Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Background

Developing environmentally benign processes, such as organic reactions conducted in water, is desired from the view of sustainable technology. Concerning the palladium-catalyzed borylation reactions of aryl halides in water, only a few examples have been reported.

Objective

This study aimed to develop efficient methods for palladium-catalyzed borylation reactions of aryl halides in water, not only increasing product yields but also extracting products with less organic solvents.

Methods

We adopted polymer surfactants, such as diblock copolymers that consist of poly(N-isopropoylacrylamide) and a hydrophilic segment, and a poly(ethylene glycol)-based polymer that consists of poly(ethylene glycol) chain and 4-chloromethylbenzyl moiety.

Results

Reactions using these polymers gave the borylation products in significantly higher yields than that in pure water. The efficiency of the extraction process for the products from the reaction mixtures was evaluated, indicating that the polymer micelles enabled separation processes with less organic solvent.

Conclusion

Applying polymer surfactants increased the product yields in Pd-catalyzed borylation of aryl halides, and it enabled the extraction of the products from the aqueous reaction mixture more efficiently.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372355594241211060459
2025-01-08
2025-10-29
Loading full text...

Full text loading...

References

  1. Cortes-ClergetM. YuJ. KincaidJ.R.A. WaldeP. GallouF. LipshutzB.H. Water as the reaction medium in organic chemistry: from our worst enemy to our best friend.Chem. Sci. (Camb.)202112124237426610.1039/D0SC06000C 34163692
    [Google Scholar]
  2. LipshutzB.H. Nanomicelle-enabled chemoenzymatic catalysis: Clean chemistry in “dirty” water.Chem Catal.20233110045810.1016/j.checat.2022.10.034
    [Google Scholar]
  3. CordesE.H. DunlapR.B. Kinetics of organic reactions in micellar systems.Acc. Chem. Res.196921132933710.1021/ar50023a002
    [Google Scholar]
  4. SamieyB. ChengC.H. WuJ. Effects of surfactants on the rate of chemical reactions.J. Chem.201420141410.1155/2014/908476
    [Google Scholar]
  5. RideoutD.C. BreslowR. Hydrophobic acceleration of Diels-Alder reactions.J. Am. Chem. Soc.1980102267816781710.1021/ja00546a048
    [Google Scholar]
  6. BreslowR. Hydrophobic effects on simple organic reactions in water.Acc. Chem. Res.199124615916410.1021/ar00006a001
    [Google Scholar]
  7. YuY.C. SungY.C. FuJ.H. PengW.S. YuY.C. LiJ. ChanY.T. TsaiF.Y. Nickel-catalyzed suzuki–miyaura coupling in water for the synthesis of 2-aryl allyl phosphonates and sulfones.J. Org. Chem.20248942448245810.1021/acs.joc.3c02455 38275288
    [Google Scholar]
  8. LinB.N. HuangS.H. WuW.Y. MouC.Y. TsaiF.Y. Sonogashira reaction of aryl and heteroaryl halides with terminal alkynes catalyzed by a highly efficient and recyclable nanosized MCM-41 anchored palladium bipyridyl complex.Molecules201015129157917310.3390/molecules15129157 21150831
    [Google Scholar]
  9. WuW.Y. LiuL.J. ChangF.P. ChengY.L. TsaiF.Y. A highly efficient and reusable palladium(ii)/cationic 2,2′-bipyridyl-catalyzed stille coupling in water.Molecules2016219120510.3390/molecules21091205 27617999
    [Google Scholar]
  10. HuangS.H. ChenJ.R. TsaiF.Y. Palladium(II)/cationic 2,2′-bipyridyl system as a highly efficient and reusable catalyst for the Mizoroki-Heck reaction in water.Molecules201015131533010.3390/molecules15010315 20110893
    [Google Scholar]
  11. LiaoY.A. PengW.S. LiuL.J. YeT.Y. FuJ.H. ChanY.T. TsaiF.Y. Iron-catalyzed cadiot–chodkiewicz coupling with high selectivity in water under air.J. Org. Chem.20228721136981370710.1021/acs.joc.2c01354 36164765
    [Google Scholar]
  12. LipshutzB.H. On the role of surfactants: rethinking “aqueous” chemistry.Green Chem.202426273975210.1039/D3GC03875K
    [Google Scholar]
  13. LuescherM.U. GallouF. LipshutzB.H. The impact of earth-abundant metals as a replacement for Pd in cross coupling reactions.Chem. Sci. (Camb.)202415249016902510.1039/D4SC00482E 38903222
    [Google Scholar]
  14. AnsariT.N. GallouF. HandaS. Palladium-catalyzed micellar cross-couplings: An outlook.Coord. Chem. Rev.202348821515810.1016/j.ccr.2023.215158
    [Google Scholar]
  15. SorhieV. Alemtoshi GogoiB. WallingB. AcharjeeS.A. BharaliP. Role of micellar nanoreactors in organic chemistry: Green and synthetic surfactant review.Sustain. Chem. Pharm.20223010087510.1016/j.scp.2022.100875
    [Google Scholar]
  16. LipshutzB.H. GhoraiS. Cortes-ClergetM. The hydrophobic effect applied to organic synthesis: Recent synthetic chemistry “in water”.Chemistry201824266672669510.1002/chem.201705499 29465785
    [Google Scholar]
  17. ChristoffelF. WardT.R. Palladium-catalyzed heck cross-coupling reactions in water: A comprehensive review.Catal. Lett.2018148248951110.1007/s10562‑017‑2285‑0
    [Google Scholar]
  18. LipshutzB.H. GallouF. HandaS. Evolution of solvents in organic chemistry.ACS Sustain. Chem.& Eng.20164115838584910.1021/acssuschemeng.6b01810
    [Google Scholar]
  19. LipshutzB.H. GhoraiS. Transitioning organic synthesis from organic solvents to water. What’s your E Factor?Green Chem.20141683660367910.1039/C4GC00503A 25170307
    [Google Scholar]
  20. LipshutzB.H. AbelaA.R. BoškovićŽ.V. NishikataT. DuplaisC. KrasovskiyA. “greening up” cross-coupling chemistry.Top. Catal.20105315-1898599010.1007/s11244‑010‑9537‑1
    [Google Scholar]
  21. KitanosonoT. KobayashiS. Reactions in water involving the “onwater” mechanism.Chemistry202026439408942910.1002/chem.201905482 32058632
    [Google Scholar]
  22. KitanosonoT. MasudaK. XuP. KobayashiS. Catalytic organic reactions in water toward sustainable society.Chem. Rev.2018118267974610.1021/acs.chemrev.7b00417 29218984
    [Google Scholar]
  23. GuoW. LiuX. LiuY. LiC. Chiral catalysis at the water/oil interface.ACS Catal.20188132834110.1021/acscatal.7b02118
    [Google Scholar]
  24. UozumiY. Heterogeneous asymmetric catalysis in water with amphiphilic polymer-supported homochiral palladium complexes.Bull. Chem. Soc. Jpn.200881101183119510.1246/bcsj.81.1183
    [Google Scholar]
  25. PangH. HuY. YuJ. GallouF. LipshutzB.H. Water-sculpting of a heterogeneous nanoparticle precatalyst for mizoroki–heck couplings under aqueous micellar catalysis conditions.J. Am. Chem. Soc.202114393373338210.1021/jacs.0c11484 33630579
    [Google Scholar]
  26. LamblinM. Nassar-HardyL. HiersoJ.C. FouquetE. FelpinF.X. Recyclable heterogeneous palladium catalysts in pure water: sustainable developments in suzuki, heck, sonogashira and tsuji–trost reactions.Adv. Synth. Catal.20103521337910.1002/adsc.200900765
    [Google Scholar]
  27. SheldonR.A. The E factor at 30: a passion for pollution prevention.Green Chem.20232551704172810.1039/D2GC04747K
    [Google Scholar]
  28. SheldonR.A. Selective catalytic synthesis of fine chemicals: opportunities and trends.J. Mol. Catal. Chem.19961071-3758310.1016/1381‑1169(95)00229‑4
    [Google Scholar]
  29. IshiyamaT. MurataM. MiyauraN. Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters.J. Org. Chem.199560237508751010.1021/jo00128a024
    [Google Scholar]
  30. IshiyamaT. IshidaK. MiyauraN. Synthesis of pinacol arylboronates via cross-coupling reaction of bis(pinacolato)diboron with chloroarenes catalyzed by palladium(0)–tricyclohexylphosphine complexes.Tetrahedron200157499813981610.1016/S0040‑4020(01)00998‑X
    [Google Scholar]
  31. FürstnerA. SeidelG. Microwave-assisted synthesis of pinacol boronates from aryl chlorides catalyzed by a palladium/imidazolium salt system.Org. Lett.20024454154310.1021/ol0171463 11843586
    [Google Scholar]
  32. BillingsleyK.L. BarderT.E. BuchwaldS.L. Palladium-catalyzed borylation of aryl chlorides: scope, applications, and computational studies.Angew. Chem. Int. Ed. Engl.200746285359536310.1002/anie.200701551
    [Google Scholar]
  33. ErbW. HellalA. AlbiniM. RoudenJ. BlanchetJ. An easy route to (hetero)arylboronic acids.Chemistry201420226608661210.1002/chem.201402487 24737711
    [Google Scholar]
  34. ChenK. ZhangS. HeP. LiP. Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions.Chem. Sci. (Camb.)2016763676368010.1039/C5SC04521E 30008997
    [Google Scholar]
  35. LipshutzB.H. MoserR. VoigtritterK.R. Miyaura borylations of aryl bromides in water at room temperature.Isr. J. Chem.2010505-669169510.1002/ijch.201000045 24761030
    [Google Scholar]
  36. KlumphuP. LipshutzB.H. “Nok”: a phytosterol-based amphiphile enabling transition-metal-catalyzed couplings in water at room temperature.J. Org. Chem.201479388890010.1021/jo401744b 24447127
    [Google Scholar]
  37. CompagnoN. LucchettiN. PalmisanoA. ProfetaR. ScarsoA. Pd-catalyzed borylation in water and its application to the synthesis of active pharmaceutical ingredient (API) intermediates.J. Org. Chem.20248917124521246110.1021/acs.joc.4c01389 39161164
    [Google Scholar]
  38. ZernickelA. DuW. GhorpadeS.A. SawantD.N. MakkiA.A. SekarN. EppingerJ. Bedford-Type palladacycle-catalyzed miyaura borylation of aryl halides with tetrahydroxydiboron in water.J. Org. Chem.20188341842185110.1021/acs.joc.7b02771 29313348
    [Google Scholar]
  39. XuS.D. SunF.Z. DengW.H. HaoH. DuanX.H. One-step highly selective borylation/Suzuki cross-coupling of two distinct aryl bromides in pure water.New J. Chem.20184220164641646810.1039/C8NJ02184H
    [Google Scholar]
  40. QiX. LiH.P. PengJ.B. WuX.F. Borylation of aryldiazonium salts at room temperature in an aqueous solution under catalyst-free conditions.Tetrahedron Lett.201758403851385310.1016/j.tetlet.2017.08.060
    [Google Scholar]
  41. SuzukiN. WatanabeK. TakahashiC. TakeokaY. RikukawaM. Ruthenium-catalyzed olefin metathesis in water using thermo-responsive diblock copolymer micelles.Curr. Org. Chem.202327151347135610.2174/1385272827666230911115809
    [Google Scholar]
  42. SuzukiN. KoyamaS. KoikeR. EbaraN. AraiR. TakeokaY. RikukawaM. TsaiF.Y. Palladium-catalyzed mizoroki–heck and copper-free sonogashira coupling reactions in water using thermoresponsive polymer micelles.Polymers (Basel)20211316271710.3390/polym13162717 34451255
    [Google Scholar]
  43. SuzukiN. TakabeT. YamauchiY. KoyamaS. KoikeR. RikukawaM. LiaoW.T. PengW.S. TsaiF.Y. Palladium-catalyzed Mizoroki-Heck reactions in water using thermoresponsive polymer micelles.Tetrahedron201975101351135810.1016/j.tet.2019.01.047
    [Google Scholar]
  44. XueX. HuY. WangS. ChenX. JiangY. SuJ. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering.Bioact. Mater.20221232733910.1016/j.bioactmat.2021.10.029 35128180
    [Google Scholar]
  45. AnsariM.J. RajendranR.R. MohantoS. AgarwalU. PandaK. DhotreK. ManneR. DeepakA. ZafarA. YasirM. PramanikS. Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: A review of the state-of-the-art.Gels20228745410.3390/gels8070454 35877539
    [Google Scholar]
  46. LiuJ. JiangL. HeS. ZhangJ. ShaoW. Recent progress in PNIPAM-based multi-responsive actuators: A mini-review.Chem. Eng. J.202243313349610.1016/j.cej.2021.133496
    [Google Scholar]
  47. XuX. BizmarkN. ChristieK.S.S. DattaS.S. RenZ.J. PriestleyR.D. Thermoresponsive polymers for water treatment and collection.Macromolecules20225561894190910.1021/acs.macromol.1c01502
    [Google Scholar]
  48. ConstantinouA.P. WangL. WangS. GeorgiouT.K. Thermoresponsive block copolymers of increasing architecture complexity: a review on structure–property relationships.Polym. Chem.202314322324710.1039/D2PY01097F
    [Google Scholar]
  49. HirutaY. Poly(N-isopropylacrylamide)-based temperature- and pH-responsive polymer materials for application in biomedical fields.Polym. J.202254121419143010.1038/s41428‑022‑00687‑z
    [Google Scholar]
  50. NarumiA. SatoS. ShenX. KakuchiT. Precision synthesis for well-defined linear and/or architecturally controlled thermoresponsive poly(N -substituted acrylamide)s.Polym. Chem.202213101293131910.1039/D1PY01449H
    [Google Scholar]
  51. WardM.A. GeorgiouT.K. Thermoresponsive polymers for biomedical applications.Polymers (Basel)2011331215124210.3390/polym3031215
    [Google Scholar]
  52. KobayashiJ. OkanoT. Design of temperature-responsive polymer-grafted surfaces for cell sheet preparation and manipulation.Bull. Chem. Soc. Jpn.201992481782410.1246/bcsj.20180378
    [Google Scholar]
  53. HeW. MaY. GaoX. WangX. DaiX. SongJ. Application of poly(N-isopropylacrylamide) as thermosensitive smart materials.J. Phys. Conf. Ser.20201676101206310.1088/1742‑6596/1676/1/012063
    [Google Scholar]
  54. Harun-ur-RashidM. SekiT. TakeokaY. Structural colored gels for tunable soft photonic crystals.Chem. Rec.2009928710510.1002/tcr.20169 19306332
    [Google Scholar]
  55. HellwegT. Responsive core–shell microgels: Synthesis, characterization, and possible applications.J. Polym. Sci., B, Polym. Phys.201351141073108310.1002/polb.23294
    [Google Scholar]
  56. HertleY. HellwegT. Thermoresponsive copolymer microgels.J. Mater. Chem. B Mater. Biol. Med.20131435874588510.1039/c3tb21143f 32261054
    [Google Scholar]
  57. KloudaL. Thermoresponsive hydrogels in biomedical applications.Eur. J. Pharm. Biopharm.201597Pt B33834910.1016/j.ejpb.2015.05.01726614556
    [Google Scholar]
  58. IchijoH. Thermo-Responsive Polymer Gels. Macromolecular Science and Engineering. TanabeY. Springer1999718310.1007/978‑3‑642‑58559‑3_7
    [Google Scholar]
  59. LuoG.F. ChenW.H. ZhangX.Z. 100th Anniversary of macromolecular science viewpoint: Poly(N -isopropylacrylamide)-based thermally responsive micelles.ACS Macro Lett.20209687288110.1021/acsmacrolett.0c00342 35648534
    [Google Scholar]
  60. AgrawalR.D. TatodeA.A. RarokarN.R. UmekarM.J. Polymeric micelle as a nanocarrier for delivery of therapeutic agents: A comprehensive review.J. Drug Deliv. Ther.2020101-s19119510.22270/jddt.v10i1‑s.3850
    [Google Scholar]
  61. NakayamaM. OkanoT. Intelligent thermoresponsive polymeric micelles for targeted drug delivery.J. Drug Deliv. Sci. Technol.2006161354410.1016/S1773‑2247(06)50005‑X
    [Google Scholar]
  62. NakayamaY. MiyamuraM. HiranoY. GotoK. MatsudaT. Preparation of poly(ethylene glycol)–polystyrene block copolymers using photochemistry of dithiocarbamate as a reduced cell-adhesive coating material.Biomaterials1999201096397010.1016/S0142‑9612(98)00252‑X 10353650
    [Google Scholar]
  63. SuzukiN. AkebiR. InoueT. RikukawaM. MasuyamaY. Asymmetric aldol and michael reactions in water using organocatalysts immobilized on a thermoresponsive “linear” block copolymer.Curr. Organocatal.20163330631410.2174/2213337203666160304194141
    [Google Scholar]
  64. ZhuK. JinH. KjøniksenA.L. NyströmB. Anomalous transition in aqueous solutions of a thermoresponsive amphiphilic diblock copolymer.J. Phys. Chem. B200711137108621087010.1021/jp074163m 17718473
    [Google Scholar]
  65. KjøniksenA.L. ZhuK. BehrensM.A. PedersenJ.S. NyströmB. Effects of temperature and salt concentration on the structural and dynamical features in aqueous solutions of charged triblock copolymers.J. Phys. Chem. B2011115102125213910.1021/jp1075884 21338148
    [Google Scholar]
  66. ChenZ. LiangY. JiaD.S. CuiZ.M. SongW.G. Simple synthesis of sub-nanometer Pd clusters: High catalytic activity of Pd/PEG-PNIPAM in Suzuki reaction.Chin. J. Catal.201738465165710.1016/S1872‑2067(17)62797‑9
    [Google Scholar]
  67. LiJ. CongH. LiL. ZhengS. Thermoresponse improvement of poly(n-isopropylacrylamide) hydrogels via formation of poly(sodium p-styrenesulfonate) nanophases.ACS Appl. Mater. Interfaces2014616136771368710.1021/am503148v 25036696
    [Google Scholar]
  68. KjøniksenA.L. ZhuK. PamiesR. NyströmB. Temperature-induced formation and contraction of micelle-like aggregates in aqueous solutions of thermoresponsive short-chain copolymers.J. Phys. Chem. B2008112113294329910.1021/jp800404a 18302367
    [Google Scholar]
  69. KjøniksenA.L. ZhuK. KarlssonG. NyströmB. Novel transition behavior in aqueous solutions of a charged thermoresponsive triblock copolymer.Colloids Surf. A Physicochem. Eng. Asp.20093331-3324510.1016/j.colsurfa.2008.09.024
    [Google Scholar]
  70. McFaulC.A. AlbA.M. DrenskiM.F. ReedW.F. Simultaneous multiple sample light scattering detection of LCST during copolymer synthesis.Polymer (Guildf.)201152214825483310.1016/j.polymer.2011.08.026
    [Google Scholar]
  71. BehrensM.A. KjøniksenA.L. ZhuK. NyströmB. PedersenJ.S. Small-angle X-ray scattering study of charged triblock copolymers as a function of polymer concentration, temperature, and charge screening.Macromolecules201245124625510.1021/ma2016216
    [Google Scholar]
  72. TakeokaH. WadaS. YusaS. SakuraiS. NakamuraY. FujiiS. Thermo-responsive polypyrrole-palladium nanocomposite particles synthesized by aqueous chemical oxidative dispersion polymerization.J. Adhesion Soc. Japan201551s125526310.11618/adhesion.51.255
    [Google Scholar]
  73. MizusakiM. EndoT. NakahataR. MorishimaY. YusaS. pH-Induced association and dissociation of intermolecular complexes formed by hydrogen bonding between diblock copolymers.Polymers (Basel)20179836736810.3390/polym9080367 30971041
    [Google Scholar]
  74. MoriH. EbinaY. KambaraR. NakabayashiK. Temperature-responsive self-assembly of star block copolymers with poly(ionic liquid) segments.Polym. J.201244655056010.1038/pj.2012.35
    [Google Scholar]
  75. NakabayashiK. SatoY. IsawaY. LoC.T. MoriH. Ionic conductivity and assembled structures of imidazolium salt-based block copolymers with thermoresponsive segments.Polymers (Basel)201791161610.3390/polym9110616 30965921
    [Google Scholar]
  76. SuzukiN. MizunoD. GuidoteA.M. KoyamaS. MasuyamaY. RikukawaM. Asymmetric reactions in water catalyzed by l-proline tethered on thermoresponsive ionic copolymers.Lett. Org. Chem.202017971772510.2174/1570178616666190819141307
    [Google Scholar]
  77. SaitoY. SegawaY. ItamiK. para-C–H Borylation of benzene derivatives by a bulky iridium catalyst.J. Am. Chem. Soc.2015137155193519810.1021/jacs.5b02052 25860511
    [Google Scholar]
  78. ZhaoX. WuM. LiuY. CaoS. LiHMDS-promoted palladium or iron-catalyzed ipso -defluoroborylation of aryl fluorides.Org. Lett.201820185564556810.1021/acs.orglett.8b02228 30156846
    [Google Scholar]
  79. LipshutzB.H. GhoraiS. LeongW.W.Y. TaftB.R. KrogstadD.V. Manipulating micellar environments for enhancing transition metal-catalyzed cross-couplings in water at room temperature.J. Org. Chem.201176125061507310.1021/jo200746y 21539384
    [Google Scholar]
  80. LuJ. GuanZ.Z. GaoJ.W. ZhangZ.H. An improved procedure for the synthesis of arylboronates by palladium‐catalyzed coupling reaction of aryl halides and bis (pinacolato)diboron in polyethylene glycol.Appl. Organomet. Chem.201125753754110.1002/aoc.1799
    [Google Scholar]
  81. CaiM. HuangB. LuoC. XuC. Recyclable Pd2dba3/XPhos/PEG-2000 System for efficient borylation of aryl chlorides: Practical access to aryl boronates.Synthesis20225451339134610.1055/s‑0037‑1610787
    [Google Scholar]
  82. ColacinoE. MartinezJ. LamatyF. PatrikeevaL.S. KhemchyanL.L. AnanikovV.P. BeletskayaI.P. PEG as an alternative reaction medium in metal-mediated transformations.Coord. Chem. Rev.201225623-242893292010.1016/j.ccr.2012.05.027
    [Google Scholar]
  83. HondaH. OnoK. MurakamiK. Solvent effect on the complexation between poly(ethylene oxide) and alkali-metal ions.Macromolecules199023251552010.1021/ma00204a026
    [Google Scholar]
  84. AstrucD. LuF. AranzaesJ.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.Angew. Chem. Int. Ed. Engl.200544487852787210.1002/anie.200500766
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372355594241211060459
Loading
/content/journals/cocat/10.2174/0122133372355594241211060459
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test