Skip to content
2000
Volume 30, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Thiophene chalcone derivatives are synthesized using green synthetic methods, which are compiled in this review. Chalcones and their derivatives possess a wide spectrum of biological and pharmacological applications, which has led a lot of researchers to synthesize these compounds continuously, which in the process leads to the generation of a lot of waste that affects the environment. This is how environmentally friendly synthetic processes are used to reduce the use and production of hazardous organic materials. The main point of this review is to show the newest non-traditional ways that scientists and researchers have been able to make chalcones with sulfur heterocycles, specifically thiophene. The literature study on thiophene chalcone is valuable for researchers working on this heterocyclic compound synthesis, providing valuable information on green synthetic methods.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728364974250412062824
2025-05-06
2025-12-08
Loading full text...

Full text loading...

References

  1. SarmahB. SrivastavaR. Sustainable catalytic process with a high eco‐Scale score for the synthesis of five‐, six‐, and seven‐membered heterocyclic compounds using nanocrystalline zeolites.Asian J. Org. Chem.20176787388910.1002/ajoc.201700120
    [Google Scholar]
  2. PathaniaS. NarangR.K. RawalR.K. Role of sulphur-heterocycles in medicinal chemistry: An update.Eur. J. Med. Chem.201918048650810.1016/j.ejmech.2019.07.04331330449
    [Google Scholar]
  3. CinarM.E. OzturkT. Thienothiophenes, dithienothiophenes, and thienoacenes: Syntheses, oligomers, polymers, and properties.Chem. Rev.201511593036314010.1021/cr500271a25831021
    [Google Scholar]
  4. IbrahimS.R.M. AbdallahH.M. El-HalawanyA.M. MohamedG.A. Naturally occurring thiophenes: Isolation, purification, structural elucidation, and evaluation of bioactivities.Phytochem. Rev.201615219722010.1007/s11101‑015‑9403‑7
    [Google Scholar]
  5. Abdel-RahmanS.A. El-GoharyN.S. El-BendaryE.R. El-AshryS.M. ShaabanM.I. Synthesis, antimicrobial, antiquorum-sensing, antitumor and cytotoxic activities of new series of cyclopenta(hepta)[b]thiophene and fused cyclohepta[b]thiophene analogs.Eur. J. Med. Chem.201714020021110.1016/j.ejmech.2017.08.06628926764
    [Google Scholar]
  6. SowmyaD.V. Lakshmi TejaG. PadmajaA. Kamala PrasadV. PadmavathiV. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity.Eur. J. Med. Chem.201814389189810.1016/j.ejmech.2017.11.09329227929
    [Google Scholar]
  7. FaddaA.A. El SalamM.A. TawfikE.H. AnwarE.M. EtmanH.A. Synthesis and insecticidal assessment of some innovative heterocycles incorporating a thiadiazole moiety against the cotton leafworm, Spodoptera littoralis.RSC Advances2017763397733978510.1039/C7RA06087D
    [Google Scholar]
  8. WangB. ShiY. ZhanY. ZhangL. ZhangY. WangL. ZhangX. LiY. LiZ. LiB. Synthesis and biological activity of novel furan/thiophene and piperazine‐containing (bis) 1, 2, 4‐triazole Mannich bases.Chin. J. Chem.201533101124113410.1002/cjoc.201500436
    [Google Scholar]
  9. ThakurS. KumarD. GoelK.K. RawatP. SrivastavaV. DhimanS. JadhavH.R. DwivediA.R. Medicinal chemistry-based perspectives on thiophene and its derivatives: Exploring structural insights to discover plausible druggable leads.RSC Med. Chem.202411e45010.1039/D4MD00450G
    [Google Scholar]
  10. ArulkumaranR. SundararajanR. VijayakumarS. SakthinathanS.P. SureshR. KamalakkannanD. RanganathanK. VanangamudiG. ThirunarayananG. Solvent free synthesis, spectral correlation and antimicrobial activities of some 2 E 4′-nitrochalcones.J. Saudi Chem. Soc.201620S122S13110.1016/j.jscs.2012.09.006
    [Google Scholar]
  11. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b0002028488435
    [Google Scholar]
  12. RudrapalM. KhanJ. DukhyilA.A.B. AlarousyR.M.I.I. AttahE.I. SharmaT. KhairnarS.J. BendaleA.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics.Molecules20212623717710.3390/molecules2623717734885754
    [Google Scholar]
  13. ConstantinescuT. MihisA.G. Two important anticancer mechanisms of natural and synthetic chalcones.Int. J. Mol. Sci.202223191159510.3390/ijms23191159536232899
    [Google Scholar]
  14. ConstantinescuT. LunguC.N. Anticancer activity of natural and synthetic chalcones.Int. J. Mol. Sci.202122211130610.3390/ijms22211130634768736
    [Google Scholar]
  15. WangX.Q. ZhouL.Y. TanR.X. LiangG.P. FangS.X. LiW. XieM. WenY.H. WuJ.Q. ChenY.P. Design, synthesis, and evaluation of chalcone derivatives as multifunctional agents against Alzheimer’s disease.Chem. Biodivers.20211811e210034110.1002/cbdv.20210034134510699
    [Google Scholar]
  16. MohamedM.F.A. ShaykoonM.S.A. AbdelrahmanM.H. ElsadekB.E.M. AboraiaA.S. Abuo-RahmaG.E.D.A.A. Design, synthesis, docking studies and biological evaluation of novel chalcone derivatives as potential histone deacetylase inhibitors.Bioorg. Chem.201772324110.1016/j.bioorg.2017.03.00528346873
    [Google Scholar]
  17. MadhaviS. SreenivasuluR. YazalaJ.P. RajuR.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents.Saudi Pharm. J.201725227527910.1016/j.jsps.2016.06.00528344479
    [Google Scholar]
  18. KurtB.Z. Ozten KandasN. DagA. SonmezF. KucukislamogluM. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents.Arab. J. Chem.20201311120112910.1016/j.arabjc.2017.10.001
    [Google Scholar]
  19. SinghA. RaniA. GutJ. RosenthalP.J. KumarV. Piperazine‐linked 4‐aminoquinoline‐chalcone/ferrocenyl‐chalcone conjugates: Synthesis and antiplasmodial evaluation.Chem. Biol. Drug Des.201790459059510.1111/cbdd.1298228332319
    [Google Scholar]
  20. ChengP. YangL. HuangX. WangX. GongM. Chalcone hybrids and their antimalarial activity.Arch. Pharm. (Weinheim)20203534190035010.1002/ardp.20190035032003489
    [Google Scholar]
  21. OrtalliM. IlariA. ColottiG. De IonnaI. BattistaT. BisiA. GobbiS. RampaA. Di MartinoR.M.C. GentilomiG.A. VaraniS. BellutiF. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase.Eur. J. Med. Chem.201815252754110.1016/j.ejmech.2018.04.05729758517
    [Google Scholar]
  22. SinghG. AroraA. KalraP. MauryaI.K. RuizcC.E. EstebancM.A. SinhaS. GoyalK. SehgalR. A strategic approach to the synthesis of ferrocene appended chalcone linked triazole allied organosilatranes: Antibacterial, antifungal, antiparasitic and antioxidant studies.Bioorg. Med. Chem.201927118819510.1016/j.bmc.2018.11.03830522900
    [Google Scholar]
  23. EmamS.H. SonousiA. OsmanE.O. HwangD. KimG.D. HassanR.A. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells.Bioorg. Chem.202110710463010.1016/j.bioorg.2021.10463033476864
    [Google Scholar]
  24. KantR. KumarD. AgarwalD. GuptaR.D. TilakR. AwasthiS.K. AgarwalA. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities.Eur. J. Med. Chem.2016113344910.1016/j.ejmech.2016.02.04126922227
    [Google Scholar]
  25. ThapaP. UpadhyayS.P. SinghV. BoinpellyV.C. ZhouJ. JohnsonD.K. GurungP. LeeE.S. SharmaR. SharmaM. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors.Eur. J. Med. Chem. Rep.2023710010010.1016/j.ejmcr.2022.10010037033416
    [Google Scholar]
  26. Badreddin MusatatA. Kılıçcıoğluİ. KurmanY. DülgerG. AlpayM. YağcıR. AtahanA. DurmuşS. Antimicrobial, antiproliferative effects and docking studies of methoxy group enriched coumarin‐chalcone hybrids.Chem. Biodivers.2023203e20220097310.1002/cbdv.20220097336691991
    [Google Scholar]
  27. DoshiV.A. PatelY.S. Some novel chalcone derivatives containing 5-chloro thiophene in a base structure: Synthesis, characterization, in silico study and biological evaluation.Asian J. Chem.202436244945710.14233/ajchem.2024.31013
    [Google Scholar]
  28. ErgüdenB. LüleciH.B. ÜnverY. Chalcone Schiff bases disrupt cell membrane integrity of Saccharomyces cerevisiae and Candida albicans cells.Arch. Microbiol.2023205624610.1007/s00203‑023‑03584‑y37209304
    [Google Scholar]
  29. AbdulaA.M. MohsenG.L. JasimB.H. JabirM.S. RushdiA.I.R. BaqiY. Synthesis, pharmacological evaluation, and in silico study of new 3-furan-1-thiophene-based chalcones as antibacterial and anticancer agents.Heliyon20241011e3225710.1016/j.heliyon.2024.e3225738947436
    [Google Scholar]
  30. JainS. KumarS. LambaB.Y. PatraJ. MahindrooN. Nanocatalysts: Applications in synthesis of chalcones – a review.Synth. Commun.202151111210.1080/00397911.2020.1817941
    [Google Scholar]
  31. BentaharS. TalebM.A. SabourA. DbikA. KhomriM.E. MessaoudiN.E. LacheraiA. The use of modified clay as an efficient heterogeneous and ecofriendly catalyst for the synthesis of chalcones via Claisen-Schmidt condensation.Russ. J. Appl. Chem.202093798399010.1134/S107042722007006X
    [Google Scholar]
  32. CancioN. CostantinoA.R. SilbestriG.F. PereyraM.T. Ultrasound-assisted syntheses of chalcones: Experimental design and optimization.Multidiscipl. Digi. Publish. Instit. Proc.20194111310.3390/ecsoc‑23‑06475
    [Google Scholar]
  33. AryanR. MirN. BeyzaeiH. KharadeA. Design and synthesis of novel natural clinoptilolite-MnFe2O4 nanocomposites and their catalytic application in the facile and efficient synthesis of chalcone derivatives through Claisen-Schmidt reaction.Res. Chem. Intermed.20184474245425810.1007/s11164‑018‑3366‑4
    [Google Scholar]
  34. SharmaR. KumarK. ChouhanM. GroverV. NairV.A. Lithium hydroxide mediated synthesis of 3,4-disubstituted pyrroles.RSC Advances2013334145211452710.1039/c3ra42569j
    [Google Scholar]
  35. ZammitR. PappovaM. ZammitE. GabarrettaJ. MagriD.C. 1,3,5-Triarylpyrazolines — pH-driven off-on-off molecular logic devices based on a “receptor 1 -fluorophore-spacer-receptor 2 ” format with internal charge transfer (ICT) and photoinduced electron transfer (PET) mechanisms.Can. J. Chem.201593219920610.1139/cjc‑2014‑0266
    [Google Scholar]
  36. LiuF. YangJ.F. LiuH. WeiW.Z. MaY.M. Facile microwave‐assisted synthesis of 1, 3, 5‐trisubstituted pyrazoline derivatives incorporating sulfonyl moiety.J. Chin. Chem. Soc. (Taipei)201663325426010.1002/jccs.201500385
    [Google Scholar]
  37. MiyaharaY. ItoY.N. AlCl3-mediated aldol cyclocondensation of 1,6- and 1,7-diones to cyclopentene and cyclohexene derivatives.J. Org. Chem.201479156801680710.1021/jo500613724914475
    [Google Scholar]
  38. JiouiI. DânounK. SolhyA. JouiadM. ZahouilyM. EssaidB. LenC. FihriA. Modified fluorapatite as highly efficient catalyst for the synthesis of chalcones via Claisen–Schmidt condensation reaction.J. Ind. Eng. Chem.20163921822510.1016/j.jiec.2016.06.003
    [Google Scholar]
  39. SebtiS. SolhyA. TahirR. BoulaajajS. MayoralJ.A. FraileJ.M. KossirA. OumimounH. Calcined sodium nitrate/natural phosphate: An extremely active catalyst for the easy synthesis of chalcones in heterogeneous media.Tetrahedron Lett.200142457953795510.1016/S0040‑4039(01)01698‑7
    [Google Scholar]
  40. LiZ. ZhaoH. HanH. LiuY. SongJ. GuoW. ChuW. SunZ. Graphene-supported ZnO nanoparticles: An efficient heterogeneous catalyst for the claisen-schmidt condensation reaction without additional base.Tetrahedron Lett.201758423984398810.1016/j.tetlet.2017.09.011
    [Google Scholar]
  41. GomesM.N. BragaR.C. GrzelakE.M. NevesB.J. MuratovE. MaR. KleinL.L. ChoS. OliveiraG.R. FranzblauS.G. AndradeC.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity.Eur. J. Med. Chem.201713712613810.1016/j.ejmech.2017.05.02628582669
    [Google Scholar]
  42. MabkhotY.N. AlatibiF. El-SayedN.N.E. Al-ShowimanS.S. KhederN.A. GhabbourH.A. A facile synthesis and characterization of some new thiophene based heterocycles.J. Mol. Struct.2017114973674310.1016/j.molstruc.2017.08.057
    [Google Scholar]
  43. ReddyG.V. MaitraieD. NarsaiahB. RambabuY. RaoP.S. Microwave assisted Knoevenagel condensation: A facile method for the synthesis of chalcones.Synth. Commun.200131182881288410.1081/SCC‑100105339
    [Google Scholar]
  44. SieC.Z.W. NgainiZ. SuhailiN. MadiahlaganE. Synthesis of kojic ester derivatives as potential antibacterial agent.J. Chem.201820181710.1155/2018/1245712
    [Google Scholar]
  45. Al-MaqtariH.M. JamalisJ. ChanderS. SiratH.M. NaveenS. LokanathN.K. BohariS.P.M. BhagwatD.P. SankaranarayananM. Synthesis, in silico and antifungal studies of novel thiophene analogues containing pyrazole ring.Lett. Drug Des. Discov.201815111202121010.2174/1570180815666180328144325
    [Google Scholar]
  46. LeeY.T. FongT.H. ChenH.M. ChangC.Y. WangY.H. ChernC.Y. ChenY.H. Toxicity assessments of chalcone and some synthetic chalcone analogues in a zebrafish model.Molecules201419164165010.3390/molecules1901064124402197
    [Google Scholar]
  47. BasharyR. KhatikG.L. Design, and facile synthesis of 1,3 diaryl-3-(arylamino)propan-1-one derivatives as the potential alpha-amylase inhibitors and antioxidants.Bioorg. Chem.20198215616210.1016/j.bioorg.2018.10.01030321778
    [Google Scholar]
  48. Al-MaqtariH.M. JamalisJ. HaddaT.B. SankaranarayananM. ChanderS. AhmadN.A. Mohd SiratH. AlthagafiI.I. MabkhotY.N. Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylated pyrazole.Res. Chem. Intermed.20174331893190710.1007/s11164‑016‑2737‑y
    [Google Scholar]
  49. GeorgeR.F. FouadM.A. GomaaI.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers.Eur. J. Med. Chem.2016112485910.1016/j.ejmech.2016.01.04826874744
    [Google Scholar]
  50. KumarS. LambaM.S. MakrandiJ.K. An efficient green procedure for the synthesis of chalcones using C-200 as solid support under grinding conditions.Green Chem. Lett. Rev.20081212312510.1080/17518250802325993
    [Google Scholar]
  51. ZhangZ. DongY.W. WangG.W. Efficient and clean aldol condensation catalyzed by sodium carbonate in water.Chem. Lett.2003321096696710.1246/cl.2003.966
    [Google Scholar]
  52. RomanG. Multistep synthesis of pyrazoles from thiophene-containing chalcone analogues. U.P.B. Sci.Bull., Series B.20177926376
    [Google Scholar]
  53. KumarD. Suresh SandhuJ.S. An efficient green protocol for the synthesis of chalcones by a Claisen–Schmidt reaction using bismuth(III)chloride as a catalyst under solvent-free condition.Green Chem. Lett. Rev.20103428328610.1080/17518251003776893
    [Google Scholar]
  54. DianaE.J. KanchanaU.S. MathewT.V. AnilkumarG. Recent developments in the metal catalysed cross‐coupling reactions for the synthesis of the enone system of chalcones.Appl. Organomet. Chem.20203412e598710.1002/aoc.5987
    [Google Scholar]
  55. AdnanD. SinghB. MehtaS.K. KumarV. KatariaR. Simple and solvent free practical procedure for chalcones: An expeditious, mild and greener approach.Curr. Res. Gree. Sustain. Chem.2020310004110.1016/j.crgsc.2020.100041
    [Google Scholar]
  56. PracekaM.S. MegantaraS. MaharaniR. MuchtaridiM. Comparison of various synthesis methods and synthesis parameters of pyrazoline derivates.J. Adv. Pharm. Technol. Res.202112432132610.4103/japtr.JAPTR_252_2134820304
    [Google Scholar]
  57. de MarcoB.A. RecheloB.S. TótoliE.G. KogawaA.C. SalgadoH.R.N. Evolution of green chemistry and its multidimensional impacts: A review.Saudi Pharm. J.20192711810.1016/j.jsps.2018.07.01130627046
    [Google Scholar]
  58. DuvauchelleV. MeffreP. BenfoddaZ. Green methodologies for the synthesis of 2-aminothiophene.Environ. Chem. Lett.202321159762110.1007/s10311‑022‑01482‑136060495
    [Google Scholar]
  59. RizkS.A. ElsayedG.A. El-HashashM.A. One-pot synthesis, spectroscopic characterization and DFT study of novel 8-azacoumarin derivatives as eco-friendly insecticidal agents.J. Indian Chem. Soc.20181592093210510.1007/s13738‑018‑1402‑3
    [Google Scholar]
  60. MondalA. MukhopadhyayC. Solvent-free microwave reactions towards significant organic transformations: A green approach.Tetrahe. Gree. Chem.2024410005410.1016/j.tgchem.2024.100054
    [Google Scholar]
  61. AnastasP.T. WarnerJ.C. Green chemistry: Theory and practice.Oxford, EnglandOxford university press200011210.1093/oso/9780198506980.001.0001
    [Google Scholar]
  62. RosaG.P. SecaA.M.L. BarretoM.C. PintoD.C.G.A. Chalcone: A valuable scaffold upgrading by green methods.ACS Sustain. Chem.& Eng.2017597467748010.1021/acssuschemeng.7b01687
    [Google Scholar]
  63. KharatmolM.G. JagdaleD. Eco-friendly synthesis of pyrazoline derivatives.Int. J. Pharmac. Clin. Res.20179430230810.25258/ijpcr.v9i04.8538
    [Google Scholar]
  64. ShaikhS.M. AnsariG.M. KarbariZ.Z. BabreA.A. BorgeV.V. BangadeV.M. KommiD.N. PopatkarB.B. [EMIM]AlCl4-ionic liquid catalyzed mechanochemically assisted green approach towards the synthesis of quinoxaline, 6H-indolo[2,3-b]quinoxaline and benzimidazole derivatives.Results Chem.20241210188410.1016/j.rechem.2024.101884
    [Google Scholar]
  65. Abdel-AziemA. Green synthesis of novel coumarin derivatives via grinding approach and their antimicrobial evaluation.Green Chem. Lett. Rev.2024171235331910.1080/17518253.2024.2353319
    [Google Scholar]
  66. VianM.A. FernandezX. VisinoniF. ChematF. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils.J. Chromatogr. A200811901-2141710.1016/j.chroma.2008.02.08618343393
    [Google Scholar]
  67. PatelA. PanchalI. ParmarI. MishtryB. Synthesis of new flavanoid and chalcone derivatives as antimicrobial agent by green chemistry approach.Int. J. Pharm. Sci. Res.2017862725273010.13040/IJPSR.0975‑8232.8(6).2725‑30
    [Google Scholar]
  68. LiuJ. ChenC. WuF. ZhaoL. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives.Chem. Biol. Drug Des.2013821394710.1111/cbdd.1212623461881
    [Google Scholar]
  69. AshokD. ShravaniD. One-pot synthesis of novel spiro 2,3,7,8-tetrahydro-benzo[1,2-b:5,4-b′]dipyran-4,6-dione and 2,3,8,9-tetrahydro-benzo[1,2-b:4,3-b′]dipyran-4,10-dione derivatives.Tetrahedron Lett.200849507227722910.1016/j.tetlet.2008.10.016
    [Google Scholar]
  70. Rayees AhmadM. Girija SastryV. BanoN. AnwarS. Synthesis of novel chalcone derivatives by conventional and microwave irradiation methods and their pharmacological activities.Arab. J. Chem.20169S931S93510.1016/j.arabjc.2011.09.002
    [Google Scholar]
  71. LotlikarO.A. GuravS.S. DandekarS.N. JadhavS.R. ShaikA.B. BhandareR.R. MaliS.N. Microwave and ultrasound-assisted green protocols for 5-methylthiazole induced Betti bases: Molecular docking, in-silico pharmacokinetics, and anticancer activity studies.Green Chem. Lett. Rev.2024171240360810.1080/17518253.2024.2403608
    [Google Scholar]
  72. PrasathR. BhavanaP. SarveswariS. NgS.W. TiekinkE.R.T. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones.J. Mol. Struct.2015108120121010.1016/j.molstruc.2014.10.026
    [Google Scholar]
  73. HusseinA.M. GomhaS.M. El-GhanyN.A.A. ZakiM.E.A. FaragB. Al-HussainS.A. SayedA.R. ZakiY.H. MohamedN.A. Green biocatalyst for ultrasound-assisted thiazole derivatives: Synthesis, antibacterial evaluation, and docking analysis.ACS Omega2024912136661367910.1021/acsomega.3c0778538559991
    [Google Scholar]
  74. GomhaS.M. El-GhanyN.A.A. EbaidM.S. AbolibdaT.Z. ZakiE.A. AlhilalM. AlhilalS. MohamedN.A. Eco-friendly synthesis of thiazole derivatives using recyclable cross-linked chitosan hydrogel biocatalyst under ultrasonic irradiation as anti-hepatocarcinogenic agents.Catalysts2024141284010.3390/catal14120840
    [Google Scholar]
  75. RaguramanA. SanthiN. Synthesis and characterization of 1, 3, 5-trisubstituted pyrazoline derivatives by ultrasonic irradiation method and evaluation of its antibacterial activity. International Letters of Chemistry.Phys. Astron.2014202219233
    [Google Scholar]
  76. GaoW. LiuR. LiY. CuiP. Two efficient methods for the synthesis of novel indole-based chalcone derivatives.Res. Chem. Intermed.20144083021303210.1007/s11164‑013‑1148‑6
    [Google Scholar]
  77. SahooB.M. BanikB.K. Solvent-less reactions: Green and sustainable approaches in medicinal chemistry.Green approaches in medicinal chemistry for sustainable drug design.Amsterdam, NetherlandsElsevier202052354810.1016/B978‑0‑12‑817592‑7.00014‑9
    [Google Scholar]
  78. PanigrahiN. GangulyS. PandaJ. PraharshaY. Ultrasound assisted synthesis and antimicrobial evaluation of novel thiophene chalcone derivatives.Chem. Sci. Trans.2014331163117110.7598/cst2014.842
    [Google Scholar]
  79. Elfi-SusantiV.H. Eko-SetyowatiW.A. A green synthesis of chalcones as an antioxidant and anticancer.IOP Conf. Ser.: Mater. Sci. Eng.201829901207710.1088/1757‑899X/299/1/012077
    [Google Scholar]
  80. RizkS.A. El-HashashM.A. El-BadawyA.A. Ultrasonic and grinding aptitudes of one‐pot synthesis of 5‐(4‐chlorophenyl)‐7‐(3, 4‐dimethyl phenyl)‐2‐oxo‐2H‐Pyrano [2, 3‐b] pyridine derivatives as antibacterial agents.J. Heterocycl. Chem.20175432003201110.1002/jhet.2797
    [Google Scholar]
  81. GomhaS.M. AbolibdaT.Z. AlruwailiA.H. FaragB. BoraieW.E. Al-HussainS.A. ZakiM.E.A. HusseinA.M. Efficient green synthesis of hydrazide derivatives using L-proline: Structural characterization, anticancer activity, and molecular docking studies.Catalysts202414848910.3390/catal14080489
    [Google Scholar]
  82. CyniakJ.S. KasprzakA. Mechanochemical synthesis of molecular chemoreceptors.ACS Omega2024950488704888310.1021/acsomega.4c0656639713627
    [Google Scholar]
  83. BanerjeeM. PanjikarP.C. DasD. IyerS. BhosleA.A. ChatterjeeA. Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles.Tetrahedron202211213275310.1016/j.tet.2022.132753
    [Google Scholar]
  84. WangG.W. Mechanochemical organic synthesis.Chem. Soc. Rev.201342187668770010.1039/c3cs35526h23660585
    [Google Scholar]
  85. SinghR. KaurR. AhlawatP. KaushikP. SinghK. Green methods for the synthesis of pyrazoles: A review.Org. Prep. Proced. Int.202153431735110.1080/00304948.2021.1904750
    [Google Scholar]
  86. KosmalskiT. KołodziejskaR. PrzybyszM. SzeleszczukŁ. PawlukH. Mądra-GackowskaK. StudzińskaR. The Application of green solvents in the synthesis of S-heterocyclic compounds—a review.Int. J. Mol. Sci.20242517947410.3390/ijms2517947439273421
    [Google Scholar]
  87. BahramiK. KhodaeiM.M. BatooieN. HosseinzadehN. ForoumadiA. Hexyltriphenylphosphonium bromide as an absolutely chemoselective ionic liquid catalyst in the three‐component reaction of aryl Aldehydes, acetophenones and malononitrile.ChemistrySelect20194206190619310.1002/slct.201901076
    [Google Scholar]
  88. PerroneS. MessaF. TroisiL. SalomoneA. O-and S-Heterocycles synthesis in deep eutectic solvents.Molecules2023288345910.3390/molecules2808345937110694
    [Google Scholar]
  89. AdoleV.A. MoreR.A. JagdaleB.S. PawarT.B. ChobeS.S. ShindeR.A. DhonnarS.L. KoliP.B. PatilA.V. BukaneA.R. GaccheR.N. Microwave prompted solvent-free synthesis of new series of heterocyclic tagged 7-arylidene indanone hybrids and their computational, antifungal, antioxidant, and cytotoxicity study.Bioorg. Chem.202111510525910.1016/j.bioorg.2021.10525934426144
    [Google Scholar]
  90. ZangadeS. PatilP. A review on solvent-free methods in organic synthesis.Curr. Org. Chem.202023212295231810.2174/1385272823666191016165532
    [Google Scholar]
  91. MajeeS. ShilpaA. SaravM. BanikB.K. RayD. Recent advances in the green synthesis of active N-heterocycles and their biological activities.Pharmaceuticals (Basel)202316687310.3390/ph1606087337375820
    [Google Scholar]
  92. SubhashiniN. AmanagantiJ. BodduL. Acharya NagarjunaP. Microwave assisted synthesis and antibacterial studies of (E)-3-(2-Morpholinoquinolin-3-yl)-1-aryl prop-2-en-1-ones.J. Chem. Pharm. Res.20135140147
    [Google Scholar]
  93. SrinivasM. ThakurP. Microwave mediated synthesis and evaluation of some novel pyrimidines for antimicrobial activity.Int. J. Pharm. Tech. Res.201352595600
    [Google Scholar]
  94. ArulkumaranR. VijayakumarS. SakthinathanS.P. KamalakkannanD. RanganathanK. SureshR. SundararajanR. VanangamudiG. ThirunarayananG. Preheated FLY-ASH catalyzed aldol condensation: Efficient synthesis of chalcones and antimicrobial activities of some 3-thienyl chalcones.J. Chil. Chem. Soc.20135821684169010.4067/S0717‑97072013000200008
    [Google Scholar]
  95. AshokD. GaneshA. Vijaya LakshmiB. RaviS. Ultrasound- and microwave-assisted synthesis of (E)-1-aryl-3-[2-(piperidin-1-yl)quinolin-3-yl]prop-2-en-1-ones and (E)-1-aryl-3-[2-(pyrrolidin-1-yl)quinolin-3-yl]prop-2-en-1-ones, and their antimicrobial activity.Russ. J. Gen. Chem.20148461237124210.1134/S1070363214060309
    [Google Scholar]
  96. RocchiD. GonzálezJ. MenéndezJ. Montmorillonite clay-promoted, solvent-free cross-aldol condensations under focused microwave irradiation.Molecules20141967317732610.3390/molecules1906731724901834
    [Google Scholar]
  97. KulathooranS. SelvakumarB. DhamodaranM. Synthesis and biological activities of novel heterocyclic chalcone derivatives by two different methods using anhydrous potassium carbonate as an efficient catalyst.Pharma Chem.201463240249
    [Google Scholar]
  98. RaoP. GoliK. Microwave assisted synthesis and antibacterial activies of some (E)-1-phenyl-3-(2-thiomorpholinoquinolin-3-yl) prop-2-en-1-one using basic catalyst.Int. J. Chem. Sci.201412415771586
    [Google Scholar]
  99. KhanS.A. AsiriA.M. ElrobyS.A.K. Green synthesis, characterization, antibacterial activity of heterocyclic compounds from chalcone on basis of in vitro and quantum chemistry calculation.Asian J. Chem.201426217283728810.14233/ajchem.2014.16600
    [Google Scholar]
  100. SubhashiniN.J.P. AmanagantiJ. NagarjunaP.A. Synthesis of 1-(2-hydroxy-aryl)-3-(5-nitro-thiophen-2-yl)-propenones under microwave and antimicrobial activity.Int. J. Chem. Sci.2014122641647
    [Google Scholar]
  101. KhanS.A. AsiriA.M. KumarS. SharmaK. Green synthesis, antibacterial activity and computational study of pyrazoline and pyrimidine derivatives from 3-(3,4-dimethoxy-phenyl-1-(2,5-dimethyl-thiophen-3-yl)-propenone.Eur. J. Chem.201451859010.5155/eurjchem.5.1.85‑90.789
    [Google Scholar]
  102. SarveswariS. VijayakumarV. SivaR. PriyaR. Synthesis of 4-hydroxy-2(1H)-quinolone derived chalcones, pyrazolines and their antimicrobial, in silico antimalarial evaluations.Appl. Biochem. Biotechnol.20151751436410.1007/s12010‑014‑1256‑925238919
    [Google Scholar]
  103. AshokD. ZiauddinM. LakshmiB.V. SarasijaM. Microwave assisted synthesis of substituted (Z)-2-[1-phenyl-3-(thiophen-2-yl)-1H-pyrazol- 4-yl]methylenebenzofuran-3(2H)-ones and their antimicrobial activity.Russ. J. Gen. Chem.20168671753175710.1134/S1070363216070355
    [Google Scholar]
  104. MuthuvelI. DineshkumarS. ThirumurthyK. RajasriS. ThirunarayananG. A new solid acid catalyst FeCl3/bentonite for aldol condensation under solvent-free condition.Ind. J. Chem.201655B252260
    [Google Scholar]
  105. KhanS.A. AsiriA.M. Green synthesis, characterization and biological evaluation of novel chalcones as anti bacterial agents.Arab. J. Chem.201710S2890S289510.1016/j.arabjc.2013.11.018
    [Google Scholar]
  106. KalirajanR. RafickM. SankarS. GowrammaB. Green synthesis of some novel chalcone and isoxazole substituted 9-anilinoacridine derivatives and evaluation of their antimicrobial and larvicidal activities.Ind. J. Chem.201857B583590
    [Google Scholar]
  107. KhanS.A. AsiriA.M. Al-GhamdiN.S.M. AsadM. ZayedM.E.M. ElrobyS.A.K. AqlanF.M. WaniM.Y. SharmaK. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: In vitro, in silico and DFT studies.J. Mol. Struct.20191190778510.1016/j.molstruc.2019.04.046
    [Google Scholar]
  108. PintoP. MachadoC.M. MoreiraJ. AlmeidaJ.D.P. SilvaP.M.A. HenriquesA.C. SoaresJ.X. SalvadorJ.A.R. AfonsoC. PintoM. BousbaaH. CidadeH. Chalcone derivatives targeting mitosis: Synthesis, evaluation of antitumor activity and lipophilicity.Eur. J. Med. Chem.201918411175210.1016/j.ejmech.2019.11175231610374
    [Google Scholar]
  109. RadwanM.A.A. AlshubramyM.A. Abdel-MotaalM. HemdanB.A. El-KadyD.S. Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives.Bioorg. Chem.20209610351610.1016/j.bioorg.2019.10351631991322
    [Google Scholar]
  110. RasapellyR.K. KannappamN. JarpulaD. A novel approach for synthesis of pyrimidine chalcones against thymidylate kinase protein targets and evaluation of antimycobacterial activity.Int. J. Curr. Res. Rev.2020122110010610.31782/IJCRR.2020.122110
    [Google Scholar]
  111. RammohanA. BhaskarB.V. VenkateswarluN. GuW. ZyryanovG.V. Design, synthesis, docking and biological evaluation of chalcones as promising antidiabetic agents.Bioorg. Chem.20209510352710.1016/j.bioorg.2019.10352731911298
    [Google Scholar]
  112. AsiriA.M. MarwaniH.M. AlamryK.A. Al-AmoudiM.S. KhanS.A. El-DalyS.A. Green synthesis, characterization, photophysical and electrochemical properties of bis-chalcones.Int. J. Electrochem. Sci.20149279980910.1016/S1452‑3981(23)07757‑X
    [Google Scholar]
  113. Al-IssaS. Eco-friendly synthesis and reactions of some α, β-unsaturated ketones.Life Sci. J.201815310.7537/marslsj150318.04
    [Google Scholar]
  114. YounisA. FathyU. El-katebA.A. AwadH. Ultrasonic assisted synthesis of novel anticancer chalcones using water as green solvent.Pharma Chem.2016817129136
    [Google Scholar]
  115. PanigrahiN. GangulyS. PandaJ. Synthesis, antimicrobial evaluation and molecular docking studies of novel Oxazolidinone-thiophene chalcone hybrid derivatives.Res. J. Pharm. Techn.201811125611562210.5958/0974‑360X.2018.01019.3
    [Google Scholar]
  116. PanigrahiN. GangulyS. PandaJ. Ultrasound assisted synthesis, characterization and antimicrobial evaluation of novel oxazolidinone-biphenyl chalcone hybrid derivatives.Ind. J. Pharmac. Educ. Res.201953228630010.5530/ijper.53.2.37
    [Google Scholar]
  117. AdoleV.A. JagdaleB.S. PawarT.B. SaganeA.A. Ultrasound promoted stereoselective synthesis of 2, 3-dihydrobenzofuran appended chalcones at ambient temperature.S. Afr. J. Chem.2020731354310.17159/0379‑4350/2020/v73a6
    [Google Scholar]
  118. NareshP. PramodhB. NaveenS. GangulyS. PandaJ. SunithaK. ManiukiewiczW. LokanathN.K. Cis and trans isomers of 1-(5-bromothiophen-2-yl)-3-(10-chloroanthracen-9-yl)prop-2-en-1-one: Synthesis and characterization.J. Mol. Struct.2021123613022810.1016/j.molstruc.2021.130228
    [Google Scholar]
  119. NanjundaswamyS. Chimatahalli ShanthakumarK. ShadakshariS. RajabatharJ.R. ArokiyarajS. Al-lohedanH.A. SakthipandiK. MalluP. Redefining chalcone synthesis: Aldol adduct elimination for the rapid access to thienyl chalcones.ACS Omega2024912136031361110.1021/acsomega.3c0589738559939
    [Google Scholar]
  120. DevS. DhaneshwarS.R. A solvent-free protocol for the green synthesis of heterocyclic chalcones.Der. Pharm. Lett.201355219223
    [Google Scholar]
  121. PraveenaP. SarojiniB.K. Madan KumarS. Mechanochemical synthesis and characterizations of chalcone derivatives: (2E)-3-[4-(Benzyloxy)phenyl]-1-(thiophen-2-yl)prop 2-en-1-one and (2E)-3-(Anthracen-9-yl)-1- (thiophen-2-yl)prop 2-en-1-one.Chemi. Data Collec.20192410029810.1016/j.cdc.2019.100298
    [Google Scholar]
  122. DevS. Thomas ParambiD.G. BabyB. MathewG.E. Omnia MagdyH. JoyM. SudevS. MathewB. An environment-friendly synthesis of piperonal chalcones and their cytotoxic and antioxidant evaluation.Lett. Drug Des. Discov.202017213814410.2174/1570180815666181016155934
    [Google Scholar]
  123. RitterM. MartinsR.M. RosaS.A. MalavoltaJ.L. LundR.G. FloresA.F.C. PereiraC.M.P. Green synthesis of chalcones and microbiological evaluation.J. Braz. Chem. Soc.20152661201121010.5935/0103‑5053.20150084
    [Google Scholar]
  124. MohamedE.A. AbdelmajeidA. BehaloM. Abel-MaaboudA. HebaishK. Green synthesis, cytotoxicity and antimicrobial activities of some new pyrazolines, pyrimidines and naphthyridines based on 1, 3-di (thien-2-yl) prop-2-en-1-one using choline chloride-urea mixture as A deep eutectic solvent.Egypt. J. Chem.202265465166310.21608/ejchem.2021.95621.4488
    [Google Scholar]
  125. Alsina-SánchezÁ.M. Montalvo-VázquezS. Grafals-RuizN. AcostaC. OrméE.M. RodríguezI. Delgado-RiveraS.M. TinocoA.D. DharmawardhaneS. Montes-GonzálezI.C. Synthesis of novel heterocyclic ferrocenyl chalcones and their biological evaluation.ACS Omega2023838343773438710.1021/acsomega.3c0183037779926
    [Google Scholar]
/content/journals/coc/10.2174/0113852728364974250412062824
Loading
/content/journals/coc/10.2174/0113852728364974250412062824
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test