Skip to content
2000
Volume 30, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Ionic compounds of tetradecachlorocyclohexasilane, a critical precursor for cyclohexasilane and its derivatives, have been synthesized using various methods. However, these approaches are often hindered by low yields, high costs, and environmental concerns. In this study, a novel perchlorinated cyclohexasilane salt, [(-PrEtNH)Cl+][SiCl2-], was synthesized by the cyclization of trichlorohydrosilanes with diisopropylethylamine. The compound differs from previously reported six-membered silicocyclic ionic compounds. Notably, the chlorine atom in the cation does not form a direct covalent bond with the surrounding atoms. Instead, it forms a hydrogen bond, a feature not observed in the cationic components of other tetradecachlorocyclohexasilane dianion compounds. The structure was confirmed through single-crystal X-ray diffraction, NMR spectroscopy, and elemental analysis. The perchlorinated cyclohexasilane salt was subsequently reduced to cyclohexasilane using metal hydrides, achieving an overall yield of 44.2% across the two-step process. This method offers several advantages, including cost-effectiveness, high yields, simple purification, and mild reaction conditions. The results demonstrate the utility of this approach for synthesizing cyclohexasilane and advancing its applications as feedstocks for silicon deposition in the development of micro- and nano-silicon materials.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728390375250417092253
2024-04-24
2025-12-06
Loading full text...

Full text loading...

References

  1. ChoiS.B. KimB.K. BoudjoukP. GrierD.G. Amine-promoted disproportionation and redistribution of trichlorosilane: Formation of tetradecachlorocyclohexasilane dianion.J. Am. Chem. Soc.2001123338117811810.1021/ja002831a 11506569
    [Google Scholar]
  2. FrohlichM.T. AndersonK.J. UgrinovA. BoudjoukP. Breaking carbon-chlorine bonds with the unconventional lewis acid dodecachlorocyclohexasilane.Inorg. Chem.20185723144631446610.1021/acs.inorgchem.8b00631 30407799
    [Google Scholar]
  3. DaiX. ChoiS.B. BraunC.W. VaidyaP. KilinaS. UgrinovA. SchulzD.L. BoudjoukP. Halide coordination of perhalocyclohexasilane Si6X12 (X = Cl or Br).Inorg. Chem.20115094047405310.1021/ic102535n 21462954
    [Google Scholar]
  4. TillmannJ. MoxterM. BolteM. LernerH.W. WagnerM. Lewis acidity of Si6Cl12 and its role as convenient SiCl2 source.Inorg. Chem.201554199611961810.1021/acs.inorgchem.5b01703 26378930
    [Google Scholar]
  5. TillmannJ. MeyerL. SchweizerJ.I. BolteM. LernerH.W. WagnerM. HolthausenM.C. Chloride-induced aufbau of perchlorinated cyclohexasilanes from Si2Cl6: A mechanistic scenario.Chemistry201420309234923910.1002/chem.201402655 24771318
    [Google Scholar]
  6. DaiX. SchulzD.L. BraunC.W. UgrinovA. BoudjoukP. “Inverse sandwich” complexes of perhalogenated cyclohexasilane.Organometallics201029102203220510.1021/om1000716
    [Google Scholar]
  7. CasariniD. LunazziL. MazzantiA. Conformational studies by dynamic NMR. Part 67. ring inversion, in solution and in the solid, of the silane analog of permethyl cyclohexane: dodecamethylcyclohexasilane.J. Org. Chem.199863249125912710.1021/jo9814400
    [Google Scholar]
  8. GerwigM. BöhmeU. FriebelM. Challenges in the synthesis and processing of hydrosilanes as precursors for silicon deposition.Chemistry20243033e20240001310.1002/chem.202400013 38757614
    [Google Scholar]
  9. StuegerH. FuerpassG. RengerK. BaumgartnerJ. Synthesis, structures, and unusual photoluminescence of O-and N-functional cyclohexasilanes.Organometallics200524266374638110.1021/om050587w
    [Google Scholar]
  10. Rodríguez DíazG.A. González LeónR.A. HadlingtonT.J. AntonyJ.H. CamachoC. Ballestero-MartínezE. A structural, spectroscopic and DFT theoretical comparison of the cis and trans isomers of a cyclohexasilane.Z. Anorg. Allg. Chem.202465020e20240009310.1002/zaac.202400093
    [Google Scholar]
  11. Kaats-RichtersV.E.M. CleijT.J. JenneskensL.W. LutzM. SpekA.L. van WalreeC.A. Synthesis and Structure of cis -1,4-Di(1-pyrenyl)decamethylcyclohexasilane.Organometallics200322112249225810.1021/om020980r
    [Google Scholar]
  12. PressE.M. MarroE.A. SurampudiS.K. SieglerM.A. TangJ.A. KlausenR.S. Synthesis of a fragment of crystalline silicon: Poly(cyclosilane).Angew. Chem. Int. Ed.201756256857210.1002/anie.201610208 27897420
    [Google Scholar]
  13. StuegerH. FuerpassG. MitterfellnerT. BaumgartnerJ. Synthesis and reactivity of NH2 derivatives of dodecamethylcyclohexasilane.Organometallics201029361862310.1021/om9010017
    [Google Scholar]
  14. TeichmannJ. KöstlerB. TillmannJ. MoxterM. KupecR. BolteM. LernerH.W. WagnerM. Halide - ion diadducts of perhalogenated cyclopenta - and cyclohexasilanes.Z. Anorg. Allg. Chem.20186441795696210.1002/zaac.201800145
    [Google Scholar]
  15. HanY. AndersonK. HobbieE.K. BoudjoukP. KilinD.S. Unraveling photodimerization of cyclohexasilane from molecular dynamics studies.J. Phys. Chem. Lett.20189154349435410.1021/acs.jpclett.8b01691 30004709
    [Google Scholar]
  16. KohutA. DaiX. PinnickD. SchulzD.L. VoronovA. “Host–guest” interaction between cyclohexasilane and amphiphilic invertible macromolecules.Soft Matter2011783717372010.1039/c0sm01337d
    [Google Scholar]
  17. HölblingM. FlockM. HasslerK. The cyclohexasilanes Si6H11X and Si6Me11X with X=F, Cl, Br and I: A quantum chemical and Raman spectroscopic investigation of a multiple conformer problem.ChemPhysChem20078573574410.1002/cphc.200600731 17335111
    [Google Scholar]
  18. RautzH. StügerH. KickelbickG. PietzschC. Synthesis, structural characterization and 57Fe-Mössbauer spectra of ferrocenylhexasilanes.J. Organomet. Chem.2001627216717810.1016/S0022‑328X(01)00743‑4
    [Google Scholar]
  19. StuegerH. FuerpassG. BaumgartnerJ. MitterfellnerT. FlockM. Molecular structure and UV absorption spectra of OH and NH2 derivatives of dodecamethylcyclohexasilane: A combined experimental and computational study.Z. Naturforsch. B. J. Chem. Sci.20096411-121598160610.1515/znb‑2009‑11‑1245
    [Google Scholar]
  20. TsurusakiA. KoyamaY. KyushinS. Decasilahexahydrotriquinacene and decasilaisotwistane: A conjugation on a bowl surface.J. Am. Chem. Soc.2017139113982398510.1021/jacs.7b00250 28192667
    [Google Scholar]
  21. HenggeE. EiblM. New cyclohexasilanyl derivatives with cobalt and iron substituents.Organometallics19911093185318910.1021/om00055a039
    [Google Scholar]
  22. RobertazziA. PlattsJ.A. GamezP. Anion⋅⋅⋅Si interactions in an inverse sandwich complex: A computational study.ChemPhysChem201415591291710.1002/cphc.201400018 24616242
    [Google Scholar]
  23. EnglichU. HenggeE. HermannU. MarschnerC. Ruhlandt-SengeK. UhligF. Cyclohexasilanes with exocyclic organogermanium, -tin or -lead groups.J. Organomet. Chem.20006051222710.1016/S0022‑328X(00)00249‑7
    [Google Scholar]
  24. HenggeE. BaumeggerA. EiblM. HohenesterE. KratkyC. Synthesis of Cyclosilanylethynes.Angew. Chem. Int. Ed. Engl.199029664164310.1002/anie.199006411
    [Google Scholar]
  25. HaasM. SchuhL. TorviscoA. StuegerH. GroggerC. Synthesis and characterization of cyclic acylsilanes.Phosphorus Sulfur Silicon Relat. Elem.2016191463864010.1080/10426507.2015.1128924
    [Google Scholar]
  26. TomaY. KuribaraT. IizukaT. NagashimaH. KyushinS. Synthesis, structure, and electronic properties of benzohexasilabicyclo[2.2.2]octene.Chem. Lett.201342325025210.1246/cl.2013.250
    [Google Scholar]
  27. MatsumotoH. KyushinS. UnnoM. TanakaR. Syntheses, structures, and properties of ladder oligosilanes and ladder oligogermanes.J. Organomet. Chem.20006111-2526310.1016/S0022‑328X(00)00299‑0
    [Google Scholar]
  28. GerwigM. BöhmeU. FriebelM. GründlerF. FranzeG. RosenkranzM. SchmidtH. KrokeE. Syntheses and molecular structures of liquid pyrophoric hydridosilanes.ChemistryOpen20209776277310.1002/open.202000152 32728519
    [Google Scholar]
  29. TillmannJ. LernerH.W. BolteM. A structural study of Si 6 -ring-containing [Si 6 Cl 14] 2− chlorosilicates.Acta Crystallogr. C Struct. Chem.2015711088388810.1107/S2053229615016484 26422216
    [Google Scholar]
  30. FrohlichM.T. Synthesis and utilization of Si6H12 and Si6X12 (X = Cl, Br) for the generation of novel silicon materials.. Masters Thesis, North Dakota State University.2017
    [Google Scholar]
  31. GuruvenketS. HoeyJ.M. AndersonK.J. FrohlichM.T. SailerR.A. BoudjoukP. Aerosol assisted atmospheric pressure chemical vapor deposition of silicon thin films using liquid cyclic hydrosilanes.Thin Solid Films201558946547110.1016/j.tsf.2015.05.069
    [Google Scholar]
  32. GerwigM. AliA.S. NeubertD. PolsterS. BöhmeU. FranzeG. RosenkranzM. PopovA. PonomarevI. JankM.P.M. ViehwegerC. BrendlerE. FreyL. KrollP. KrokeE. From cyclopentasilane to thin - film transistors.Adv. Electron. Mater.202172200042210.1002/aelm.202000422
    [Google Scholar]
  33. IyerG.R.S. HobbieE.K. GuruvenketS. HoeyJ.M. AndersonK.J. LovaasenJ. GetteC. SchulzD.L. SwensonO.F. ElangovanA. BoudjoukP. Solution-based synthesis of crystalline silicon from liquid silane through laser and chemical annealing.ACS Appl. Mater. Interfaces2012452680268510.1021/am300334p 22545711
    [Google Scholar]
  34. PringleT.A. HunterK.I. BrumbergA. AndersonK.J. FaganJ.A. ThomasS.A. PetersenR.J. SefannaserM. HanY. BrownS.L. KilinD.S. SchallerR.D. KortshagenU.R. BoudjoukP.R. HobbieE.K. Bright silicon nanocrystals from a liquid precursor: quasi-direct recombination with high quantum yield.ACS Nano20201443858386710.1021/acsnano.9b09614 32150383
    [Google Scholar]
  35. MasudaT. MatsukiY. ShimodaT. Stability of polydihydrosilane liquid films on solid substrates.Thin Solid Films2012520155091509610.1016/j.tsf.2012.03.043
    [Google Scholar]
  36. MasudaT. SotaniN. HamadaH. MatsukiY. ShimodaT. Fabrication of solution-processed hydrogenated amorphous silicon single-junction solar cells.Appl. Phys. Lett.20121002525390810.1063/1.4730614
    [Google Scholar]
  37. MasudaT. MatsukiY. ShimodaT. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film.Thin Solid Films2012520216603660710.1016/j.tsf.2012.07.028
    [Google Scholar]
  38. SchmidtD. BöhmeU. SeidelJ. KrokeE. Cyclopentasilane Si5H10: First single crystal X-ray structure of an oligosilane SixHy and thermal analysis with TG/MS.Inorg. Chem. Commun.201335929510.1016/j.inoche.2013.05.023
    [Google Scholar]
  39. SontheimerT. AmkreutzD. SchulzK. WöbkenbergP.H. GuentherC. BakumovV. ErzJ. MaderC. TrautS. RuskeF. WeizmanM. SchneggA. PatzM. TrochaM. WunnickeO. RechB. Solution - processed crystalline silicon thin - film solar cells.Adv. Mater. Interfaces201413130004610.1002/admi.201300046
    [Google Scholar]
  40. SakumaY. OhdairaK. MasudaT. TakagishiH. ShenZ. ShimodaT. Effect of annealing and hydrogen radical treatment on the structure of solution-processed hydrogenated amorphous silicon films.Jpn. J. Appl. Phys.2014534S04ER0710.7567/JJAP.53.04ER07
    [Google Scholar]
  41. ShimodaT. MatsukiY. FurusawaM. AokiT. YudasakaI. TanakaH. IwasawaH. WangD. MiyasakaM. TakeuchiY. Solution-processed silicon films and transistors.Nature2006440708578378610.1038/nature04613 16598254
    [Google Scholar]
  42. ShimodaT. MasudaT. Liquid silicon and its application in electronics.Jpn. J. Appl. Phys.2014532S02BA0110.7567/JJAP.53.02BA01
    [Google Scholar]
  43. ZhangJ. TrifunovicM. van der ZwanM. TakagishiH. KawajiriR. ShimodaT. BeenakkerC.I.M. IshiharaR. Single-grain Si thin-film transistors on flexible polyimide substrate fabricated from doctor-blade coated liquid-Si.Appl. Phys. Lett.20131022424350210.1063/1.4811356
    [Google Scholar]
  44. TrifunovicM. ShimodaT. IshiharaR. Solution-processed polycrystalline silicon on paper.Appl. Phys. Lett.20151061616350210.1063/1.4916998
    [Google Scholar]
  45. KawajiriR. TakagishiH. MasudaT. KanedaT. YamazakiK. MatsukiY. MitaniT. ShimodaT. Well-defined silicon patterns by imprinting of liquid silicon.J. Mater. Chem. C Mater. Opt. Electron. Devices20164163385339510.1039/C5TC03684D
    [Google Scholar]
  46. MasudaT. TakagishiH. YamazakiK. ShimodaT. Direct imprinting of liquid silicon.ACS Appl. Mater. Interfaces20168159969997610.1021/acsami.6b01617 27028558
    [Google Scholar]
  47. ChandraA. TakashimaM. KamathA. Silicon and dopant ink-based CMOS TFTs on flexible steel foils.MRS Adv.20172231259126510.1557/adv.2017.227
    [Google Scholar]
  48. SbernaP.M. TrifunovicM. IshiharaR. Solution-based fabrication of polycrystalline si thin-film transistors from recycled polysilanes.ACS Sustain. Chem.& Eng.2017575642564510.1021/acssuschemeng.7b00626 28706758
    [Google Scholar]
  49. TrifunovicM. SbernaP.M. ShimodaT. IshiharaR. Analysis of polydihydrosilane crystallization by excimer laser annealing.Thin Solid Films2017638738010.1016/j.tsf.2017.07.038
    [Google Scholar]
  50. TakagishiH. MasudaT. YamazakiK. ShimodaT. Fabrication of n-type Si nanostructures by direct nanoimprinting with liquid-Si ink.AIP Adv.20188101521410.1063/1.5011449
    [Google Scholar]
  51. ParkY. AhnH. LeeK.T. KimJ. NamM. ChoJ. HanJ.S. KimS.K. KoD.H. All-solution-processed Si films with broadband and omnidirectional light absorption.Nanotechnology2019304040520210.1088/1361‑6528/ab2d05 31242465
    [Google Scholar]
  52. MasudaT. NakayamaM. SaitoK. KatayamaH. TerakawaA. Inkjet printing of liquid silicon.Macromol. Rapid Commun.20204123200036210.1002/marc.202000362 33089584
    [Google Scholar]
  53. ItoM. KamathA. Fabrication and characterization of entirely inkjet-printed polysilicon thin film transistors.Flexible and Printed Electronics20216101500110.1088/2058‑8585/abd29e
    [Google Scholar]
  54. MoriM. AkaboriM. TomitoriM. MasudaT. Non-thermal liquid-to-solid Si conversion induced by electron beam irradiation.Jpn. J. Appl. Phys.202160SBBM0310.35848/1347‑4065/abd9ce
    [Google Scholar]
  55. MasudaT. MoriM. Direct writing of silicon nanostructures using liquid-phase electron beam induced deposition of hydrosilanes.Nanotechnology2021321919530110.1088/1361‑6528/abe0e9 33508819
    [Google Scholar]
  56. ItoM. KamathA. Slot-die coating of silicon ink for volume production of CMOS polysilicon TFTs.Jpn. J. Appl. Phys.2021601010100110.35848/1347‑4065/ac1d2e
    [Google Scholar]
  57. LuX. AndersonK.J. BoudjoukP. KorgelB.A. Low temperature colloidal synthesis of silicon nanorods from isotetrasilane, neopentasilane, and cyclohexasilane.Chem. Mater.201527176053605810.1021/acs.chemmater.5b02487
    [Google Scholar]
  58. GuruvenketS. HoeyJ.M. AndersonK.J. FrohlichM.T. KrishnanR. SivaguruJ. SibiM.P. BoudjoukP. Synthesis of silicon quantum dots using cyclohexasilane (Si6H12).J. Mater. Chem. C Mater. Opt. Electron. Devices20164358206821310.1039/C6TC01435F
    [Google Scholar]
  59. PokhodnyaK. AndersonK.J. BoudjoukP.R. Study of intrinsic stress in hydrogenated amorphous silicon PECVD films with cyclohexasilane (CHS) as a precursor. IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA,20143065306710.1109/PVSC.2014.6925582
    [Google Scholar]
  60. ElgammalR. A. Routes to novel dielectric and semiconductor devices using Cyclohexasilane.Meet Abstr2021MA2021-0286110.1149/MA2021‑0229861mtgabs
    [Google Scholar]
  61. GilmanH. PetersonD.J. JarvieA.W. WinklerH.J.S. The formation of dodecaphenylcyclohexasilane from the reaction of dichlorodiphenylsilane with sodium and with lithium.Tetrahedron Lett.19601445710.1016/S0040‑4039(00)70269‑3
    [Google Scholar]
  62. HenggeE. KovarD. Darstellung und charakterisierung von cyclohexasilan Si6H12.Z. Anorg. Allg. Chem.1979459112313010.1002/zaac.19794590113
    [Google Scholar]
  63. KippingF.S. SandsJ.E. XCIII.-Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8.J. Indian Chem. Soc. Transit1921119830847
    [Google Scholar]
  64. HenggeE. KovarD. Zur reaktion der silicium—phenyl-bindung mit HCl.J. Organomet. Chem.19771252C29C3210.1016/S0022‑328X(00)89450‑4
    [Google Scholar]
  65. HenggeE. KovarD. Preparation of cyclohexasilane, Si6H12.Angew. Chem. Int. Ed. Engl.197716640340310.1002/anie.197704031
    [Google Scholar]
  66. GilmanH. SchwebkeG.L. Reactions and structure of decaphenylcyclopentasilane.J. Am. Chem. Soc.196486132693269910.1021/ja01067a036
    [Google Scholar]
  67. KimB.K. ChoiS.B. KloosS.D. BoudjoukP. Synthesis and characterization of new cationic hexacoordinate silanes.Inorg. Chem.200039472873110.1021/ic990415p 11272567
    [Google Scholar]
  68. Campbell-FergusonH.J. EbsworthE.A.V. Adducts of the halogenosilanes. Part II. Physical properties and structures.J. Chem. Soc. A196770571210.1039/j19670000705
    [Google Scholar]
  69. BoudjoukP. KloosS.D. KimB-K. PageM. ThweattD. An unexpected redistribution of trichlorosilane. Synthesis, structure and bonding of (N,N,N ′,N ′-tetraethylethylenediamine)dichlorosilane.J. Chem. Soc., Dalton Trans.1998687788010.1039/a800240a
    [Google Scholar]
  70. BarbourL.J. MacgillivrayL.R. AtwoodJ.L. Structural consequences of M-Cl…H-N hydrogen bonds in substituted pyridinium salts of the cobalt(II)tetrachloride anion isolated from liquid clathrate media.Supramol. Chem.19967216716910.1080/10610279608035193
    [Google Scholar]
  71. CastroM. Nicolás-VázquezI. ZavalaJ.I. Sánchez-ViescaF. BerrosM. Theoretical study of intramolecular, CH-X (X = N, O, Cl), hydrogen bonds in thiazole derivatives.J. Chem. Theory Comput.20073368168810.1021/ct600336r 26627385
    [Google Scholar]
  72. RajkovićS. RychlewskaU. WarżajtisB. AšaninD.P. ŽivkovićM.D. DjuranM.I. Disparate behavior of pyrazine and pyridazine platinum(II) dimers in the hydrolysis of histidine- and methionine-containing peptides and unique crystal structure of [Pt(en)Cl]2(μ-pydz)Cl2 with a pair of NH⋯Cl−⋯HN hydrogen bonds supporting the pyridazine bridge.Polyhedron201467827928510.1016/j.poly.2013.09.008
    [Google Scholar]
  73. LeongM.K. MastryukovV.S. BoggsJ.E. Structure and conformations of six-membered systems A6H12 (A = C, Si): Ab initio study of cyclohexane and cyclohexasilane.J. Phys. Chem.199498286961696610.1021/j100079a013
    [Google Scholar]
  74. PokhodnyaK. OlsonC. DaiX. SchulzD.L. BoudjoukP. SergeevaA.P. BoldyrevA.I. Flattening a puckered cyclohexasilane ring by suppression of the pseudo-Jahn–Teller effect.J. Chem. Phys.2011134101410510.1063/1.3516179 21218995
    [Google Scholar]
  75. PokhodnyaK. AndersonK. KilinaS. DanduN. BoudjoukP. Mechanism of charged, neutral, mono-, and polyatomic donor ligand coordination to perchlorinated cyclohexasilane (Si6Cl12).J. Phys. Chem. A2018122164067407510.1021/acs.jpca.7b11052 29589757
    [Google Scholar]
  76. GuruvenketS. HoeyJ. AndersonK. FrohlichM. StrommenG. SailerR. BoudjoukP. Atmospheric pressure chemical vapor deposition of silicon thin films using cyclohexasilane.IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA08-13 june 20143068307010.1109/PVSC.2014.6925583
    [Google Scholar]
  77. SchweizerJ.I. MeyerL. NadjA. DiefenbachM. HolthausenM.C. Unraveling the amine-induced disproportionation reaction of perchlorinated silanes: A DFT study.Chemistry20162240143281433510.1002/chem.201602724 27529545
    [Google Scholar]
  78. GeorgI. TeichmannJ. BurschM. TillmannJ. EndewardB. BolteM. LernerH.W. GrimmeS. WagnerM. Exhaustively trichlorosilylated C1 and C2 building blocks: Beyond the Müller–rochow direct process.J. Am. Chem. Soc.2018140309696970810.1021/jacs.8b05950 29985607
    [Google Scholar]
/content/journals/coc/10.2174/0113852728390375250417092253
Loading
/content/journals/coc/10.2174/0113852728390375250417092253
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test