Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

A novel immobilized imidazolium type ionic liquid was synthesized using poly(ethylene glycol) (PEG) functionalized magnetic multi-walled carbon nanotubes. This immobilized ionic liquid (MMWCNTs-PEG-IL) was characterized by FT-IR, VSM, XRD, FE-SEM and EDX analysis.

Methods

Then, it was used as a magnetic catalyst in a three-component reaction to yield tetrahydrobenzo[b]pyran derivatives. First, optimized reaction conditions were investigated. A mixture of containing dimedone (1 mmol), malononitrile (1 mmol), benzaldehyde (1.2 mmol) and MMWCNTs-PEG-IL (0.03 g) in HO/EtOH (5 mL) was stirred at 70°C. After completion of the reaction, the mixture was cooled.

Results

Then, an external magnet was used to separate the magnetic catalyst. This method has many advantages including high reaction yields, high TOFs, using non-toxic solvents, easy handling of catalyst, simple separation of catalyst from reaction medium and short reaction times.

Conclusion

Also, the reusability of the magnetic catalyst has been investigated in 7 runs without serious loss of reaction yield.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372334852240909074945
2024-09-13
2025-10-28
Loading full text...

Full text loading...

References

  1. DinI.U. AlharthiA.I. AlotaibiM.A. NaeemA. SaeedT. NassarA.A. Deciphering the role of CNT for methanol fuel synthesis by CO2 hydrogenation over Cu/CNT catalysts.Chem. Eng. Res. Des.202319411512010.1016/j.cherd.2023.04.034
    [Google Scholar]
  2. JiangC. AraiaA. BalyanS. RobinsonB. BrownS. CaiolaA. HuJ. DouJ. NealL.M. LiF. Kinetic study of Ni-M/CNT catalyst in methane decomposition under microwave irradiation.Appl. Catal. B202434012325510.1016/j.apcatb.2023.123255
    [Google Scholar]
  3. YahyazadehA. SerajS. BoaheneP. DalaiA.K. Formulation of KMoFe/CNTs catalyst for production of light Olefins and liquid hydrocarbons via Fischer-Tropsch synthesis: Fixed-bed reactor simulation.Chem. Eng. Sci.202328211930010.1016/j.ces.2023.119300
    [Google Scholar]
  4. TianW. BaoY. QinG. LiuL. ZhengX. Influence mechanism of functionalization of CNTs on the thermal transport property of their nanofluids.J. Mol. Liq.202339212343310.1016/j.molliq.2023.123433
    [Google Scholar]
  5. TsengC. LiuY.L. Poly(vinyl alcohol)/carbon nanotube (CNT) membranes for pervaporation dehydration: The effect of functionalization agents for CNT on pervaporation performance.J. Membr. Sci.202366812118510.1016/j.memsci.2022.121185
    [Google Scholar]
  6. HeidaryZ. RamezaniS.R. MojraA. Exploring the benefits of functionally graded carbon nanotubes (FG-CNTs) as a platform for targeted drug delivery systems.Comput. Methods Programs Biomed.202323810760310.1016/j.cmpb.2023.10760337230049
    [Google Scholar]
  7. RakhtshahJ. SalehzadehS. Multi-wall carbon nanotube supported Co (II) Schiff base complex: An efficient and highly reusable catalyst for synthesis of 1-amidoalkyl-2-naphthol and tetrahydrobenzo [b] pyran derivatives.Appl. Organomet. Chem.2017313690369810.1002/aoc.3690
    [Google Scholar]
  8. PalS. SahooM. VeettilV.T. TadiK.K. GhoshA. SatyamP. BirojuR.K. AjayanP.M. NayakS.K. NarayananT.N. Covalently connected carbon nanotubes as electrocatalysts for hydrogen evolution reaction through band engineering.ACS Catal.2017742676268410.1021/acscatal.7b00032
    [Google Scholar]
  9. LiangL. XieW. FangS. HeF. YinB. TliliC. WangD. QiuS. LiQ. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions.J. Mater. Chem. C Mater. Opt. Electron. Devices2017544113391136810.1039/C7TC04390B
    [Google Scholar]
  10. CalboJ. López-MorenoA. de JuanA. ComerJ. OrtíE. PérezE.M. Understanding noncovalent interactions of small molecules with carbon nanotubes.Chemistry20172352129091291610.1002/chem.20170275628685912
    [Google Scholar]
  11. HajianR. AlghourZ. Selective oxidation of alcohols with H 2 O 2 catalyzed by Zinc polyoxometalate immobilized on multi-wall carbon nanotubes modified with ionic liquid.Chin. Chem. Lett.201728597197510.1016/j.cclet.2016.12.003
    [Google Scholar]
  12. Al-SaeediS.I. Abdel-RahmanL.H. Abu-DiefA.M. Abdel-FatahS.M. AlotaibiT.M. AlsalmeA.M. NafadyA. Catalytic oxidation of benzyl alcohol using nanosized Cu/Ni schiff-base complexes and their metal oxide nanoparticles.Catalysts201881045245910.3390/catal8100452
    [Google Scholar]
  13. SharmaP. SharmaS. KumarH. Introduction to ionic liquids, applications and micellization behaviour in presence of different additives.J. Mol. Liq.202312344710.1016/j.molliq.2023.123447
    [Google Scholar]
  14. MadgulaK. DanduS. KasulaS. HaladyP. Microwave synthesized ionic liquids as green catalysts for the synthesis of benzimidazoles: Spectral and computational studies for potential anticancer activity.Inorg. Chem. Commun.202213810921810.1016/j.inoche.2022.109218
    [Google Scholar]
  15. SadjadiS. KoohestaniF. Pd on imidazolium ionic liquid modified halloysite: A potent catalyst for the hydrogenation of nitro-compounds under mild reaction condition.Inorg. Chem. Commun.202213710920510.1016/j.inoche.2022.109205
    [Google Scholar]
  16. ValkenbergM.H. deCastroC. HölderichW.F. Immobilisation of ionic liquids on solid supports.Green Chem.200242889310.1039/b107946h
    [Google Scholar]
  17. RosliN.A.H. LohK.S. WongW.Y. YunusR.M. LeeT.K. AhmadA. ChongS.T. Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids.Int. J. Mol. Sci.202021263210.3390/ijms2102063231963607
    [Google Scholar]
  18. FengH. HeC. MaG. ZhianiR. Imidazolium ionic liquid functionalized nano dendritic CuAl2O4 for visible light-driven photocatalytic degradation of dye pollutant.Inorg. Chem. Commun.202113210881810.1016/j.inoche.2021.108818
    [Google Scholar]
  19. BesharatiZ. MalmirM. HeraviM.M. Cu2O NPs immobilized on Montmorilonite-K10 decorated by acidic-ionic liquid: An environmentally friendly, heterogeneous and recyclable catalyst for the synthesis of benzopyranopyrimidines.Inorg. Chem. Commun.202214310981310.1016/j.inoche.2022.109813
    [Google Scholar]
  20. HuangZ. LiuS. GengQ. ZengH. LiY. XuS. SadeghzadehS.M. Sustainable production of biodiesel using nanocluster giant lemon nanopolyoxomolybdate supported on carbon nanotubes by ionic liquid.Inorg. Chem. Commun.202214210971410.1016/j.inoche.2022.109714
    [Google Scholar]
  21. SadjadiS. Magnetic (poly) ionic liquids: A promising platform for green chemistry.J. Mol. Liq.202132311499410.1016/j.molliq.2020.114994
    [Google Scholar]
  22. SuoH. XuL. XueY. QiuX. HuangH. HuY. Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance.Carbohydr. Polym.202023411591410.1016/j.carbpol.2020.11591432070532
    [Google Scholar]
  23. KhoshnoudA. PouraliA.R. Three-component synthesis of 1, 4-disubstituted 1, 2, 3-triazoles using a novel and efficient nano Alumina based Cu (II) catalyst.Org. Prep. Proced. Int.202153650951710.1080/00304948.2021.1971475
    [Google Scholar]
  24. KhoshnoudA. PouraliA.R. BehniafarH. A novel and efficient nano alumina based Cu (II) catalyst for three- component synthesis of 5-substituted-1h-tetrazoles.Lett. Org. Chem.202219540841710.2174/1570178618666210202155047
    [Google Scholar]
  25. AdibianF. PouraliA.R. MalekiB. BaghayeriM. AmiriA. One‐pot synthesis of dihydro-1H-indeno[1,2-b] pyridines and tetrahydrobenzo[b] pyran derivatives using a new and efficient nanocomposite catalyst based on N‐butylsulfonate‐functionalized MMWCNTs-D-NH2.Polyhedron202017511417910.1016/j.poly.2019.114179
    [Google Scholar]
  26. PouraliA.R. Cheraghi-ParvinM. Omidi-GhallemohamadiM. Synthesis of Cu (II) Schiff base complex supported on multi-wall carbon nanotube for the oxidation of benzyl alcohols.Inorg. Chem. Commun.202315511109910.1016/j.inoche.2023.111099
    [Google Scholar]
  27. LiY. DuB. WangX. ShiD. TuS. Synthesis of 2‐amino‐4‐aryl‐7,7‐dimethyl‐5‐oxo‐4 H ‐5,6,7,8‐tetrahydrobenzo[b]pyran derivatives in ionic liquid medium.J. Heterocycl. Chem.200643368568810.1002/jhet.5570430323
    [Google Scholar]
  28. WenL.R. XieH.Y. LiM. A basic ionic liquid catalyzed reaction of benzothiazole, aldehydes, and 5,5‐dimethyl‐1,3‐cyclohexanedione: Efficient synthesis of tetrahydrobenzo[b]pyrans.J. Heterocycl. Chem.200946595495910.1002/jhet.183
    [Google Scholar]
  29. BonsignoreL. LoyG. SecciD. CalignanoA. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives.Eur. J. Med. Chem.199328651752010.1016/0223‑5234(93)90020‑F
    [Google Scholar]
  30. HiremathP.B. KantharajuK. An efficient and facile synthesis of 2‐Amino‐4 H ‐pyrans &Tetrahydrobenzo[b]pyrans Catalysed by WEMFSA at room temperature.ChemistrySelect2020561896190610.1002/slct.201904336
    [Google Scholar]
  31. TanH.T. ChenY. ZhouC. JiaX. ZhuJ. ChenJ. RuiX. YanQ. YangY. Palladium nanoparticles supported on manganese oxide–CNT composites for solvent-free aerobic oxidation of alcohols: Tuning the properties of Pd active sites using MnOx.Appl. Catal. B2012119-12016617410.1016/j.apcatb.2012.02.024
    [Google Scholar]
  32. MohammadiA.A. AsghariganjehM.R. HadadzahmatkeshA. Synthesis of tetrahydrobenzo[b]pyran under catalysis of NH4Al(SO4)2·12H2O (Alum).Arab. J. Chem.201710S2213S221610.1016/j.arabjc.2013.07.055
    [Google Scholar]
  33. NasseriM.A. SadeghzadehS.M. Magnetic nanoparticle supported hyperbranched polyglycerol catalysts for synthesis of 4H-benzo[b]pyran.Monatsh. Chem.2013144101551155810.1007/s00706‑013‑1026‑326166875
    [Google Scholar]
  34. MalekiB. AshrafiS.S. Nano α-Al2 O3 supported ammonium dihydrogen phosphate (NH 4 H 2 PO 4 /Al 2 O 3 ): preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives.RSC Advances2014481428734289110.1039/C4RA07813F
    [Google Scholar]
  35. MuhammadS. AliF.I. JavedM.N. WasimA.A. BariA. RafiqueF. IlyasM.A. RiazK. MahmoodS.J. AhmedA. HashmiI.A. Effect of supramolecular polymeric aggregation in room temperature ionic liquids (RTILs) on catalytic activity in the synthesis of 4H-chromene derivatives and Knoevenagel condensation.J. Mol. Liq.202132211450310.1016/j.molliq.2020.114503
    [Google Scholar]
  36. KiyaniH. GhorbaniF. Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates.J. Saudi Chem. Soc.201418568970110.1016/j.jscs.2014.02.004
    [Google Scholar]
  37. KhalediS. RajabiM. MomeniA.R. SamimiH.A. AlbadiJ. Preparation and characterization of Ca-modified Co/Al2O3 and its catalytic application in the one-pot synthesis of 4H-pyrans.Res. Chem. Intermed.20204663109312310.1007/s11164‑020‑04139‑2
    [Google Scholar]
  38. SabithaG. ArundhathiK. SudhakarK. SastryB.S. YadavJ.S. Cerium (III) chloride–catalyzed one-pot synthesis of tetrahydrobenzo [b] pyrans.Synth. Commun.200939343344210.1080/00397910802378399
    [Google Scholar]
  39. ChenL. BaoS. YangL. ZhangX. LiB. LiY. Cheap thiamine hydrochloride as efficient catalyst for synthesis of 4H-benzo[b]pyrans in aqueous ethanol.Res. Chem. Intermed.20174373883389110.1007/s11164‑016‑2843‑x
    [Google Scholar]
  40. RajputJ.K. KaurG. Synthesis and applications of CoFe 2 O 4 nanoparticles for multicomponent reactions.Catal. Sci. Technol.20144114215110.1039/C3CY00594A
    [Google Scholar]
  41. BhattacharyyaP. PradhanK. PaulS. DasA.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media.Tetrahedron Lett.201253354687469110.1016/j.tetlet.2012.06.086
    [Google Scholar]
  42. MontazeriN. NoghaniT. GhorchibeigyM. ZoghiR. Pentafluoropropionic acid: An efficient and metal-free catalyst for the one-pot synthesis of tetrahydrobenzo [b] pyran derivatives.J. Chem.201420141510.1155/2014/596171
    [Google Scholar]
  43. LianX.Z. HuangY. LiY.Q. ZhengW.J. A green synthesis of tetrahydrobenzo [b] pyran derivatives through three-component condensation using N-methylimidazole as organocatalyst.Monatsh. Chem.2008139212913110.1007/s00706‑007‑0706‑2
    [Google Scholar]
  44. JoshiV.M. MagarR.L. ThroatP.B. TekaleS.U. PatilB.R. KaleM.P. PawarR.P. Novel one-pot synthesis of 4H-chromene derivatives using amino functionalized silica gel catalyst.Chin. Chem. Lett.201425345545810.1016/j.cclet.2013.12.016
    [Google Scholar]
  45. ShahbaziF. AmaniK. Synthesis, characterization and heterogeneous catalytic activity of diamine-modified silica-coated magnetite-polyoxometalate nanoparticles as a novel magnetically-recoverable nanocatalyst.Catal. Commun.201455576410.1016/j.catcom.2014.06.006
    [Google Scholar]
  46. MohammadiP. SheibaniH. Synthesis and characterization of Fe3O4@SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes in water.Mater. Chem. Phys.201922822814014610.1016/j.matchemphys.2018.11.058
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372334852240909074945
Loading
/content/journals/cocat/10.2174/0122133372334852240909074945
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test