Current Organic Chemistry - Volume 28, Issue 6, 2024
Volume 28, Issue 6, 2024
-
-
A Review on Folklore Uses, Phytoconstituents and Pharmacological Activities of the Genus Berberis
Authors: Zulfa Nooreen, Awani K. Rai, Poonam Jaisal, Fariha Sumayya, Ankita Wal and Nasir A. SiddiqueGenus berberis, an evergreen shrub of about 500 plant species found in subtropical and temperate regions but only some of them are investigated and evaluated for their phytochemistry and bioactivity. These plants are spread worldwide and help in the nourishment of humans and animals. Almost all parts of the plant are investigated for pharmacological and phytochemical purposes, including, roots, fruits, stems, buds, seeds, branches, flowers, leaves, and whole plant. Rasaut, an extract of either the stem or root of Berberis aristata is mentioned in the ancient Ayurvedic literature of India for treating indolent ulcers and eye disorders, and B. vulgaris is still used to treat malaria in North America. They have many medicinal properties and compounds that are bioactive like berberine. Berberine possesses anticancer, antimicrobial, and other activities. The plants contain a number of alkaloids, tannins, flavonoids, carotenoids, terpenoids, and other categories of chemical constituents. The alkaloidal compounds are isolated and evaluated for various activities and are found to be active. The researchers are continuously working to get novel exploration regarding the genus Berberis . Here in the review, traditional and folkloric uses of the genus were also described. Apart from this, they possess numerous activities like anticancer, antimicrobial, antioxidant, anti-inflammatory, antidiabetic, antiulcer, antiviral and, wound healing and many more. These activities were authenticated by in-vitro and in-vivo methods. The aim of this review is to update and systematically arrange information in one platform. In this review, we extracted the current information from Pubmed, Googlescolar, Scifinder and many more databases.
-
-
-
Investigation of the Role of Zirconia and Zirconia-containing Systems as Catalysts in Organic Transformations
Authors: Kobra Nikoofar, Negin Shaddel and Fatemehsadat JoziThis review article discusses the applications of zirconia as a catalyst to promote various organic reactions and transformations. The article is subdivided into four main parts: 1) introduction, which consists of the history and introduction of zirconia, elaboration of its synthetic procedures, its application in various fields of science and technology with specified examples, and previously published review articles on ZrO2; 2) applications of sole zirconia and zirconia-based catalytic systems to promote various organic transformations, subdivided into oxidation reactions, hydrolysis and methanation reactions, reduction and hydrogenation reactions, furfural and synthesis of its derivatives, and miscellaneous reactions; 3) applications of sole zirconia and nano-sized ZrO2 to catalyze organic reactions and MCRs, classified as two-component reactions, three-component reactions (by a glance at pseudo 3-CRs), and four-component reactions (by a glance at pseudo 4-CRs); and 4) applications of zirconia-containing catalytic systems to catalyze organic transformations and MCRs classified as twocomponent reactions, three-component reactions, and four-component and higher-component reactions. According to investigations, some of the zirconia-based catalysts exist in nano-sized systems. Moreover, the literature survey contains publications up to the end of July 2023.
-
-
-
Cobalt(III)–porphyrin Complex as an Efficient and Recyclable Homogeneous Catalyst for the Synthesis of Tetrahydro-2-oxa-4-thia-diazapentalen-5-one Derivatives in Aqueous Medium
In this study, we successfully synthesized the CoPHrn complex as an efficient and recyclable catalyst for the one-pot, three-component reaction of aromatic aldehydes, 2,4-thiazolidenedione, and hydroxylamine hydrochloride, leading to the synthesis of tetrahydro- 2-oxa-4-thia-diazapentalen-5-one derivatives under environmentally friendly conditions. The structures of the newly formed compounds were determined through elemental and spectral analyses. This methodology offers significant advantages, including its ecofriendliness, cost-effectiveness, operational simplicity, extensive reusability, and applicability, as well as the easy recovery of the catalyst using straightforward methods. Additionally, a series of tetrahydro-2-oxa-4-thia-diazapentalen-5-one derivatives were successfully synthesized. Notably, this novel procedure demonstrates remarkable benefits in terms of safety, simplicity, stability, mild reaction conditions, short reaction times, excellent yields, and high purity, all achieved without the use of hazardous solvents.
-
-
-
Synthesis, Molecular Docking, Anti-cholinesterase Activity, Theoretical Investigation, and Catalytic Effect of New Encumbered N-benzyladamantyl Substituted Imidazolidin-2-ylidene Carbene Pd-PEPPSI Complexes
This study aimed to describe the preparation of novel PEPPSI type Pd(II)-NHC complexes bearing N-benzyladamantyl substituted imidazolidin-2-ylidene group. All synthesized compounds were characterized by using 1H-NMR and 13C-NMR spectroscopies, FTIR, and elemental analysis techniques. One of the objectives of this study was the synthesis of Pd-NHC complexes with AChE/BChE inhibition activities. Among all the tested compounds, complexes 4b and 4c were found to have the most high potential AChE and BChE inhibitory activities with IC50 values of 21.57 ± 0.23 Mm and 15.78 ± 0.39 Mm, respectively. Conducting molecular docking studies helped us in gathering crucial information about the main binding interactions of inhibitors and enzymes, and the results were in agreement with the biological evaluation. The synthesized Pd-NHC complexes were employed for catalyzing the direct C2- and C5-arylation reaction between aryl (hetero) halide and a variety of heterocyclic systems. In both cases (C2 and C5-arylation), Pd-NHC complexes catalysts provided access to the arylated heterocycles in good to high yields in the presence of 1 mol% catalyst loading at 150°C. The DFT theoretical investigation showed that the Pd-NHC complexes were of ML2X2 type, where the the Pd(II) cation had a square planar geometry. The interaction energies obtained by energy decomposition analysis (EDA) demonstrated that the 4d and 4e complexes were more stable in the presence of more methyl substituents. The chemical indicators demonstrated that the less stable 4c complex was more reactive in regard to the chemical hardness, chemical potential, and electrophilicity values.
-
Volumes & issues
-
Volume 29 (2025)
-
Volume (2025)
-
Volume XXXX (2025)
-
Volume 28 (2024)
-
Volume 27 (2023)
-
Volume 26 (2022)
-
Volume 25 (2021)
-
Volume 24 (2020)
-
Volume 23 (2019)
-
Volume 22 (2018)
-
Volume 21 (2017)
-
Volume 20 (2016)
-
Volume 19 (2015)
-
Volume 18 (2014)
-
Volume 17 (2013)
-
Volume 16 (2012)
-
Volume 15 (2011)
-
Volume 14 (2010)
-
Volume 13 (2009)
-
Volume 12 (2008)
-
Volume 11 (2007)
-
Volume 10 (2006)
-
Volume 9 (2005)
-
Volume 8 (2004)
-
Volume 7 (2003)
-
Volume 6 (2002)
-
Volume 5 (2001)
-
Volume 4 (2000)
Most Read This Month
