Skip to content
2000
Volume 29, Issue 17
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Metformin is a popular biguanide medicine because of its efficacy and inexpensive cost. Over time, other applications of metformin were found, and the advantages of metformin for diverse conditions such as anticancer, anti-inflammatory, anticoagulant, antimicrobial, and many more were studied. Although the underlying mechanism of these numerous benefits remains unknown, repurposing it is a smart concept, as it offers several advantages, including reduced development and research costs. However, taking it as-is may result in unwanted pharmacokinetics and mild to severe adverse effects. To overcome these, several researchers experimented and reported modified metformin derivatives that had better pharmacological potential, favorable pharmacokinetics, and fewer side effects. This review, therefore, sheds light on the current therapeutic expansion of non-metal derivatives of metformin along with their synthesis methods and evaluated outcomes. This will support researchers studying these modified or replaced metformins in the scientific community.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728361956241220051749
2025-01-24
2025-10-04
Loading full text...

Full text loading...

References

  1. KonopkaA.R. EspondaR.R. RobinsonM.M. JohnsonM.L. CarterR.E. SchiavonM. CobelliC. WondisfordF.E. LanzaI.R. NairK.S. Hyperglucagonemia mitigates the effect of metformin on glucose production in prediabetes.Cell Rep.20161571394140010.1016/j.celrep.2016.04.02427160898
    [Google Scholar]
  2. BaileyC.J. DayC. Metformin: Its botanical background.Pract. Diabetes Int.200421311511710.1002/pdi.606
    [Google Scholar]
  3. VelázquezH.E.D. BetancourtA.C. CastroA.Á.J. AlvaradoO.R. LópezJ.A. CarmenM.V. AlvaradoS.C.R. Metformin, a biological and synthetic overview.Bioorg. Med. Chem. Lett.20238612924110.1016/j.bmcl.2023.12924136933671
    [Google Scholar]
  4. NasriH. KopaeiR.M. Metformin: Current knowledge.J. Res. Med. Sci.201419765866425364368
    [Google Scholar]
  5. TriggleC.R. MohammedI. BsheshK. MareiI. YeK. DingH. MacDonaldR. HollenbergM.D. HillM.A. Metformin: Is it a drug for all reasons and diseases?Metabolism202213315522310.1016/j.metabol.2022.15522335640743
    [Google Scholar]
  6. CampbellJ.M. BellmanS.M. StephensonM.D. LisyK. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis.Ageing Res. Rev.201740314410.1016/j.arr.2017.08.00328802803
    [Google Scholar]
  7. SalvatoreT. PafundiP.C. MorgilloF. LielloD.R. GalieroR. NevolaR. MarfellaR. MonacoL. RinaldiL. AdinolfiL.E. SassoF.C. Metformin: An old drug against old age and associated morbidities.Diabetes Res. Clin. Pract.202016010802510.1016/j.diabres.2020.10802531954752
    [Google Scholar]
  8. WatanabeC.K. Studies in the metabolism changes induced by administration of guanidine bases: I. Influence of injected guanidine hydrochloride upon blood sugar content.J. Biol. Chem.191833225326510.1016/S0021‑9258(18)86579‑6
    [Google Scholar]
  9. WernerE.A. BellJ. CCXIV.—The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively.J. Chem. Soc. Trans.192212101790179410.1039/CT9222101790
    [Google Scholar]
  10. FrankE. NothmannM. WagnerA. Über synthetisch dargestellte Körper mit insulinartiger Wirkung auf den normalen und diabetischen organismus.Klin. Wochenschr.19265452100210710.1007/BF01736560
    [Google Scholar]
  11. GrahamG. LinderG.C. The use of synthalin in the treatment of diabetes mellitus.QJM1928os-218450952110.1093/qjmed/os‑21.84.509
    [Google Scholar]
  12. SlottaK.H. TschescheR. Über biguanide, II.: Die blutzucker-senkende wirkung der biguanide.Ber. Dtsch. Chem. Ges. B19296261398140510.1002/cber.19290620605
    [Google Scholar]
  13. SterneJ. Blood sugar-lowering effect of 1,1-dimethylbiguanide.Therapie195813465065913603402
    [Google Scholar]
  14. DuG.H. YangX.Y. DuG.H. Metformin.Natural Small Molecule Drugs from Plants2018101107
    [Google Scholar]
  15. MontvidaO. ShawJ. AthertonJ.J. StringerF. PaulS.K. Long-term trends in antidiabetes drug usage in the US: Real-world evidence in patients newly diagnosed with type 2 diabetes.Diabetes Care2018411697810.2337/dc17‑141429109299
    [Google Scholar]
  16. McKENDRYJ.B. KuwaytiK. RadoP.P. Clinical experience with DBI (phenformin) in the management of diabetes.Can. Med. Assoc. J.1959801077377813652024
    [Google Scholar]
  17. UK Prospective Diabetes Study (UKPDS) GroupEffect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).Lancet1998352913185486510.1016/S0140‑6736(98)07037‑89742977
    [Google Scholar]
  18. UK Prospective Diabetes Study (UKPDS) GroupIntensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).Lancet1998352913183785310.1016/S0140‑6736(98)07019‑69742976
    [Google Scholar]
  19. YerevanianA. SoukasA.A. Metformin: Mechanisms in human obesity and weight loss.Curr. Obes. Rep.20198215616410.1007/s13679‑019‑00335‑330874963
    [Google Scholar]
  20. BaileyC.J. Metformin: Historical overview.Diabetologia20176091566157610.1007/s00125‑017‑4318‑z28776081
    [Google Scholar]
  21. DeFronzoR.A. GoodmanA.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus.N. Engl. J. Med.1995333954154910.1056/NEJM1995083133309027623902
    [Google Scholar]
  22. KhodakhahA. MohammadiH. AbdoliS. ZareiI. PalimiM. EkhtiariZ. TalebiM. BiglarM. KhorramizadehM.R. AmanlouM. Synthesis and molecular docking studies of new aryl imeglimin derivatives as a potent antidiabetic agent in a diabetic Zebrafish model.Sci. Rep.2024141941010.1038/s41598‑024‑60206‑338658742
    [Google Scholar]
  23. LeoneA. GennaroD.E. BruzzeseF. AvalloneA. Budillon A New perspective for an old antidiabetic drug: Metformin as anticancer agent.Cancer Treat. Res.20141593557610.1007/978‑3‑642‑38007‑5_21
    [Google Scholar]
  24. ÖlgenS. Clinical trials on combination of repurposed drugs and anticancer therapies.Academic Press2020395437
    [Google Scholar]
  25. KathuriaD. RaulA.D. WanjariP. BharatamP.V. Biguanides: Species with versatile therapeutic applications.Eur. J. Med. Chem.202121911337810.1016/j.ejmech.2021.11337833857729
    [Google Scholar]
  26. PrugnardE. NoelM. Chemistry and structure-activity relationships of biguanides. Inoral antidiabetics.Berlin, HeidelbergSpringer Berlin Heidelberg1996263285
    [Google Scholar]
  27. SchwartzS. FonsecaV. BernerB. CramerM. ChiangY.K. LewinA. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes.Diabetes Care200629475976410.2337/diacare.29.04.06.dc05‑196716567811
    [Google Scholar]
  28. MenendezJ.A. PinéQ.R. GallegoR.E. CufíS. FajaC.B. CuyàsE. BarreraB.J. CastilloM.B. CarreteroS.A. JovenJ. Oncobiguanides: Paracelsus’ law and nonconventional routes for administering diabetobiguanides for cancer treatment.Oncotarget2014592344234810.18632/oncotarget.196524909934
    [Google Scholar]
  29. StoicaRA ȘtefanDS RizzoM SuceveanuAI SuceveanuAP SerafinceanuC StoianP.A Metformin indications, dosage, adverse reactions, and contraindications.London, UKIntechOpen2019
    [Google Scholar]
  30. The Diabetes Prevention Program Research GroupLong-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study.Diabetes Care201235473173710.2337/dc11‑129922442396
    [Google Scholar]
  31. ChangC.T. ChenY.C. FangJ.T. HuangC.C. Metformin-associated lactic acidosis: Case reports and literature review.J. Nephrol.200215439840212243370
    [Google Scholar]
  32. BadeaV. PêrjolN.T. Microbiological activity of some 3d and 4f metal complex compounds with N-substituted biguanide.Arch. Balk. Med. Union.2005401218
    [Google Scholar]
  33. AljofanM. RiethmacherD. Anticancer activity of metformin: A systematic review of the literature.Future Sci. OA201958FSO41010.2144/fsoa‑2019‑005331534778
    [Google Scholar]
  34. YuX. MaoW. ZhaiY. TongC. LiuM. MaL. YuX. LiS. Anti-tumor activity of metformin: From metabolic and epigenetic perspectives.Oncotarget2017835619562810.18632/oncotarget.1363927902459
    [Google Scholar]
  35. VancuraA. BuP. BhagwatM. ZengJ. VancurovaI. Metformin as an anticancer agent.Trends Pharmacol. Sci.2018391086787810.1016/j.tips.2018.07.00630150001
    [Google Scholar]
  36. ChenS. GanD. LinS. ZhongY. ChenM. ZouX. ShaoZ. XiaoG. Metformin in aging and aging-related diseases: Clinical applications and relevant mechanisms.Theranostics20221262722274010.7150/thno.7136035401820
    [Google Scholar]
  37. HuD. XieF. XiaoY. LuC. ZhongJ. HuangD. ChenJ. WeiJ. JiangY. ZhongT. Metformin: A potential candidate for targeting aging mechanisms.Aging Dis.202112248049310.14336/AD.2020.070233815878
    [Google Scholar]
  38. GouveriE. PapanasN. Τhe endless beauty of metformin: Does it also protect from skin aging? A narrative review.Adv. Ther.20234041347135610.1007/s12325‑023‑02434‑z36715895
    [Google Scholar]
  39. FengY.Y. WangZ. PangH. Role of metformin in inflammation.Mol. Biol. Rep.202350178979810.1007/s11033‑022‑07954‑536319785
    [Google Scholar]
  40. SakataN. The anti-inflammatory effect of metformin: The molecular targets.Genes Cells202429318319110.1111/gtc.1309838311861
    [Google Scholar]
  41. LinH. AoH. GuoG. LiuM. The role and mechanism of metformin in inflammatory diseases.J. Inflamm. Res.2023165545556410.2147/JIR.S43614738026260
    [Google Scholar]
  42. RenaG. LangC.C. Repurposing metformin for cardiovascular disease.Circulation2018137542242410.1161/CIRCULATIONAHA.117.03173529378754
    [Google Scholar]
  43. TopW.M.C. KooyA. StehouwerC.D.A. Metformin: A narrative review of its potential benefits for cardiovascular disease, cancer and dementia.Pharmaceuticals202215331210.3390/ph1503031235337110
    [Google Scholar]
  44. IranshahyM. RezaeeR. KarimiG. Hepatoprotective activity of metformin: A new mission for an old drug?Eur. J. Pharmacol.20198501710.1016/j.ejphar.2019.02.00430753869
    [Google Scholar]
  45. BaoJ. ZhaoY. XuX. LingS. Advance of metformin in liver disease.Curr. Med. Chem.202410.2174/010929867327426823121511033038299294
    [Google Scholar]
  46. AlroujiM. kuraishy, A.H.M.; Gareeb, A.A.I.; Ashour, N.A.; Jabir, M.S.; Negm, W.A.; Batiha, G.E.S. Metformin role in Parkinson’s disease: A double-sword effect.Mol. Cell. Biochem.2024479497599110.1007/s11010‑023‑04771‑737266747
    [Google Scholar]
  47. LiN. ZhouT. FeiE. Actions of metformin in the brain: A new perspective of metformin treatments in related neurological disorders.Int. J. Mol. Sci.20222315828110.3390/ijms2315828135955427
    [Google Scholar]
  48. ZiqubuK. MbejeM.S.E. MthembuS.X.H. MabhidaS.E. JackB.U. NyambuyaT.M. NkambuleB.B. BassonA.K. TianoL. DludlaP.V. Anti-obesity effects of metformin: A scoping review evaluating the feasibility of brown adipose tissue as a therapeutic target.Int. J. Mol. Sci.2023243222710.3390/ijms2403222736768561
    [Google Scholar]
  49. DuttaS. ShahR.B. SinghalS. DuttaS.B. BansalS. SinhaS. HaqueM. Metformin: A review of potential mechanism and therapeutic utility beyond diabetes.Drug Des. Devel. Ther.2023171907193210.2147/DDDT.S40937337397787
    [Google Scholar]
  50. DoanS.N. PatelS.K. XieB. NelsonR.A. YeeL.D. Disrupting the mood and obesity cycle: The potential role of metformin.Obesities202331597510.3390/obesities3010006
    [Google Scholar]
  51. ChoS.Y. KimE.W. ParkS.J. PhillipsB.U. JeongJ. KimH. HeathC.J. KimD. JangY. CruzL.L. SaksidaL.M. BusseyT.J. LeeD.Y. KimE. Reconsidering repurposing: Long-term metformin treatment impairs cognition in Alzheimer’s model mice.Transl. Psychiatry20241413410.1038/s41398‑024‑02755‑938238285
    [Google Scholar]
  52. SoodA. CapuanoA.W. WilsonR.S. BarnesL.L. KapasiA. BennettD.A. ArvanitakisZ. Metformin, age-related cognitive decline, and brain pathology.Neurobiol. Aging20241339910610.1016/j.neurobiolaging.2023.10.00537931533
    [Google Scholar]
  53. DíazR.M. RealF.J.M. Metformin, cognitive function, and changes in the gut microbiome.Endocr. Rev.202445221022610.1210/endrev/bnad02937603460
    [Google Scholar]
  54. ShurrabN.T. ArafaE.S.A. Metformin: A review of its therapeutic efficacy and adverse effects.Obes. Med.20201710018610.1016/j.obmed.2020.100186
    [Google Scholar]
  55. FloryJ. LipskaK. Metformin in 2019.JAMA2019321191926192710.1001/jama.2019.380531009043
    [Google Scholar]
  56. WangG.S. HoyteC. Review of biguanide (metformin) toxicity.J. Intensive Care Med.20193411-1286387610.1177/088506661879338530126348
    [Google Scholar]
  57. ShalmashiA. New route to metformin hydrochloride (N,N-dimethylimidodicarbonimidic diamide hydrochloride) synthesis.Molbank200820081M56410.3390/M564
    [Google Scholar]
  58. ShapiroS.L. ParrinoV.A. FreedmanL. Hypoglycemic agents. III. 1—3 N1-alkyl-and aralkylbiguanides.J. Am. Chem. Soc.195981143728373610.1021/ja01523a060
    [Google Scholar]
  59. RenaG. HardieD.G. PearsonE.R. The mechanisms of action of metformin.Diabetologia20176091577158510.1007/s00125‑017‑4342‑z28776086
    [Google Scholar]
  60. Compound summary for CID 14219, metformin hydrochloride.2024Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Metformin-Hydrochloride [Accessed on: 15 Sep; 2024].
  61. PryorR. CabreiroF. Repurposing metformin: An old drug with new tricks in its binding pockets.Biochem. J.2015471330732210.1042/BJ2015049726475449
    [Google Scholar]
  62. AydınP.K. TurkyılmazI.B. GulI.B. BulanO.K. YanardagR. Drug repurposing: Metformin’s effect against liver tissue damage in diabetes and prostate cancer model.J. Diabetes Metab. Disord.202222122523610.1007/s40200‑022‑01109‑w37255805
    [Google Scholar]
  63. MahfauzM. YurukerO. KalkanR. Repurposing metformin as a potential anticancer agent using in silico technique.Daru202432254955510.1007/s40199‑024‑00523‑038922530
    [Google Scholar]
  64. PiaseckaM.M. HuttunenK.M. MateusiakL. OlasikM.E. SikoraJ. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics.Curr. Pharm. Des.201723172532255027908266
    [Google Scholar]
  65. PiaseckaM.M. SadkowskaA. SikoraJ. BroncelM. HuttunenK.M. Novel sulfonamide-based analogs of metformin exert promising anti-coagulant effects without compromising glucose-lowering activity.Pharmaceuticals2020131032310.3390/ph1310032333096688
    [Google Scholar]
  66. SafeS. NairV. KarkiK. Metformin-induced anticancer activities: Recent insights.Biol. Chem.2018399432133510.1515/hsz‑2017‑027129272251
    [Google Scholar]
  67. ZhaoB. LuoJ. YuT. ZhouL. LvH. ShangP. Anticancer mechanisms of metformin: A review of the current evidence.Life Sci.202025411771710.1016/j.lfs.2020.11771732339541
    [Google Scholar]
  68. TangZ. TangN. JiangS. BaiY. GuanC. ZhangW. FanS. HuangY. LinH. YingY. The chemosensitizing role of metformin in anti-cancer therapy.Anticancer Agents Med. Chem.202121894996210.2174/187152062066620091810264232951587
    [Google Scholar]
  69. SahuR. ShahK. Schiff bases: A captivating scaffold with potential anticonvulsant activity.Mini Rev. Med. Chem.202424181632165010.2174/011389557530219724040812153738629363
    [Google Scholar]
  70. RamasamyT. RuttalaH.B. KalirajK. PoudelK. JinS.G. ChoiH.G. KuS.K. YongC.S. KimJ.O. Polypeptide derivative of metformin with the combined advantage of a gene carrier and anticancer activity.ACS Biomater. Sci. Eng.20195105159516810.1021/acsbiomaterials.9b0098233455222
    [Google Scholar]
  71. NgwulukaN.C. KotakD.J. DevarajanP.V. Design and characterization of metformin-loaded solid lipid nanoparticles for colon cancer.AAPS PharmSciTech201718235836810.1208/s12249‑016‑0505‑326975870
    [Google Scholar]
  72. EsamZ. AkhavanM. MirshafaA. BekhradniaA. Green synthesis, anti-proliferative evaluation, docking, and MD simulations studies of novel 2-piperazinyl quinoxaline derivatives using hercynite sulfaguanidine-SA as a highly efficient and reusable nanocatalyst.RSC Advances20231336252292524510.1039/D3RA03305H37622018
    [Google Scholar]
  73. QadsyA.I. SaeedW.S. OdayniA.A.B. AlrabieA. FaqeehA.L.A.S. AdhreaiA.A. OwaisA.A.A. SemlaliA. FarooquiM. Antidiabetic, antioxidant and cytotoxicity activities of ortho - and para -substituted Schiff bases derived from metformin hydrochloride: Validation by molecular docking and in silico ADME studies.Open Chem.20232112023012510.1515/chem‑2023‑0125
    [Google Scholar]
  74. PiaseckaM.M. HuttunenJ. ZajdaA. SikoraJ. HuttunenK.M. Sulfonamide metformin derivatives induce mitochondrial-associated apoptosis and cell cycle arrest in breast cancer cells.Chem. Biol. Interact.202235210979510.1016/j.cbi.2021.10979534953865
    [Google Scholar]
  75. RenC. WangJ. TanY. GuoM. GuoJ. LiuY. WuX. FengY. Synthesis, characterization and biological evaluation of magnolol and honokiol derivatives with 1, 3, 5-triazine of metformin cyclization.Molecules20202524577910.3390/molecules2524577933302335
    [Google Scholar]
  76. KristófiR. ErikssonJ.W. Metformin as an anti-inflammatory agent: A short review.J. Endocrinol.20212512R11R2210.1530/JOE‑21‑019434463292
    [Google Scholar]
  77. KohS.J. KimJ.M. KimI.K. KoS.H. KimJ.S. Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer.J. Gastroenterol. Hepatol.201429350251010.1111/jgh.1243524716225
    [Google Scholar]
  78. SongZ. WuT. SunJ. WangH. HuaF. NicolasY.S.M. KcR. ChenK. JinZ. LiuJ. ZhangM. Metformin attenuates post-epidural fibrosis by inhibiting the TGF-β1/Smad3 and HMGB1/TLR4 signaling pathways.J. Cell. Mol. Med.20212573272328310.1111/jcmm.1639833611840
    [Google Scholar]
  79. PetrascaA. HamblyR. KearneyN. SmithC.M. PenderE.K. MahonM.J. O’RourkeA.M. IsmaielM. BolandP.A. AlmeidaJ.P. KennedyC. ZaborowskiA. MurphyS. WinterD. KirbyB. FletcherJ.M. Metformin has anti-inflammatory effects and induces immunometabolic reprogramming via multiple mechanisms in hidradenitis suppurativa.Br. J. Dermatol.2023189673074010.1093/bjd/ljad30537648653
    [Google Scholar]
  80. TaherI. MasryE.E. AbouelkheirM. TahaA. Anti inflammatory effect of metformin against an experimental model of LPS induced cytokine storm.Exp. Ther. Med.202326341510.3892/etm.2023.1211437559933
    [Google Scholar]
  81. DehkordiA.H. AbbaszadehA. MirS. HasanvandA. Metformin and its anti-inflammatory and anti-oxidative effects; New concepts.J. Renal Inj. Prev.201881546110.15171/jrip.2019.11
    [Google Scholar]
  82. GuoJ. XieL. ZhangJ. CaoH. WangJ. WuX. FengY. Synthesis, quality control and preliminary activity evaluation of a new compound HM475.Molecules2023289375310.3390/molecules2809375337175163
    [Google Scholar]
  83. CaoH. LiaoS. ZhongW. XiaoX. ZhuJ. LiW. WuX. FengY. Synthesis, characterization, and biological evaluations of 1, 3, 5-triazine derivatives of metformin cyclization with berberine and magnolol in the presence of sodium methylate.Molecules20172210175210.3390/molecules2210175229057810
    [Google Scholar]
  84. SekarS. PazhamalaiS. AriharasivakumarG. GopalakrishnanM. Design, synthesis, characterization, molecular docking, ADME properties and in vivo antipsychotic activity of aripiprazole related drugs candidates.Lett. Drug Des. Discov.20171491073108510.2174/1570180814666161207143742
    [Google Scholar]
  85. RajalakshmiR. RamkumarS. SripriyaA. Synthesis and spectral characterization of chalcone dervived from 6-acetyl-2H-1, 4-benzoxazin-(4H)-3-one: Single-crystal XRD, Hirshfeld surface analysis and DFT calculations.Asian J. Chem. Sci.2022113162810.9734/ajocs/2022/v11i319122
    [Google Scholar]
  86. SinghalA. JieL. KumarP. HongG.S. LeowM.K.S. PalejaB. TsenovaL. KurepinaN. ChenJ. ZolezziF. KreiswirthB. PoidingerM. CheeC. KaplanG. WangY.T. LiberoD.G. Metformin as adjunct antituberculosis therapy.Sci. Transl. Med.20146263263ra15910.1126/scitranslmed.300988525411472
    [Google Scholar]
  87. LiuY. JiaY. YangK. LiR. XiaoX. ZhuK. WangZ. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria.Adv. Sci.2020712190222710.1002/advs.20190222732596101
    [Google Scholar]
  88. MasadehM.M. AlzoubiK.H. MasadehM.M. AburashedZ.O. Metformin as a potential adjuvant antimicrobial agent against multidrug resistant bacteria.Clin. Pharmacol.202113839010.2147/CPAA.S29790334007223
    [Google Scholar]
  89. GanesanM. SekarJ. KandasamyP.S. SrinivasanP. Design, synthesis, spectral characterization, in silico ADMET studies, molecular docking, antimicrobial activity, and anti breast cancer activity of 5,6-dihydrobenzo[H]quinazolines.J. Mol. Struct.2024129613677110.1016/j.molstruc.2023.136771
    [Google Scholar]
  90. EsamZ. AkhavanM. LotfiM. BekhradniaA. Synthesis and in silico investigation of isatin-based Schiff bases as potential inhibitors for promising targets against SARS-CoV-2.Chem. Select2022746e20220198310.1002/slct.20220198336718466
    [Google Scholar]
  91. UrsiniF. RussoE. PellinoG. D’AngeloS. ChiaravallotiA. SarroD.G. ManfrediniR. GiorgioD.R. Metformin and autoimmunity: A “new deal” of an old drug.Front. Immunol.20189123610.3389/fimmu.2018.0123629915588
    [Google Scholar]
  92. LvZ. GuoY. Metformin and its benefits for various diseases.Front. Endocrinol.20201119110.3389/fendo.2020.0019132425881
    [Google Scholar]
  93. RotermundC. MachetanzG. FitzgeraldJ.C. The therapeutic potential of metformin in neurodegenerative diseases.Front. Endocrinol.2018940010.3389/fendo.2018.0040030072954
    [Google Scholar]
  94. GrantPJ Beneficial effects of metformin on haemostasis and vascular function in man.Diab. Meta.20032946S446S5210.1016/S1262‑3636(03)72787‑6
    [Google Scholar]
  95. StandevenK.F. AriënsR.A.S. WhitakerP. AshcroftA.E. WeiselJ.W. GrantP.J. The effect of dimethylbiguanide on thrombin activity, FXIII activation, fibrin polymerization, and fibrin clot formation.Diabetes200251118919710.2337/diabetes.51.1.18911756340
    [Google Scholar]
  96. XinG. WeiZ. JiC. ZhengH. GuJ. MaL. HuangW. NatschkeM.S.L. YehJ.L. ZhangR. QinC. WenL. XingZ. CaoY. XiaQ. LuY. LiK. NiuH. LeeK.H. HuangW. Metformin uniquely prevents thrombosis by inhibiting platelet activation and mtDNA release.Sci. Rep.2016613622210.1038/srep3622227805009
    [Google Scholar]
  97. GhoshalK. BhattacharyyaM. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis.Sci. World J.20142014111610.1155/2014/78185724729754
    [Google Scholar]
  98. PiaseckaM.M. SadkowskaA. HuttunenK.M. PodsiedlikM. OlasikM.E. SikoraJ. An investigation into the pleiotropic activity of metformin. A glimpse of haemostasis.Eur. J. Pharmacol.202087217298410.1016/j.ejphar.2020.17298432017937
    [Google Scholar]
  99. ZajdaA. SikoraJ. HynninenM. TampioJ. HuttunenK.M. PiaseckaM.M. Substituent effects of sulfonamide derivatives of metformin that can dually improve cellular glucose utilization and anti-coagulation.Chem. Biol. Interact.202337311038110.1016/j.cbi.2023.11038136746201
    [Google Scholar]
  100. PiaseckaM.M. SikoraJ. ZajdaA. HuttunenK.M. Novel halogenated sulfonamide biguanides with anti-coagulation properties.Bioorg. Chem.20209410344410.1016/j.bioorg.2019.10344431776031
    [Google Scholar]
  101. TomarD.R. JayakumarS.V. SaxenaA. Novel synthesis and docking studies of selected drug derivatives.Mater. Today Proc.2023104323910.1016/j.matpr.2023.11.108
    [Google Scholar]
  102. BasavarajM. GilesD. DasA.K. JanadriS. AndhaleG.S. Design, synthesis and chemical stability of indolizine derivatives for antidiabetic activity.Nucl. Nucleo. Nucleic Acids202241111127114010.1080/15257770.2022.210041835856484
    [Google Scholar]
  103. BardovskyiR. GrytsaiO. RoncoC. BenhidaR. Synthesis and characterization of new heterocycles related to aryl[e][1,3]diazepinediones. rearrangement to 2,4-diamino-1,3,5-triazine derivatives.New J. Chem.202044208171817510.1039/D0NJ01229G
    [Google Scholar]
/content/journals/coc/10.2174/0113852728361956241220051749
Loading
/content/journals/coc/10.2174/0113852728361956241220051749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test