synthesis of Bis(indolyl)methanes.Indian J. Chem.200847B623625
    [Google Scholar]
  74. YouS-L. HeQ-L. SunF-L. ZhengX-J. Brønsted acid catalyzed synthesis of unsymmetrical arylbis(3-indolyl)-methanes.Synlett2009200971111111410.1055/s‑0028‑1088109
    [Google Scholar]
  75. HagiwaraH. SekifujiM. HoshiT. QiaoK. YokoyamaC. Synthesis of bis(indolyl)methanes catalyzed by acidic ionic liquid immobilized on silica (ILIS).Synlett2007200781320132210.1055/s‑2007‑977453
    [Google Scholar]
  76. PasuparthyS.D. SomkuwarP. KaliV. Somanahalli KalleshappaA.K. MaitiB. Synthesis of dimeric indoles from Friedel-Crafts reaction of indoles with ketones catalysed by a Brønsted acid ionic liquid and their interactions with BSA and DNA.New J. Chem.20244834149041492310.1039/D4NJ02651A
    [Google Scholar]
  77. GalathriE.M. KuczmeraT.J. NachtsheimB.J. KokotosC.G. Organocatalytic Friedel–Crafts arylation of aldehydes with indoles utilizing N-heterocyclic iod(az)olium salts as halogen-bonding catalysts.Green Chem.202426282583110.1039/D3GC03687A
    [Google Scholar]
  78. PasuparthyS.D. MaitiB. Facile synthesis of bis(indol-3-yl)methane derivatives catalyzed by carboxylic acid functionalized ionic liquid at room temperature: Investigation of photophysical properties, DFT calculations and molecular docking with bovine serum albumin.Tetrahedron202415313384510.1016/j.tet.2024.133845
    [Google Scholar]
  79. QianC.W. LiX. XiangW. GuM.Q. Diazonium salt as a versatile, efficient and mild catalyst for reductive aminations of carbonyls and syntheses of bis(indolyl)methanes.Tetrahedron202415113378910.1016/j.tet.2023.133789
    [Google Scholar]
  80. SinghN.G. NongrumR. KathingC. RaniJ.W.S. NongkhlawR. Bakers’ yeast: An environment benign catalyst for the one-pot synthesis of indolyl chromenes and bisindolyl alkanes.Green Chem. Lett. Rev.20147213714410.1080/17518253.2014.902506
    [Google Scholar]
  81. GhorbaniF. PourmousaviS.A. KiyaniH. Novel biomass derived from grape pomace waste as an efficient nanocatalyst for the synthesis of dibenzoxanthene, tetraketone, bis(indolyl)alkane and chromene derivatives and their antimicrobial evaluation.Curr. Org. Synth.202017644045610.2174/157017941766620040914460032271697
    [Google Scholar]
  82. FuY. LuZ. FangK. HeX. XuH. HuY. Enzymatic approach to cascade synthesis of bis(indolyl)methanes in pure water.RSC Advances20201018108481085310.1039/C9RA10014H35492907
    [Google Scholar]
  83. ChavanK.A. ShuklaM. ChauhanA.N.S. MajiS. MaliG. BhattacharyyaS. ErandeR.D. Effective synthesis and biological evaluation of natural and designed bis(indolyl)methanes via taurine-catalyzed green approach.ACS Omega2022712104381044610.1021/acsomega.1c0725835382311
    [Google Scholar]
  84. XiangZ. LiuZ. ChenX. WuQ. LinX. Biocatalysts for cascade reaction: Porcine pancreas lipase (PPL)-catalyzed synthesis of bis(indolyl)alkanes.Amino Acids201345493794510.1007/s00726‑013‑1547‑423860845
    [Google Scholar]
  85. PatilA. ChoudhariV. PatilS. BorseG.P. PatilV. A bio-waste derived heterogeneous catalyst for green and sustainable synthesis of bis (indol-3-yl) methanes.Mater. Today Proc.202410.1016/j.matpr.2024.05.104
    [Google Scholar]
  86. AbdelghanyM. KhatabT.K. Red-sea dolomite as a sustainable catalyst in the synthesis of bis-indolyl methanes with molecular docking validation as HIV-1 replication inhibitor.Bull. Chem. Soc. Ethiop.20213564765710.4314/bcse.v35i3.15
    [Google Scholar]
  87. Ahmed SheikhA. KarimkhaP.S. KasimS.S. Efficient and environmentally benign synthesis of quinoxaline catalysed by fruit juice.Int. J. Sci. Res. Chem2020515
    [Google Scholar]
  88. FaheyJ.T. DineenA.E. HenainJ.M. Microwave-assisted aspirin synthesis from over-the-counter pain creams using naturally acidic catalysts.Green Chemistry Experiments in Undergraduate LaboratoriesAmerican Chemical Society20169310910.1021/bk‑2016‑1233.ch006
    [Google Scholar]
  89. PramanikT. MajiP. Microwave assisted green synthesis of pharmaceutically important dihydropyrimidinones in fruit juice medium.Int. J. Pharm. Pharm. Sci.20157376379
    [Google Scholar]
  90. PramanikT. PathanA.H. Exploring the utility of fruit juices as green medium for Biginelli reaction.Res. J. Pharm. Biol. Chem. Sci.20145444449
    [Google Scholar]
  91. ChavanP. PansareD. ShelkeR. ShejulS. BhoirP. Ultrasound-assisted synthesis and biological significance of substituted 4H-chromene-3-carbonitrile using greenery approaches.Curr. Chem. Lett.202110435210.5267/j.ccl.2020.7.003
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372354804241202082320
Loading
/content/journals/cocat/10.2174/0122133372354804241202082320
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bisindolylalkanes; carbonyl compounds; green method; indoles; Orange juice
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test