Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Background

Mono- and bis-(1,4-disubstituted-1,2,3-triazoles) were synthesized a laccase-catalyzed reaction using . This methodology offers a convenient and efficient approach to triazole synthesis under mild conditions, achieving modest to good yields. Additionally, molecular docking studies were performed using PDB IDs 2W9S (antibacterial) and 3KHM (antifungal) to evaluate biological activities. The results of drug-likeness analysis further corroborated the findings from experimental biological evaluations.

Methods

This study focuses on developing an eco-friendly method for synthesizing novel 1,2,3-triazole derivatives using a green catalyst. A co-solvent buffer and organic solvent facilitate the reaction, which performs well with various substrates, including substituted benzenes -mono & bis-(2-propynyloxy), sodium azide, and aryl halides. Laccase enzymes from are used, leveraging naturally occurring copper metals instead of external transition metals, bound through histidine, methionine, and cysteine linkages. This method represents a sustainable approach to organic transformations.

Results

New scaffolds of mono- and bis-(1,4-disubstituted-1,2,3-triazoles) were synthesized using eco-friendly green buffer solvents and laccase catalysis with aryl halides, sodium azide, and acetylene derivatives. Molecular docking studies revealed that the binding affinities of the synthesized compounds () show promising interactions with antibacterial and antifungal proteins. All others except for compounds , , , , and , meet Lipinski’s criteria, making them potential therapeutic candidates.

Conclusion

In conclusion, this methodology is valuable for developing antibacterial and antifungal agents in medicinal chemistry. Additionally, microwave-assisted synthesis of (2-propenyloxy)benzene derivatives significantly reduced reaction times from hours to minutes. The approach is environmentally friendly and practical, particularly for handling flammable organic azides and hazardous solvents, making it both efficient and safer.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372350903241209101511
2025-01-06
2025-12-18
Loading full text...

Full text loading...

References

  1. OddsF.C. BrownA.J.P. GowN.A.R. Antifungal agents: mechanisms of action.Trends Microbiol.200311627227910.1016/S0966‑842X(03)00117‑312823944
    [Google Scholar]
  2. TejshriR.D SmitaP.K VagoluS.K DharmarajanS. JaiprakashN.S. OmprakashB. VijayM K BapuraoB.S. Design and synthesis of new aryloxy‐linked dimeric 1,2,3‐triazoles via click chemistry approach: Biological evaluation and molecular docking study.J. Heterocyclic Chem.2019565360810.1002/jhet.3608
    [Google Scholar]
  3. DalvieD.K. KalgutkarA.S. Khojasteh-BakhtS.C. ObachR.S. O’DonnellJ.P. Biotransformation reactions of five-membered aromatic heterocyclic rings.Chem. Res. Toxicol.200215326929910.1021/tx015574b11896674
    [Google Scholar]
  4. HorneW.S. YadavM.K. StoutC.D. GhadiriM.R. Heterocyclic peptide backbone modifications in an alpha-helical coiled coil.J. Am. Chem. Soc.200412647153661536710.1021/ja045040815563148
    [Google Scholar]
  5. GeninM.J. AllwineD.A. AndersonD.J. BarbachynM.R. EmmertD.E. GarmonS.A. GraberD.R. GregaK.C. HesterJ.B. HutchinsonD.K. MorrisJ. ReischerR.J. FordC.W. ZurenkoG.E. HamelJ.C. SchaadtR.D. StapertD. YagiB.H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis.J. Med. Chem.200043595397010.1021/jm990373e10715160
    [Google Scholar]
  6. BuckleD.R. RockellC.J.M. SmithH. SpicerB.A. Studies on 1,2,3,-triazoles. 10. Synthesis and antiallergic properties of 9-oxo-1H,9H-benzothiopyrano[2,3-d]-1,2,3-triazoles and their S-oxides.J. Med. Chem.198427222322710.1021/jm00368a0216694170
    [Google Scholar]
  7. AlvarezR. VelázquezS. San-FélixA. AquaroS. ClercqE.D. PernoC.F. KarlssonA. BalzariniJ. CamarasaM.J. 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole 2′',2′'-dioxide) (TSAO) analogs: Synthesis and anti-HIV-1 activity.J. Med. Chem.199437244185419410.1021/jm00050a0157527463
    [Google Scholar]
  8. BrockunierL.L. ParmeeE.R. OkH.O. CandeloreM.R. CascieriM.A. ColwellL.F.Jr DengL. FeeneyW.P. ForrestM.J. HomG.J. MacIntyreD.E. TotaL. WyvrattM.J. FisherM.H. WeberA.E. Human β3-adrenergic receptor agonists containing 1,2,3-triazole-substituted benzenesulfonamides.Bioorg. Med. Chem. Lett.200010182111211410.1016/S0960‑894X(00)00422‑410999482
    [Google Scholar]
  9. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑412203546
    [Google Scholar]
  10. MeldalM. TornøeC.W. Cu-catalyzed azide-alkyne cycloaddition.Chem. Rev.200810882952301510.1021/cr078347918698735
    [Google Scholar]
  11. MooreE. McInnesS.J. VogtA. VoelckerN.H. Rapid aqueous ‘click chemistry’ using Cu(I)-loaded dendrimers as macromolecular catalysts.Tetrahedron Lett.201152182327232910.1016/j.tetlet.2011.02.090
    [Google Scholar]
  12. ChassaingS. SidoA.S.S. AlixA. KumarrajaM. PaleP. [3+2] Cycloaddition catalyzed by Cu(I)-zeolites.Chemistry200214671310.1002/chem.20080047918576412
    [Google Scholar]
  13. YousufS.K. MukherjeeD. SinghB. MaityS. TanejaS.C. Cu–Mn bimetallic catalyst for Huisgen [3+2]-cycloaddition.Green Chem.2010129156810.1039/c005088a
    [Google Scholar]
  14. LeeC.T. HuangS. LipshutzB.H. Copper‐in‐charcoal‐catalyzed, tandem one‐pot diazo transfer‐click reactions.Adv. Synth. Catal.2009351183139314210.1002/adsc.200900604
    [Google Scholar]
  15. WangK. BiX. XingS. LiaoP. FangZ. MengX. ZhangQ. LiuQ. JiY. Cu2O acting as a robust catalyst in CuAAC reactions: water is the required medium.Green Chem.201113356210.1039/c0gc00848f
    [Google Scholar]
  16. LalK. RaniP. Recent developments in copper nanoparticle-catalyzed synthesis of 1,4-disubstituted 1,2,3-triazoles in water.ARKIVOC20162016130734110.3998/ark.5550190.p009.593
    [Google Scholar]
  17. HarmandL. LescureM.H. CandelonN. DuttineM. LastécouèresD. VincentJ.M. Huisgen click cycloadditions from a copper(II)-tren precatalyst without external sacrificial reductant.Tetrahedron Lett.201253111417142010.1016/j.tetlet.2012.01.035
    [Google Scholar]
  18. BuckleyB.R. FigueresM.M.P. KhanA.M. HeanyH. A new simplified protocol for copper(I) alkyne–azide cycloaddition reactions using low substoichiometric amounts of copper(II) precatalysts in methanol.Synlett20162751
    [Google Scholar]
  19. MosesJ.E. MoorhouseA.D. The growing applications of click chemistry.Chem. Soc. Rev.20073681249126210.1039/B613014N17619685
    [Google Scholar]
  20. IhaR.K. WooleyK.L. NyströmA.M. BurkeD.J. KadeM.J. HawkerC.J. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials.Chem. Rev.2009109115620568610.1021/cr900138t19905010
    [Google Scholar]
  21. KolbH.C. SharplessK.B. The growing impact of click chemistry on drug discovery.Drug Discov. Today20038241128113710.1016/S1359‑6446(03)02933‑714678739
    [Google Scholar]
  22. LutzJ.F. Nanotechnology for Life Science Research Group 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science.Angew. Chem. Int. Ed.20074671018102510.1002/anie.20060405017211903
    [Google Scholar]
  23. KolbH.C. FinnM.G. SharplessK.B. Click chemistry: Diverse chemical function from a few good reactions.Angew. Chem. Int. Ed.200140112004202110.1002/1521‑3773(20010601)40:11<2004::AID‑ANIE2004>3.0.CO;2‑511433435
    [Google Scholar]
  24. TornøeC.W. ChristensenC. MeldalM. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.J. Org. Chem.20026793057306410.1021/jo011148j11975567
    [Google Scholar]
  25. HuisgenR. 1,3‐Dipolar cycloadditions. past and future.Angew. Chem. Int. Ed. Engl.196321056559810.1002/anie.196305651
    [Google Scholar]
  26. KrimJ. SillahiB. TaourirteM. RakibE.M. EngelsJ.W. Microwave-assisted click chemistry: synthesis of mono and bis-1,2,3-triazole acyclonucleoside analogues of ACV via copper(I)-catalyzed cycloaddition.ARKIVOC200920091314215210.3998/ark.5550190.0010.d12
    [Google Scholar]
  27. AntoniP. NyströmD. HawkerC.J. HultA. MalkochM. A chemoselective approach for the accelerated synthesis of well-defined dendritic architectures.Chem. Commun. (Camb.)200722222249225110.1039/B703547K17534506
    [Google Scholar]
  28. HusainA.A. BishtK.S. Synthesis of a novel resorcin[4]arene–glucose conjugate and its catalysis of the CuAAC reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles in water.RSC Advances2019918101091011610.1039/C9RA00972H35520904
    [Google Scholar]
  29. HuangY.J. YeY.S. YenY.C. TsaiL.D. HwangB.J. ChangF.C. Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs).Int. J. Hydrogen Energy20113623153331534310.1016/j.ijhydene.2011.08.093
    [Google Scholar]
  30. ClausH. Laccases: structure, reactions, distribution.Micron2004351-2939610.1016/j.micron.2003.10.02915036303
    [Google Scholar]
  31. UllrichR. HofrichterM. Enzymatic hydroxylation of aromatic compounds.Cell. Mol. Life Sci.200764327129310.1007/s00018‑007‑6362‑117221166
    [Google Scholar]
  32. SchmidR.D. UrlacherV. Modern Biooxidations. Enzymes, Reactions and Applications.WeinheimWiley-VCH200710.1002/9783527611522
    [Google Scholar]
  33. BernhardtR. Cytochromes P450 as versatile biocatalysts.J. Biotechnol.2006124112814510.1016/j.jbiotec.2006.01.02616516322
    [Google Scholar]
  34. UrlacherV.B. EibenS. Cytochrome P450 monooxygenases: perspectives for synthetic application.Trends Biotechnol.200624732433010.1016/j.tibtech.2006.05.00216759725
    [Google Scholar]
  35. FujiiM. OnoM. SatoM. AkitaH. Enzymatic resolution of methyl (2E, 4R*,5S*)-4-(N-benzyl-N-methyl)amino-5-hydroxyhex-2-enoate.J. Mol. Catal., B Enzym.2011691-2212610.1016/j.molcatb.2010.12.005
    [Google Scholar]
  36. GunchevaM. ZhiryakovaD. Catalytic properties and potential applications of Bacillus lipases.J. Mol. Catal., B Enzym.201168112110.1016/j.molcatb.2010.09.002
    [Google Scholar]
  37. HeT. LiK. WuM-Y. FengX-W. WangN. WangH-Y. LiC. YuX-Q. Utilization of biocatalytic promiscuity for direct Mannich reaction.J. Mol. Catal., B Enzym.2010673-418919410.1016/j.molcatb.2010.08.004
    [Google Scholar]
  38. HarveyB.M. WalkerJ.R.K. Studies with plant laccases: I. Comparison of plant and fungal laccases.Biochem. Mol. Biol. Biophys.1999345
    [Google Scholar]
  39. MayerA.M. HarelE. Polyphenol oxidases in plants.Phytochemistry197918219321510.1016/0031‑9422(79)80057‑616973188
    [Google Scholar]
  40. SolomonE.I. SundaramU.M. MachonkinT.E. Multicopper oxidases and oxygenases.Chem. Rev.19969672563260610.1021/cr950046o11848837
    [Google Scholar]
  41. ClausH. FilipZ. The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain.Microbiol. Res.1997152220921610.1016/S0944‑5013(97)80014‑6
    [Google Scholar]
  42. GivaudanA. EffosseA. FaureD. PotierP. BouillantM.L. BallyR. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum.FEMS Microbiol. Lett.1993108220521010.1111/j.1574‑6968.1993.tb06100.x
    [Google Scholar]
  43. DiamantidisG. EffosseA. PotierP. BallyR. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum.Soil Biol. Biochem.200032791992710.1016/S0038‑0717(99)00221‑7
    [Google Scholar]
  44. HopkinsT.L. KramerK.J. Insect cuticle sclerotization.Annu. Rev. Entomol.199237127330210.1146/annurev.en.37.010192.001421
    [Google Scholar]
  45. KramerK.J. KanostM.R. HopkinsT.L. JiangH. ZhuY.C. XuR. KerwinJ.L. TurecekF. Oxidative conjugation of catechols with proteins in insect skeletal systems.Tetrahedron200157238539210.1016/S0040‑4020(00)00949‑2
    [Google Scholar]
  46. MogharabiM. FaramarziM.A. Laccase and laccase‐mediated systems in the synthesis of organic compounds.Adv. Synth. Catal.2014356589792710.1002/adsc.201300960
    [Google Scholar]
  47. FuN. WangS. ZhangY. ZhangC. YangD. WengL. ZhaoB. WangL. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans.Eur. J. Med. Chem.201713659660210.1016/j.ejmech.2017.05.00128551587
    [Google Scholar]
  48. WangX.L. WanK. ZhouC.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities.Eur. J. Med. Chem.201045104631463910.1016/j.ejmech.2010.07.03120708826
    [Google Scholar]
  49. LopesS.M.M. NovaisJ.S. CostaD.C.S. CastroH.C. FigueiredoA.M.S. FerreiraV.F. Pinho e MeloT.M.V.D. da SilvaF.C. Hetero-Diels-Alder reactions of novel 3-triazolyl-nitrosoalkenes as an approach to functionalized 1,2,3-triazoles with antibacterial profile.Eur. J. Med. Chem.20181431010102010.1016/j.ejmech.2017.11.05229232578
    [Google Scholar]
  50. ZhangB. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids.Eur. J. Med. Chem.201916835737210.1016/j.ejmech.2019.02.05530826511
    [Google Scholar]
  51. BatoolT. RasoolN. GullY. NoreenM. NasimF.U.H. YaqoobA. ZubairM. RanaU.A. A convenient method for the synthesis of (prop-2-ynyloxy)benzene derivatives via reaction with propargyl bromide, their optimization, scope and biological evaluation.PLoS ONE20149e115457
    [Google Scholar]
  52. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  53. Rodakiewicz-NowakJ. Phenols oxidizing enzymes in water restricted media.Top. Catal.200011/121/441943410.1023/A:1027291629302
    [Google Scholar]
  54. GuptaS. SinghA. NarulaA.K. A green methodology for the synthesis of some regioselective 1, 4-disubstituted 1,2,3-triazoles via laccase-mediated click reaction.Chem. Select20221e202200498
    [Google Scholar]
  55. HeasletH. HarrisM. FahnoeK. SarverR. PutzH. ChangJ. SubramanyamC. BarreiroG. MillerJ.R. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim.Proteins200976370671710.1002/prot.2238319280600
    [Google Scholar]
  56. SchweitzerB.I. DickerA.P. BertinoJ.R. Dihydrofolate reductase as a therapeutic target.FASEB J.1990482441245210.1096/fasebj.4.8.21859702185970
    [Google Scholar]
  57. DeshmukhT.R. KhedkarV.M. JadhavR.G. SarkateA.P. SangshettiJ.N. TiwariS.V. ShingateB.B. A copper-catalyzed synthesis of aryloxy-tethered symmetrical 1,2,3-triazoles as potential antifungal agents targeting 14 α-demethylase.New J. Chem.20214529131041311810.1039/D1NJ01759D
    [Google Scholar]
  58. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  59. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  60. AliJ. CamilleriP. BrownM.B. HuttA.J. KirtonS.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area.J. Chem. Inf. Model.201252242042810.1021/ci200387c22196228
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372350903241209101511
Loading
/content/journals/cocat/10.2174/0122133372350903241209101511
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test