Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Background

β-lactams have been primarily utilized as a leading class of effective antibiotics. They have been found to show activity against various diseases, prompting the scientific community to prioritise innovative protocols for their synthesis. The general and well-known synthetic strategy involves the classical Staudinger reaction exhibiting [2+2] cycloaddition reaction. However, the protocol utilizes stoichiometric excess of base for efficient product formation.

Objective

A smarter and more acceptable approach for the synthesis of β-lactams would be to reduce the excess base to a catalytic amount, furnishing a catalytic version of the Staudinger reaction. The modified version can eliminate the hazards arising out of excess use of the base, ultimately promoting the environmentally benign approach.

Methods

With this hypothesis, a base-catalyzed approach in dimethyl formamide (DMF) towards the synthesis of β-lactam Staudinger reaction has been endorsed under moderate reaction conditions.

Results

The scope of the substrates was explored with both electron-withdrawing and electron-releasing substitutions in the formation of β-lactam. The reduction of the base amount from stoichiometric to catalytic amount was justified by the involvement of DMF in generating the basic condition for the reaction.

Conclusion

It was hypothesized that the decomposition of DMF under the base-catalysed reaction condition can generate dimethylamine, which produces the required basic environment.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372335025241008043049
2024-10-17
2025-09-02
Loading full text...

Full text loading...

References

  1. LeiteT.H.O. SaraivaM.F. PinheiroA.C. de SouzaM.V.N. Monocyclic β-lactam: A review on synthesis and potential biological activities of a multitarget core.Mini Rev. Med. Chem.202020161653168210.2174/1389557520666200619114820 32560602
    [Google Scholar]
  2. FisherJ.F. MerouehS.O. MobasheryS. Bacterial resistance to β-lactam antibiotics: Compelling opportunism, compelling opportunity.Chem. Rev.2005105239542410.1021/cr030102i 15700950
    [Google Scholar]
  3. AndreottiD.B. Di ModugnoE. β-Lactam Antibiotics. Drug Discovery and Development.Hoboken, NJWiley2003607736
    [Google Scholar]
  4. BanikB.K. β-Lactams: Unique Structures of Distinction for Novel Molecules.Berlin, New YorkSpringer201310.1007/978‑3‑642‑33188‑6
    [Google Scholar]
  5. OjimaI. Recent Advances in the Chemistry of β-Lactam Antibiotics. The Organic Chemistry of β-Lactams. GeorgG.I. New YorkVCH Publishers1993197255
    [Google Scholar]
  6. FlemingA. Classics in infectious diseases: On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae.Rev. Infect. Dis.19802112913910.1093/clinids/2.1.1296994200
    [Google Scholar]
  7. LobanovskaM. PillaG. Penicillin’s discovery and antibiotic resistance: Lessons for the future?Biol. Med. (Aligarh)2017901135145 28356901
    [Google Scholar]
  8. GaynesR. The discovery of penicillin - New insights after more than 75 years of clinical use.Emerg. Infect. Dis.201723584985310.3201/eid2305.161556
    [Google Scholar]
  9. MascarettiO.A. BoschettiC.E. DanelonG.O. MataE.G. RoveriO.A. β-Lactam compounds. Inhibitors of transpeptidases, β-lactamases and elastases: A review.Curr. Med. Chem.19951644147010.2174/092986730106220216112824
    [Google Scholar]
  10. EdwardsP.D. BernsteinP.R. Synthetic inhibitors of elastase.Med. Res. Rev.199414212719410.1002/med.2610140202 8189835
    [Google Scholar]
  11. SandanayakaV.P. PrashadA.S. YangY. WilliamsonR.T. LinY.I. MansourT.S. Spirocyclopropyl β-lactams as mechanism-based inhibitors of serine β-lactamases. Synthesis by rhodium-catalyzed cyclopropanation of 6-diazopenicillanate sulfone.J. Med. Chem.200346132569257110.1021/jm034056q 12801220
    [Google Scholar]
  12. BuynakJ.D. RaoA.S. FodG.P. CarverC. CarverC. AdamG. GengB. BachmannB. ShobassyS. LackeyS. Inhibition of human leukocyte elastase. 4. Selection of a substituted cephalosporin (L-658,758) as a topical aerosol.J. Med. Chem.1997403423343310.1021/jm970351x 9341917
    [Google Scholar]
  13. BonneauP.R. HasaniF. PlouffeC. MalenfantE. LaPlanteS.R. GuseI. OgilvieW.W. PlanteR. DavidsonW.C. HopkinsJ.L. MorelockM.M. CordingleyM.G. DézielR. Inhibition of human cytomegalovirus protease by monocyclic β-lactam derivatives: Kinetic characterization using a fluorescent probe.J. Am. Chem. Soc.1999121132965297310.1021/ja983905+
    [Google Scholar]
  14. GouldI.M. BalA.M. New antibiotic agents in the pipeline and how they can help overcome microbial resistance.Virulence20134218519110.4161/viru.22507 23302792
    [Google Scholar]
  15. LaxminarayanR. HeymannD.L. Challenges of drug resistance in the developing world.BMJ20123442e156710.1136/bmj.e1567 22491075
    [Google Scholar]
  16. BrackettC.M. MelanderR.J. AnI.H. KrishnamurthyA. ThompsonR.J. CavanaghJ. MelanderC. Small-molecule suppression of β-lactam resistance in multidrug-resistant gram-negative pathogens.J. Med. Chem.201457177450745810.1021/jm501050e 25137478
    [Google Scholar]
  17. LeeM. HesekD. BlázquezB. LastochkinE. BoggessB. FisherJ.F. MobasheryS. Catalytic spectrum of the penicillin-binding protein 4 of Pseudomonas aeruginosa, a nexus for the induction of β-lactam antibiotic resistance.J. Am. Chem. Soc.2015137119020010.1021/ja5111706 25495032
    [Google Scholar]
  18. HuX.L. LiD. ShaoL. DongX. HeX.P. ChenG.R. ChenD. Triazole-linked glycolipids enhance the susceptibility of MRSA to β-lactam antibiotics.ACS Med. Chem. Lett.20156779379710.1021/acsmedchemlett.5b00142 26191368
    [Google Scholar]
  19. ChenJ. SunP. ZhangY. HuangC.H. Multiple roles of Cu(II) in catalyzing hydrolysis and oxidation of β-lactam antibiotics.Environ. Sci. Technol.20165022121561216510.1021/acs.est.6b02702 27934235
    [Google Scholar]
  20. YadavS. HazraR. SinghA. RamasastryS.S.V. Substituent-guided palladium-ene reaction for the synthesis of carbazoles and cyclopenta[b]indoles.Org. Lett.20192192983298710.1021/acs.orglett.9b00410 30985137
    [Google Scholar]
  21. KarlesaA. De VeraG.A.D. DoddM.C. ParkJ. EspinoM.P.B. LeeY. Ferrate(VI) oxidation of β-lactam antibiotics: Reaction kinetics, antibacterial activity changes, and transformation products.Environ. Sci. Technol.20144817103801038910.1021/es5028426 25073066
    [Google Scholar]
  22. EsmaeilpourM. SardarianA.R. JarrahpourA. EbrahimiE. JavidiJ. Synthesis and characterization of β-lactam functionalized superparamagnetic Fe3O4@SiO2 nanoparticles as an approach for improvement of antibacterial activity of β-lactams.RSC Adv.20166433764338710.1039/C6RA03634A
    [Google Scholar]
  23. YangK.W. ZhouY. GeY. ZhangY. Real-time activity monitoring of New Delhi metallo-β-lactamase-1 in living bacterial cells by UV-Vis spectroscopy.Chem. Commun. (Camb.)201753578014801710.1039/c7cc02774e 28664213
    [Google Scholar]
  24. YadavS. JayaramanN. Gradation control in the hydrodynamic diameters of mixed glycan-aglycan glycovesicles.Pure Appl. Chem.20239591001100810.1515/pac‑2023‑0216
    [Google Scholar]
  25. YadavS. NareshK. JayaramanN. Surface density of ligands controls in‐plane and aggregative modes of multivalent glycovesicle‐lectin recognitions.ChemBioChem202122213075308110.1002/cbic.202100321 34375491
    [Google Scholar]
  26. YadavS. RamasastryS.S.V. Palladium-catalysed annulative allylic alkylation for the synthesis of benzannulated heteroarenes.Chem. Commun. (Camb.)2021571778010.1039/D0CC06695H 33245742
    [Google Scholar]
  27. SuI.H. KoW.C. ShihC.H. YehF.H. SunY.N. ChenJ.C. ChenP.L. ChangH.C. Dielectrophoresis system for testing antimicrobial susceptibility of gram-negative bacteria to β-lactam antibiotics.Anal. Chem.20178984635464110.1021/acs.analchem.7b00220 28314101
    [Google Scholar]
  28. RamasastryS.S.V. KumarK. VivekanandT. SinghB. C(sp3)–H activation enabled by (η3-indolylmethyl)palladium complexes: Synthesis of monosubstituted tetrahydrocarbazoles.Synthesis202254494395210.1055/a‑1516‑7960
    [Google Scholar]
  29. JiaoL. LiangY. XuJ. Origin of the relative stereoselectivity of the β-lactam formation in the Staudinger reaction.J. Am. Chem. Soc.2006128186060606910.1021/ja056711k 16669675
    [Google Scholar]
  30. CossíoF.P. ArrietaA. SierraM.A. The mechanism of the ketene-imine (staudinger) reaction in its centennial: Still an unsolved problem?Acc. Chem. Res.200841892593610.1021/ar800033j 18662024
    [Google Scholar]
  31. DruryW.J. FerrarisD. CoxC. YoungB. LectkaT. A novel synthesis of α-amino acid derivatives through catalytic, enantioselective ene reactions of α-imino esters.J. Am. Chem. Soc.199812042110061100710.1021/ja982257r
    [Google Scholar]
  32. FerrarisD. DuddingT. YoungB. DruryW.J. LectkaT. Catalytic, enantioselective alkylations of N, O -acetals.J. Org. Chem.19996472168216910.1021/jo982421t
    [Google Scholar]
  33. TaggiA.E. HafezA.M. WackH. YoungB. DruryW.J. LectkaT. Catalytic, asymmetric synthesis of β-lactams.J. Am. Chem. Soc.2000122327831783210.1021/ja001754g 12047183
    [Google Scholar]
  34. NelsonS.G. PeelenT.J. WanZ. Catalytic asymmetric acyl halide−aldehyde cyclocondensations. A strategy for enantioselective catalyzed cross aldol reactions.J. Am. Chem. Soc.1999121419742974310.1021/ja992369y
    [Google Scholar]
  35. TidwellT.T. Ketenes.New YorkJohn Wiley & Sons1995
    [Google Scholar]
  36. KinugasaM. HashimotoS. The reactions of copper(I) phenylacetylide with nitrones.J. Chem. Soc. Chem. Commun.1972846610.1039/c39720000466
    [Google Scholar]
  37. DingL.K. IrwinW.J. Cis- and trans-Azetidin-2-ones from nitrones and copper acetylide.J. Chem. Soc., Perkin Trans. 11976222382238610.1039/p19760002382
    [Google Scholar]
  38. OkuroK. EnnaM. MiuraM. NomuraM. Copper-catalysed reaction of arylacetylenes with C,N-diarylnitrones.J. Chem. Soc. Chem. Commun.199313110710.1039/c39930001107
    [Google Scholar]
  39. Marco-ContellesJ. β-lactam synthesis by the Kinugasa reaction.Angew. Chem. Int. Ed.200443172198220010.1002/anie.200301730 15108126
    [Google Scholar]
  40. ZimmermanH.E. TraxlerM.D. The stereochemistry of the Ivanov and Reformatsky reactions. I.J. Am. Chem. Soc.19577981920192310.1021/ja01565a041
    [Google Scholar]
  41. DenmarkS.E. HenkeB.R. Investigations on transition-state geometry in the aldol condensation.J. Am. Chem. Soc.199111362177219410.1021/ja00006a042
    [Google Scholar]
  42. RuhlandB. BhandariA. GordonE.M. GallopM.A. Solid-supported combinatorial synthesis of structurally diverse β-lactams.J. Am. Chem. Soc.1996118125325410.1021/ja953322p
    [Google Scholar]
  43. FurmanB. ThürmerR. KałużaZ. ŁysekR. VoelterW. ChmielewskiM. Stereoselective solid-phase synthesis of -lactams - A novel cyclization/cleavage step towards 1-oxacephams.Angew. Chem. Int. Ed.199938811211123 25138516
    [Google Scholar]
  44. GordonK. BolgerM. KhanN. BalasubramanianS. A stereoselective synthesis of 1,3,4-substituted β-lactams from polymer-supported chiral oxazolidine aldehyde.Tetrahedron Lett.200041448621862510.1016/S0040‑4039(00)01516‑1
    [Google Scholar]
  45. SchunkS. EndersD. Solid-phase synthesis of β-lactams via the ester enolate-imine condensation route.Org. Lett.20002790791010.1021/ol0055465 10768183
    [Google Scholar]
  46. AnnunziataR. BenagliaM. CinquiniM. CozziF. Soluble-polymer-supported synthesis of β-lactams on a modified poly(ethylene glycol).Chemistry200061133138 10747397
    [Google Scholar]
  47. GordonK.H. BalasubramanianS. Exploring a benzyloxyaniline linker utilizing ceric ammonium nitrate (CAN) as a cleavage reagent: Solid-phase synthesis of N-unsubstituted beta-lactams and secondary amides.Org. Lett.200131535610.1021/ol006766l 11429870
    [Google Scholar]
  48. SchunkS. EndersD. Solid-phase synthesis of monocyclic β-lactam derivatives.J. Org. Chem.200267238034804210.1021/jo0261552 12423130
    [Google Scholar]
  49. DelpiccoloC.M.L. MataE.G. Stereoselective solid-phase synthesis of 3,4-substituted azetidinones as key intermediates for mono- and multicyclic β-lactam antibiotics and enzyme inhibitors.Tetrahedron Asymmetry200213990591010.1016/S0957‑4166(02)00214‑8
    [Google Scholar]
  50. PittsC.R. LectkaT. Chemical synthesis of β-lactams: Asymmetric catalysis and other recent advances.Chem. Rev.2014114167930795310.1021/cr4005549 24555548
    [Google Scholar]
  51. GhatakA. BeckerF.F. BanikB.K. Indium-mediated facile synthesis of 3-unsubstituted ferrocenyl β-lactams.Heterocycles2000532769277210.3987/COM‑00‑9019
    [Google Scholar]
  52. BanikB.K. GhatakA. BeckerF.F. Indium-mediated facile synthesis of 3-unsubstituted β-lactams.J. Chem. Soc., Perkin Trans. 12000142179218110.1039/b002833i
    [Google Scholar]
  53. BanikB.K. BeckerF.F. Unprecedented stereoselectivity in the Staudinger reaction with polycyclic aromatic imines.Tetrahedron Lett.200041346551655410.1016/S0040‑4039(00)01126‑6
    [Google Scholar]
  54. DasguptaS.K. BanikB.K. A new entry to N-unsubstituted β-lactams through a solid-phase approach.Tetrahedron Lett.200243519445944710.1016/S0040‑4039(02)02236‑0
    [Google Scholar]
  55. BanikB.K. SamajdarS. BanikI. A facile synthesis of oxazines by indium-induced reduction-rearrangement of the nitro β-lactams.Tetrahedron Lett.20034481699170110.1016/S0040‑4039(02)02823‑X
    [Google Scholar]
  56. BanikB.K. BanikI. HackfeldL. Cycloaddition of naphthalenyl and anthracenyl imines: Interesting aspects of the staudinger reaction.Heterocycles20035950550810.3987/COM‑02‑S76
    [Google Scholar]
  57. BanikB.K. AdlerD. NguyenP. SrivastavaN. A new bismuth nitrate-induced stereospecific glycosylation of alcohols.Heterocycles20036110110410.3987/COM‑03‑S63
    [Google Scholar]
  58. BanikB.K. BanikI. SamajdarS. WilsonM. Facile synthesis of biologically active heterocycles by indium-induced reactions of aromatic nitro compounds in aqueous ethanol.Heterocycles20036328329610.3987/COM‑03‑9914
    [Google Scholar]
  59. BanikI. BeckerF.F. BanikB.K. Stereoselective synthesis of β-lactams with polyaromatic imines: Entry to new and novel anticancer agents.J. Med. Chem.2003461121510.1021/jm0255825 12502355
    [Google Scholar]
  60. BanikB.K. BeckerF.F. BanikI. Synthesis of anticancer β-lactams: Mechanism of action.Bioorg. Med. Chem.200412102523252810.1016/j.bmc.2004.03.033 15110834
    [Google Scholar]
  61. MajeeS. Shilpa SaravM. BanikB.K. RayD. Recent Advances in the green synthesis of active N-heterocycles and their biological activities.Pharmaceuticals (Basel)202316687310.3390/ph16060873 37375820
    [Google Scholar]
  62. KumarV. SachdevaC. WaidhaK. SharmaS. RayD. Kumar KaushikN. SahaB. In vitro and in silico anti‐plasmodial evaluation of newly synthesized β‐carboline derivatives.ChemistrySelect20216215338534210.1002/slct.202101355
    [Google Scholar]
  63. NoelN.K. CongiuM. RamadanA.J. FearnS. McMeekinD.P. PatelJ.B. JohnstonM.B. WengerB. SnaithH.J. Unveiling the influence of ph on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics.Joule20171232834310.1016/j.joule.2017.09.009
    [Google Scholar]
  64. BanikB.K. SuhendraM. BanikI. BeckerF.F. Indium/ammonium chloride mediated selective reduction of aromatic nitro compounds: Practical synthesis of 6-aminochrysene.Synth. Commun.200030203745375410.1080/00397910008087002
    [Google Scholar]
  65. BanikB.K. BanikI. BeckerF.F. Indium/ammonim chloride-mediated selective reduction of aromatic nitro compounds: Ethyl 4-aminobenzoate.Org. Synth.20058118810.15227/orgsyn.081.0188
    [Google Scholar]
  66. BanikB.K. SamajdarS. BanikI. ZegrockaO. BeckerF.F. Indium-mediated stereoselective glycosylation of Alcohols.Heterocycles200155122723010.3987/COM‑00‑9100
    [Google Scholar]
  67. BanikB.K. BanikI. HackfeldL. BeckerF.F. Indium-mediated reductive cyclizations in aqueous ethanol: Highly efficient synthesis of heterocyclic compounds of biological interests.Heterocycles20015646747010.3987/COM‑00‑S(K)3
    [Google Scholar]
  68. BanikB.K. HackfeldL. BeckerF.F. Studies on the indium-mediated reduction of imines.Synth. Commun.200131101581158610.1081/SCC‑100104072
    [Google Scholar]
  69. BanikB.K. MukhopadhyayC. VenkatramanM.S. BeckerF.F. A convenient reduction of alkylated tosylmethyl isocyanides: Applications for the synthesis of natural products.Tetrahedron Lett.1998397243724710.1016/S0040‑4039(98)01555‑X
    [Google Scholar]
  70. BanikB.K. ZegrockaO. BanikI. HackfeldL. BeckerF.F. Samarium-induced iodine-catalyzed reduction of imines: Synthesis of amine derivatives.Tetrahedron Lett.199940376731673410.1016/S0040‑4039(99)01395‑7
    [Google Scholar]
  71. BanikB.K. ZegrockaO. BeckerF.F.J. Samarium-mediated iodine-catalysed reductive amination of the adamantyl methyl ketone.J. Chem. Res.20002000732132310.3184/030823400103167697
    [Google Scholar]
  72. GhatakA. BeckerF.F. BanikB.K. Samarium-induced alkyl halide mediated reductive coupling of ketones.Tetrahedron Lett.200041203793379610.1016/S0040‑4039(00)00510‑4
    [Google Scholar]
  73. BasuM.K. BeckerF.F. BanikB.K. Ultrasound-promoted samarium/ammonium chloride mediated reductive coupling of aromatic ketones.J. Chem. Res.20002000840640710.3184/030823400103167877
    [Google Scholar]
  74. BasuM.K. BanikB.K. Samarium-mediated Barbier reaction of carbonyl compounds.Tetrahedron Lett.200142218718910.1016/S0040‑4039(00)01961‑4
    [Google Scholar]
  75. BanikB.K. Samarium metal in organic synthesis.Eur. J. Org. Chem.200220021524312444
    [Google Scholar]
  76. SamajdarS. BanikB.K. Samarium-induced reductive dimerization of ketimines.Chem. Indian J.20031230
    [Google Scholar]
  77. BanikB.K. Samarium-induced reductive dimerization of aryl. Ketones in aqueous alcohol.Chem. Indian J.20031149
    [Google Scholar]
  78. BanikB.K. VenkatramanM.S. BanikI. BasuM.K. Samarium-induced reductive dimerization of methyl cinnamate: Synthesis of 2,8-diamino chrysene.Tetrahedron Lett.200445244737473910.1016/j.tetlet.2004.04.087
    [Google Scholar]
  79. BanikB.K. BanikI. SamajdarS. CuellarR. Samarium/N-bromosuccinimide-induced reductive dimerization of carbonyl compounds.Tetrahedron Lett.200546132319232210.1016/j.tetlet.2005.01.170
    [Google Scholar]
  80. BairK.W. AndrewsC.W. TuttleR.L. KnickV.C. CoryM. McKeeD.D. 2-[(Arylmethyl)amino]-2-methyl-1,3-propanediol DNA intercalators. An examination of the effects of aromatic ring variation on antitumor activity and DNA binding.J. Med. Chem.19913471983199010.1021/jm00111a010 2066971
    [Google Scholar]
  81. HarveyR.G. PatakiJ. CortezC. Di RaddoP. YangC.X. A new general synthesis of polycyclic aromatic compounds based on enamine chemistry.J. Org. Chem.19915631210121710.1021/jo00003a050
    [Google Scholar]
  82. HosseyniS. JarrahpourA. Recent advances in β-lactam synthesis.Org. Biomol. Chem.201816386840685210.1039/C8OB01833B 30209477
    [Google Scholar]
  83. BanikB.K. BanikI. BeckerF.F. Stereocontrolled synthesis of anticancer β-lactams via the Staudinger reaction.Bioorg. Med. Chem.200513113611362210.1016/j.bmc.2005.03.044
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372335025241008043049
Loading
/content/journals/cocat/10.2174/0122133372335025241008043049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test