Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

The Developed CuO-ZnO nanocomposite has been demonstrated as a new and environmentally friendly catalyst for one-pot multicomponent reaction between aldehydes, 2-naphthol and amides in the synthesis of 1-amidoalkyl-2-naphthols.

Methods

The new catalyst was synthesized by a ball-milling method by mixing a mixture of CuO and ZnO powder in various proportions and characterized by different spectroscopic methods such as powder X-ray diffraction (pXRD), Scanning Electron Microscopy (SEM), UV-Visible analysis, EDAX elemental analysis and mapping. The advantages of the devised protocol include a green approach, simple work-up procedures, avoidance of hazardous solvents, and good to excellent yields.

Results

Evaluation of the catalyst performance in the synthesis of some 1-amidoalkyl-2-naphthols showed presentable results. Sixteen derivatives were synthesized in desirable yield by our new method (-). CuO-ZnO nanocomposite as a safe and efficient catalyst could be reused up to 5 runs for the synthesis of naphthol derivatives without any significant decrease in its potency.

Conclusion

The High purity of the products and desirable yields are other points that make the present work more attractive.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372337451240923173335
2024-10-08
2025-09-02
Loading full text...

Full text loading...

References

  1. (a PinheiroA.V. HanD. ShihW.M. YanH. Challenges and opportunities for structural DNA nanotechnology.Nat. Nanotechnol.201161276377210.1038/nnano.2011.18722056726
    [Google Scholar]
  2. (b MahmoudiM. LynchI. EjtehadiM.R. MonopoliM.P. BombelliF.B. LaurentS. Protein-nanoparticle interactions: Opportunities and challenges.Chem. Rev.201111195610563710.1021/cr100440g21688848
    [Google Scholar]
  3. GrunesJ. ZhuJ. SomorjaiG.A. Catalysis and nanoscience.Chem. Commun. (Camb.)200318182257226010.1039/b305719b14518867
    [Google Scholar]
  4. AstrucD. LuF. AranzaesJ.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis.Angew. Chem. Int. Ed.200544487852787210.1002/anie.20050076616304662
    [Google Scholar]
  5. (a ShimizuK. SatoR. SatsumaA. Direct C-C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster.Angew. Chem. Int. Ed.200948223982398610.1002/anie.20090105719396891
    [Google Scholar]
  6. (b WithamC.A. HuangW. TsungC.K. KuhnJ.N. SomorjaiG.A. TosteF.D. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles.Nat. Chem.201021364110.1038/nchem.46821124378
    [Google Scholar]
  7. (a UgiI. DömlingA. HörlW. Multicomponent reactions in organic chemistry.Endeavour199418311512210.1016/S0160‑9327(05)80086‑9
    [Google Scholar]
  8. (b HulmeC. GoreV. “Multi-component reactions : Emerging chemistry in drug discovery” ‘from xylocain to crixivan’.Curr. Med. Chem.2003101518010.2174/092986703336860012570721
    [Google Scholar]
  9. (c SunderhausJ.D. DockendorffC. MartinS.F. Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds.Org. Lett.20079214223422610.1021/ol701835717887692
    [Google Scholar]
  10. (d ArmstrongR.W. CombsA.P. TempestP.A. BrownS.D. KeatingT.A. Multiple-component condensation strategies for combinatorial library synthesis.Acc. Chem. Res.199629312313110.1021/ar9502083
    [Google Scholar]
  11. (e Liéby-MullerF. ConstantieuxT. RodriguezJ. Multicomponent domino reaction from β-ketoamides: Highly efficient access to original polyfunctionalized 2,6-diazabicyclo[2.2.2]octane cores.J. Am. Chem. Soc.200512749171761717710.1021/ja055885z16332052
    [Google Scholar]
  12. (f HaurenaC. Le GallE. SengmanyS. MartensT. TroupelM. A straightforward three-component synthesis of α-amino esters containing a phenylalanine or a phenylglycine scaffold.J. Org. Chem.20107582645265010.1021/jo100232820302360
    [Google Scholar]
  13. CiocR.C. RuijterE. OrruR.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis.Green Chem.20141662958297510.1039/C4GC00013G
    [Google Scholar]
  14. DömlingA. WangW. WangK. Chemistry and biology of multicomponent reactions.Chem. Rev.201211263083313510.1021/cr100233r22435608
    [Google Scholar]
  15. EgorovaK.S. GordeevE.G. AnanikovV.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine.Chem. Rev.2017117107132718910.1021/acs.chemrev.6b0056228125212
    [Google Scholar]
  16. (a ShaterianH.R. YarahmadiH. GhashangM. An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as ‘drug like’ molecules for biological screening.Bioorg. Med. Chem. Lett.200818278879210.1016/j.bmcl.2007.11.03518053712
    [Google Scholar]
  17. (b SeebachD. MatthewsJ.L. β-Peptides: A surprise at every turn.Chem. Commun. (Camb.)1997212015202210.1039/a704933a
    [Google Scholar]
  18. (cDingermann, T.; Steinhilber, D.; Folkers, G., Eds. Molecular Biology in Medicinal Chemistry; Methods and Principles in Medicinal Chemistry, Vol. 21Wiley-VCHWeinheim, Germany20032110.1002/3527601667
    [Google Scholar]
  19. KhodaeiM. KhosropourA. MoghanianH. A simple and efficient procedure for the synthesis of amidoalkyl naphthols by p-TSA in solution or under solvent-free conditions.Synlett20062006691692010.1055/s‑2006‑939034
    [Google Scholar]
  20. NandiG.C. SamaiS. KumarR. SinghM.S. Atom-efficient and environment-friendly multicomponent synthesis of amidoalkyl naphthols catalyzed by P2O5.Tetrahedron Lett.200950517220722210.1016/j.tetlet.2009.10.055
    [Google Scholar]
  21. SinghR.K. DuvediR. Environment-friendly green chemistry approaches for an efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by tannic acid.Arab. J. Chem.2018111919810.1016/j.arabjc.2014.08.022
    [Google Scholar]
  22. H. R. Shaterian, H. Yarahmadi and M. Ghashang, An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as ‘drug like’ molecules for biological screening.Bioorg. Med. Chem. Lett.20081878879210.1016/j.bmcl.2007.11.035
    [Google Scholar]
  23. KantevariS. VuppalapatiS.V.N. NagarapuL. Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions.Catal. Commun.20078111857186210.1016/j.catcom.2007.02.022
    [Google Scholar]
  24. ShaterianH.R. YarahmadiH. A modified reaction for the preparation of amidoalkyl naphthols.Tetrahedron Lett.20084981297130010.1016/j.tetlet.2007.12.093
    [Google Scholar]
  25. DasB. LaxminarayanaK. RavikanthB. RaoB.R. Iodine catalyzed preparation of amidoalkyl naphthols in solution and under solvent-free conditions.J. Mol. Catal. Chem.2007261218018310.1016/j.molcata.2006.07.077
    [Google Scholar]
  26. SafariJ. ZarnegarZ. A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols.J. Mol. Catal. Chem.201337926927610.1016/j.molcata.2013.08.028
    [Google Scholar]
  27. KunduD. MajeeA. HajraA. Zwitterionic-type molten salt: An efficient mild organocatalyst for synthesis of 2-amidoalkyl and 2-carbamatoalkyl naphthols.Catal. Commun.201011141157115910.1016/j.catcom.2010.06.001
    [Google Scholar]
  28. KumarA. GuptaM.K. KumarM. Micelle promoted supramolecular carbohydrate scaffold-catalyzed multicomponent synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-one and amidoalkyl naphthols derivatives in aqueous medium.RSC Advances20122197371737610.1039/c2ra20848b
    [Google Scholar]
  29. DavoodniaA. MahjoobinR. Tavakoli-HoseiniN. A facile, green, one-pot synthesis of amidoalkyl naphthols under solvent-free conditions catalyzed by a carbon-based solid acid.Chin. J. Catal.201435449049510.1016/S1872‑2067(14)60011‑5
    [Google Scholar]
  30. HajjamiM. GhorbaniF. BakhtiF. MCM-41-N-propylsulfamic acid: An efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphtols.Appl. Catal. A Gen.201447030331010.1016/j.apcata.2013.11.002
    [Google Scholar]
  31. ShaterianH.R. YarahmadiH. GhashangM. Silica supported perchloric acid (HClO4–SiO2): An efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols.Tetrahedron20086471263126910.1016/j.tet.2007.11.070
    [Google Scholar]
  32. SupalA.R. GokaviG.S. An environmentally benign three component one-pot synthesis of amidoalkyl naphthols using H4SiW12O40 as a recyclable catalyst.J. Chem. Sci.2010122218919210.1007/s12039‑010‑0021‑z
    [Google Scholar]
  33. SamantarayS. HotaG. MishraB.G. Physicochemical characterization and catalytic applications of MoO3–ZrO2 composite oxides towards one pot synthesis of amidoalkyl naphthols.Catal. Commun.201112131255125910.1016/j.catcom.2011.04.014
    [Google Scholar]
  34. NagarapuL. BaseeruddinM. ApuriS. KantevariS. Three component, one-pot synthesis of amidoalkyl naphthols using polyphosphate ester under solvent-free conditions.Catal. Commun.200781729173410.1016/j.catcom.2007.02.008
    [Google Scholar]
  35. (a RekungeD.S. BendaleH.S. ChaturbhujG.U. Activated Fuller’s earth: An efficient, inexpensive, environmentally benign, and reusable catalyst for rapid solvent-free synthesis of 1-(amido/amino)alkyl-2-naphthols.Monatsh. Chem.2018149111991199710.1007/s00706‑018‑2247‑2
    [Google Scholar]
  36. (b NasresfahaniZ. KassaeeM.Z. EidiE. Homopiperazine sulfamic acid functionalized mesoporous silica nanoparticles (MSNs-HPZ-SO 3 H) as an efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols.New J. Chem.20164054720472610.1039/C5NJ02974K
    [Google Scholar]
  37. SafariJ. ZarnegarZ. Synthesis of amidoalkyl naphthols by nano-Fe3O4 modified carbon nanotubes via a multicomponent strategy in the presence of microwaves.J. Ind. Eng. Chem.20142042292229710.1016/j.jiec.2013.10.004
    [Google Scholar]
  38. (a DattaB. PashaM.A. Cavitational chemistry: A mild and efficient multi-component synthesis of amidoalkyl-2-naphthols using reusable silica chloride as catalyst under sonic conditions.Ultrason. Sonochem.201118262462810.1016/j.ultsonch.2010.09.01121036092
    [Google Scholar]
  39. (b SafariJ. ZarnegarZ. Ultrasound mediation for one-pot multi-component synthesis of amidoalkyl naphthols using new magnetic nanoparticles modified by ionic liquids.Ultrason. Sonochem.20142131132113910.1016/j.ultsonch.2013.10.02424275534
    [Google Scholar]
  40. GongK. WangH. RenX. WangY. ChenJ. β-Cyclodextrin-butane sulfonic acid: An efficient and reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions.Green Chem.20151753141314710.1039/C5GC00384A
    [Google Scholar]
  41. DasV.K. BorahM. ThakurA.J. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: A greener “nanoparticle-catalyzed organic synthesis enhancement” approach.J. Org. Chem.20137873361336610.1021/jo302682k23472638
    [Google Scholar]
  42. (a VadiveluM. SampathS. MuthuK. KarthikeyanK. PraveenC. Mechanochemistry enabled construction of isoxazole skeleton via 1,3-dipolar cycloaddition of nitrile oxides with alkynes catalyzed by CuONPs/DABCO under ball-milling conditions.Adv. Synth. Catal.2021362214941495210.1002/adsc.202100730
    [Google Scholar]
  43. (b VadiveluM. SugirdhaS. DheenkumarP. ArunY. KarthikeyanK. PraveenC. Solvent-free implementation of two dissimilar reactions using recyclable CuO nanoparticles under ball-milling conditions: Synthesis of new oxindole-triazole pharmacophores.Green Chem.201719153601361010.1039/C7GC01284E
    [Google Scholar]
  44. (a PrasadV. KaleR.R. MishraB.B. KumarD. TiwariV.K. Diacetoxyiodobenzene mediated one-pot synthesis of diverse carboxamides from aldehydes.Org. Lett.201214122936293910.1021/ol301231522630055
    [Google Scholar]
  45. (b ManeV. PandeyJ. AyyagariN. DeyC. KaleR. NamboothiriI.N.N. Synthesis of hydrazinoheterocycles from Morita–Baylis–Hillman adducts of nitroalkenes with azodicarboxylates.Org. Biomol. Chem.20161482427243810.1039/C5OB02656C26810956
    [Google Scholar]
  46. (c HosamaniB. KaleR.R. SharmaH. WachtelE. KesselmanE. DaninoD. FriedmanN. ShevesM. NamboothiriI.N.N. PatchornikG. Membrane protein crystallization in micelles conjugated by nucleoside base-pairing: A different concept.J. Struct. Biol.2016195337938610.1016/j.jsb.2016.06.02127368128
    [Google Scholar]
  47. (d DhandapaniG. NairD.K. KaleR.R. WachtelE. NamboothiriI.N.N. PatchornikG. Role of amphiphilic [metal:chelator] complexes in a non-chromatographic antibody purification platform.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2019113312183010.1016/j.jchromb.2019.12183031704445
    [Google Scholar]
  48. (e KaleR.R. PrasadV. MohapatraP.P. TiwariV.K. Recent developments in benzotriazole methodology for construction of pharmacologically important heterocyclic skeletons.Monatsh. Chem.2010141111159118210.1007/s00706‑010‑0378‑1
    [Google Scholar]
  49. (f KaleR.R. PrasadV. HussainH.A. TiwariV.K. Facile route for N 1-aryl benzotriazoles from diazoamino arynes via CuI-mediated intramolecular N-arylation.Tetrahedron Lett.201051435740574310.1016/j.tetlet.2010.08.08332287442
    [Google Scholar]
  50. (g PrasadV. KaleR. KumarV. TiwariV. Carbohydrate chemistry and room temperature ionic liquids (RTILs): Recent trends, opportunities, challenges and future perspectives.Curr. Org. Synth.20107550653110.2174/157017910792246063
    [Google Scholar]
  51. (h KaleR.R. PrasadV. TiwariV.K. Facile route for novel quinazolinone-fused azauracils through cyclodesulfurization of thioquinazolinones.Synlett20112195198
    [Google Scholar]
  52. (i TiwariV.K. KaleR.R. MishraB.B. SinghA. A facile one-pot MW approach for N3-(heteroaryl-2′-yl)- 2-thioxo-2,3-dihydro-1H-quinazolin-4-one.ARKIVOC2008200814273610.3998/ark.5550190.0009.e04
    [Google Scholar]
  53. (j JadhavN.K. KaleB.R. AlamM.S. GaikwadV.B. PrasadV. KaleR.R. Synthesis and functionalization of coumarin-pyrazole scaffold: Recent development, challenges, and opportunities.Curr. Org. Synth.202118768571010.2174/157017941866621030112232233645484
    [Google Scholar]
  54. AshokC.H. Venkateswara RaoK. ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application.Superlattices Microstruct.201476465410.1016/j.spmi.2014.09.029
    [Google Scholar]
  55. GhodratiK. FarrokhiA. KaramiC. HamidiZ. Nano silica sulfuric acid an efficient and recoverable heterogeneous catalyst for the preparation of amidoalkyl naphthols under solvent-free conditions.Synth. React. Inorg. Met.-Org. Nano-Met. Chem.2015451152010.1080/15533174.2013.809746
    [Google Scholar]
  56. HajjamiM. BakhtiF. GhiasbeygiE. Incredible role of glycerol in multicomponent synthesis of 2,3-Dihydroquinazoline-4(1H)-ones and 1-Amidoalkyl-2-naphthols.Croat. Chem. Acta201588219720510.5562/cca2637
    [Google Scholar]
  57. KiasatA.R. Hemat-AlianL. SaghanezhadS.J. Nano Al2O3: An efficient and recyclable nanocatalyst for the one-pot preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions.Res. Chem. Intermed.201642291592210.1007/s11164‑015‑2062‑x
    [Google Scholar]
  58. ZaliA. ShokrolahiA. Nano-sulfated zirconia as an efficient, recyclable and environmentally benign catalyst for one-pot three component synthesis of amidoalkyl naphthols.Chin. Chem. Lett.201223326927210.1016/j.cclet.2011.12.002
    [Google Scholar]
  59. ZareA. HasaninejadA. RostamiE. Moosavi-ZareA.R. PishahangN. RoshankarM. KhedriF. KhedriM. An efficient solvent‐free protocol for the synthesis of 1‐amidoalkyl‐2‐naphthols using silica‐supported molybdatophosphoric acid.J. Chem.2010741162116910.1155/2010/512392
    [Google Scholar]
  60. SrihariG. NagarajuM. MurthyM.M. Solvent-free one-pot synthesis of amidoalkyl naphthols catalyzed by silica sulfuric acid.Helv. Chim. Acta20079081497150410.1002/hlca.200790156
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372337451240923173335
Loading
/content/journals/cocat/10.2174/0122133372337451240923173335
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test