Skip to content
2000
Volume 29, Issue 14
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The synthesis of bis-indole methanes (BIMs) is a significant area of research in organic chemistry due to their diverse biological activities and applications in pharmaceuticals. This review focuses on the acid-catalyzed synthesis of BIMs, offering a comprehensive overview of various catalytic systems, reaction mechanisms, and optimization strategies. Acid catalysts, including Bronsted, Lewis acids, solid acids, and homogeneous acids, play a crucial role in facilitating the formation of BIMs through electrophilic substitution reactions. The review insights into different acid catalysts, such as Meldrum's acid, boric acid, and various solid acids, and highlights their efficiency, selectivity, and environmental impact. Additionally, the influence of reaction conditions, such as temperature, solvent selection, and substrate concentration, on the yield and purity of BIMs are discussed. Moreover, recent advances in green chemistry approaches, including using recyclable and solid acid catalysts, are explored. This comprehensive study aims to provide insights into the optimization of acid-catalyzed BIM synthesis, paving the way for future developments in synthesizing biologically relevant indole derivatives.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728352142241007074507
2024-10-28
2025-10-07
Loading full text...

Full text loading...

References

  1. AziziN. GholibeghloE. ManocheriZ. Green procedure for the synthesis of bis(indolyl)methanes in water.Sci. Iran.201219357457810.1016/j.scient.2011.11.043
    [Google Scholar]
  2. ChenD. YuL. WangP.G. Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones.Tetrahedron Lett.199637264467447010.1016/0040‑4039(96)00958‑6
    [Google Scholar]
  3. BeltráJ. GimenoM.C. HerreraR.P. A new approach for the synthesis of bisindoles through AgOTf as catalyst.Beilstein J. Org. Chem.2014102206221410.3762/bjoc.10.228 25246979
    [Google Scholar]
  4. NagarajanR. PerumalP.T. InCl3 and In(OTf)3 catalyzed reactions: synthesis of 3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives.Tetrahedron20025861229123210.1016/S0040‑4020(01)01227‑3
    [Google Scholar]
  5. SarvaS. HarinathJ.S. SthanikamS.P. EthirajS. VaithiyalingamM. CirandurS.R. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes.Chin. Chem. Lett.2016271162010.1016/j.cclet.2015.08.012
    [Google Scholar]
  6. JaratjaroonphongJ. TuengpanyaS. SaeengR. UdompongS. SrisookK. Green synthesis and anti-inflammatory studies of a series of 1,1-bis(heteroaryl)alkane derivatives.Eur. J. Med. Chem.20148356156810.1016/j.ejmech.2014.06.045 24996142
    [Google Scholar]
  7. OsawaT. NamikiM. Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria.Tetrahedron Lett.198324434719472210.1016/S0040‑4039(00)86237‑1
    [Google Scholar]
  8. SashidharaK.V. KumarA. KumarM. SrivastavaA. PuriA. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives.Bioorg. Med. Chem. Lett.201020226504650710.1016/j.bmcl.2010.09.055 20932744
    [Google Scholar]
  9. MariM. TassoniA. LucariniS. FanelliM. PiersantiG. SpadoniG. Brønsted acid catalyzed bisindolization of α-amido acetals: Synthesis and anticancer activity of bis(indolyl) ethanamino derivatives.Eur. J. Org. Chem.20142014183822383010.1002/ejoc.201402055
    [Google Scholar]
  10. TeliP. SoniS. TeliS. AgarwalS. Agarwal, S. Unlocking diversity: from simple to cutting-edge synthetic methodologies of bis (indolyl) methanes.Top. Curr. Chem. (Cham)20243821810.1007/s41061‑024‑00454‑z 38403746
    [Google Scholar]
  11. BenabadjiS.H. WenR. ZhengJ.B. DongX.C. YuanS.G. Anticarcinogenic and antioxidant activity of diindolylmethane derivatives.Acta Pharmacol. Sin.2004255666671 15132835
    [Google Scholar]
  12. BharateS.B. BharateJ.B. KhanS.I. TekwaniB.L. JacobM.R. MudududdlaR. YadavR.R. SinghB. SharmaP.R. MaityS. SinghB. KhanI.A. VishwakarmaR.A. Discovery of 3,3′-diindolylmethanes as potent antileishmanial agents.Eur. J. Med. Chem.20136343544310.1016/j.ejmech.2013.02.024 23517732
    [Google Scholar]
  13. SunP. HuangY. ChenS. MaX. YangZ. WuJ. Indole derivatives as agrochemicals: An overview.Chin. Chem. Lett.202435710900510.1016/j.cclet.2023.109005
    [Google Scholar]
  14. ŠtrosM. BacíkováA. PolanskáE. StokrováJ. StraussF. HMGB1 interacts with human topoisomerase II and stimulates its catalytic activity.Nucleic Acids Res.200735155001501310.1093/nar/gkm525 17636313
    [Google Scholar]
  15. GeoffroyP.A. RollandB. Le baclofen a-t-il des qualités antidépresseurs?Encephale201642438438510.1016/j.encep.2016.04.001 27216595
    [Google Scholar]
  16. OppermanT.J. KwasnyS.M. LiJ.B. LewisM.A. AielloD. WilliamsJ.D. PeetN.P. MoirD.T. BowlinT.L. LongE.C. DNA targeting as a likely mechanism underlying the antibacterial activity of synthetic bis-indole antibiotics.Antimicrob. Agents Chemother.201660127067707610.1128/AAC.00309‑16 27620482
    [Google Scholar]
  17. BonnesenC. EgglestonI.M. HayesJ.D. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines.Cancer Res.2001611661206130 11507062
    [Google Scholar]
  18. KhannaL. Mansi YadavS. MisraN. KhannaP. “In water” synthesis of bis(indolyl)methanes: a review.Synth. Commun.202151192892292310.1080/00397911.2021.1957113
    [Google Scholar]
  19. KhorshidiA. MardazadN. ShaabanzadehZ. Zirconium(IV)-catalyzed one-pot synthesis and oxidation of bis- and tris(indolyl)methanes into conjugated chromophores as new pH indicators or calorimetric chemosensors for transition metals.Tetrahedron Lett.201455293873387710.1016/j.tetlet.2014.05.028
    [Google Scholar]
  20. GehringC.A. IrvingH.R. ParishR.W. Gibberellic acid induces cytoplasmic acidification in maize coleoptiles.Planta1994194453254010.1007/BF00714467
    [Google Scholar]
  21. SerhanM. JackemeyerD. LongM. SprowlsM. PerezI.D. MaretW. ChenF. TaoN. ForzaniE. Total iron measurement in human serum with a novel smartphone-based assay.IEEE J. Translat. Engin. Heal. Med.202081910.1109/JTEHM.2020.3005308
    [Google Scholar]
  22. IslamA. UsmanK. HaiderZ. AlamM.F. NawazA. SonarP. Biomass‐derived materials for interface engineering in organic/perovskite photovoltaic and light‐emitting devices.Adv. Mater. Technol.202387220139010.1002/admt.202201390
    [Google Scholar]
  23. MushtaqA. AzamU. MehreenS. NaseerM.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges.Eur. J. Med. Chem.202324911511910.1016/j.ejmech.2023.115119 36680985
    [Google Scholar]
  24. ZaharaniL. KhalighN.G. Study the crystal structure of 4,4′-(propane-1,3-diyl)dipiperidinium sulfate monohydrate and its hydrogen bond catalytic activity in the mechanochemical synthesis of BIMs.J. Mol. Struct.2023127813491710.1016/j.molstruc.2023.134917
    [Google Scholar]
  25. JiangY. SuL. LiaoY. ShenY. GaoH. ZhangY. WangR. MaoZ. Synthesis and antifungal evaluation of phenol-derived bis(indolyl)methanes combined with FLC against Candida albicans.Bioorg. Med. Chem. Lett.20225812852510.1016/j.bmcl.2022.128525 34998904
    [Google Scholar]
  26. KolagkisP.X. GalathriE.M. KokotosC.G. Green and sustainable approaches for the Friedel-Crafts reaction between aldehydes and indoles.Beilstein J. Org. Chem.20242037942610.3762/bjoc.20.36 38410780
    [Google Scholar]
  27. SashidharaK.V. ModukuriR.K. SonkarR. RaoK.B. BhatiaG. Hybrid benzofuran-bisindole derivatives: New prototypes with promising anti-hyperlipidemic activities.Eur. J. Med. Chem.201368384610.1016/j.ejmech.2013.07.009 23954239
    [Google Scholar]
  28. CooneyL.N. O’SheaK.D. WinfieldH.J. CahillM.M. PierceL.T. McCarthyF.O. Bisindolyl maleimides and indolylmaleimide derivatives-A review of their synthesis and bioactivity.Pharmaceuticals (Basel)2023169119110.3390/ph16091191 37764999
    [Google Scholar]
  29. ZhouW. ChenX. LuL. SongX.R. LuoM.J. XiaoQ. Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis.Chin. Chem. Lett.202435410890210.1016/j.cclet.2023.108902
    [Google Scholar]
  30. CoppolaM.A. PuschM. ImbriciP. LiantonioA. Small molecules targeting kidney ClC-K chloride channels: Applications in rare tubulopathies and common cardiovascular diseases.Biomolecules202313471010.3390/biom13040710 37189456
    [Google Scholar]
  31. SantosA.S. Losada-GarciaN. Garcia-SanzC. SilvaA.M.S. MarquesM.M.B. PalomoJ.M. Exploring Thermomyces lanuginosus lipase (TLL)‐PdNPs nanohybrid as suitable catalyst for one‐pot synthesis of Bis(3‐indolyl)phenylmethane.ChemCatChem2023163e20230074810.1002/cctc.202300748
    [Google Scholar]
  32. ThawabtehA. JumaS. BaderM. KaramanD. ScranoL. BufoS. KaramanR. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens.Toxins (Basel)2019111165610.3390/toxins11110656 31717922
    [Google Scholar]
  33. SantosA.S. FerroR.D. ViduedoN. MaiaL.B. SilvaA.M.S. MarquesM.M.B. Synthesis of Bis(3‐indolyl)methanes Mediated by Potassium tert‐ Butoxide.ChemistryOpen2023121e20220026510.1002/open.202200265 36650736
    [Google Scholar]
  34. ChavanK.A. ShuklaM. ChauhanA.N.S. MajiS. MaliG. BhattacharyyaS. ErandeR.D. Effective synthesis and biological evaluation of natural and designed bis (indolyl) methanes via taurine-catalyzed green approach.ACS Omega2022712104381044610.1021/acsomega.1c07258 35382311
    [Google Scholar]
  35. VeluriR. OkaI. Wagner-DöblerI. LaatschH. New indole alkaloids from the North sea bacterium Vibrio parahaemolyticus Bio249.J. Nat. Prod.200366111520152310.1021/np030288g 14640534
    [Google Scholar]
  36. ChaturvediA. SharmaV. Nafla CMF. SivaPrasadK. SharmaD. KumarN. ChandelR. SinghM. RawalR.K. SinghV. Transition metal-free efficient synthesis of bis(indolyl)propynes (BIPs).Org. Biomol. Chem.202422347039705110.1039/D4OB01017E 39145468
    [Google Scholar]
  37. GonçalvesR.C.R. PeñalverP. CostaS.P.G. MoralesJ.C. RaposoM.M.M. Polyaromatic Bis(indolyl)methane derivatives with antiproliferative and antiparasitic activity.Molecules20232823772810.3390/molecules28237728 38067459
    [Google Scholar]
  38. WangZ. WangQ. LiaoA. JinS. Natural products for biocides discovery: Discovery of arundine and it’s derivatives as novel antiviral and anti-phytopathogenic-fungus agents.Heterocycles2020100219520610.3987/COM‑19‑14192
    [Google Scholar]
  39. AliR. AhamadM.Z. SinghS. HaqW. Regioselective synthesis of symmetrical and unsymmetrical bis(heteroaryl)methane (BHM)‐containing amino acids.Eur. J. Org. Chem.2019201981820182410.1002/ejoc.201900043
    [Google Scholar]
  40. PachecoP.A.F. SantosM.M.M. Recent progress in the development of indole-based compounds active against malaria, trypanosomiasis and leishmaniasis.Molecules202227131910.3390/molecules27010319 35011552
    [Google Scholar]
  41. KambojP. TyagiV. A recent update on the environment friendly methodologies to synthesize bis(indolyl)methane and 3,3-di(3-indolyl)-2-indolone derivatives.Tetrahedron202314813367910.1016/j.tet.2023.133679
    [Google Scholar]
  42. KumarR. Exploring the antimicrobial potential of isatin and derivatives: A comprehensive review.World J. Pharm. Res.20231231224124610.20959/wjpr20233‑27159
    [Google Scholar]
  43. YeZ. ChenY. ZhangR. DaiH. ZengC. ZengH. FengH. DuG. FangH. CaiD. c-Jun N-terminal kinase-c-Jun pathway transactivates Bim to promote osteoarthritis.Can. J. Physiol. Pharmacol.201492213213910.1139/cjpp‑2013‑0228 24502636
    [Google Scholar]
  44. LiuS. ZhangZ. TangX. ZhaoX. AnY. Mechanism and target treatment of primary immunodeficiency diseases with systemic lupus erythematosus‐like phenotype.Pediatric Discovery202423e6710.1002/pdi3.67
    [Google Scholar]
  45. SunL. DingF. ZhouL. WangJ. LiM. ZhouP. LiJ. DingC. WangH. XuY. Apoptosis of dendritic cells and autoimmune disease.Front. Biosci. (Landmark Ed.)202429415710.31083/j.fbl2904157 38682203
    [Google Scholar]
  46. AthavaleR. GardiS. ChoudharyF. PatilD. ChandanN. MoreP. Novel acidic ionic liquid [BEMIM][HSO4]: A highly efficient and recyclable catalyst for the synthesis of bis-indolyl methane derivatives.Appl. Catal. A Gen.202466911950510.1016/j.apcata.2023.119505
    [Google Scholar]
  47. WangY. ZengH. LiL. LiuJ. LinJ. BieY. WangS. ChengX. NashunB. YaoY. HuX. ZhaoY. Pokemon inhibits Bim transcription to promote the proliferation, anti-anoikis, invasion, histological grade, and dukes stage of colorectal neoplasms.J. Cancer Res. Clin. Oncol.2024150838010.1007/s00432‑024‑05904‑1 39095579
    [Google Scholar]
  48. KumarN. BansalaR. An overview of molecular mechanisms in cancer drug resistance and therapeutic strategies.Int. J. Sci. Res. Arch.20241221243125810.30574/ijsra.2024.12.2.1353
    [Google Scholar]
  49. BanchiM. CoxM.C. BocciG. Metronomic chemotherapy in hematology: Lessons from preclinical and clinical studies to build a solid rationale for future schedules.Cancer Lett.202459121690010.1016/j.canlet.2024.216900 38636896
    [Google Scholar]
  50. GolmakaniH. AzimianA. GolmakaniE. Newly discovered functions of miRNAs in neuropathic pain: Transitioning from recent discoveries to innovative underlying mechanisms.Mol. Pain2024201744806923122584510.1177/17448069231225845 38148597
    [Google Scholar]
  51. KumarM. KaurS. KaurV. KaurS. Caspases and Phytochemicals: An Important Link in Cancer Chemoprevention.Evaluation of Environmental Contaminants and Natural Products: A Human Health Perspective201921024310.2174/9789811410963119010013
    [Google Scholar]
  52. QinR. YouF.M. ZhaoQ. XieX. PengC. ZhanG. HanB. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets.J. Hematol. Oncol.202215113310.1186/s13045‑022‑01350‑z 36104717
    [Google Scholar]
  53. KrelleA.C. OkoliA.S. MendzG.L. Huh-7 human liver cancer cells: A model system to understand hepatocellular carcinoma and therapy.J. Cancer Ther.20134260663110.4236/jct.2013.42078
    [Google Scholar]
  54. HuangH. TangJ. DangK. TangJ. LiE. FanL. YeM. WuG. SuF. Design and synthesis of bis(indolyl)-hydrazide-hydrazone derivatives and their antifungal activities against plant pathogen fungi.Nat. Prod. Res.20241610.1080/14786419.2024.2371994 38940256
    [Google Scholar]
  55. XiaoS. WangZ. WangB. HouB. ChengJ. BaiT. ZhangY. WangW. YanL. ZhangJ. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives.Front. Microbiol.202314109909810.3389/fmicb.2023.1099098 37032885
    [Google Scholar]
  56. SongJ. ParkS. LeeK. BaeJ. KwonS. ChoC.S. ChungS. Augmented reality-based BIM data compatibility verification method for FAB digital twin implementation.Buildings20231311268310.3390/buildings13112683
    [Google Scholar]
  57. LiuM.X. MaL.L. LiuX.Y. LiuJ.Y. LuZ.L. LiuR. HeL. Combination of [12] aneN3 and triphenylamine-benzylideneimidazolone as nonviral gene vectors with two-photon and AIE properties.ACS Appl. Mater. Interfaces20191146429754298710.1021/acsami.9b15169 31657894
    [Google Scholar]
  58. MilnerR. Pure bigraphs: Structure and dynamics.Inf. Comput.200620416012210.1016/j.ic.2005.07.003
    [Google Scholar]
  59. El-SayedM. MahmoudK. HilgerothA. Glacial acetic acid as an efficient catalyst for simple synthesis of dindolylmethanes.Curr. Chem. Lett.20143171410.5267/j.ccl.2013.10.003
    [Google Scholar]
  60. El-ImamA.A. DuC. Fermentative itaconic acid production.J. Biodivers. Biopros.2014111810.4172/ijbbd.1000119
    [Google Scholar]
  61. WillkeT. VorlopK.D. Biotechnological production of itaconic acid.Appl. Microbiol. Biotechnol.2001563-428929510.1007/s002530100685 11548996
    [Google Scholar]
  62. KasarS.B. ThopateS.R. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst.Curr. Org. Synth.201815111011510.2174/1570179414666170621080701
    [Google Scholar]
  63. BanariH. KiyaniH. PouraliA. Green synthesis of bis(indolyl)methanes catalysed by salicylic acid.Chiang Mai J.201845413420
    [Google Scholar]
  64. BanariH. KiyaniH. PouraliA. Efficient synthesis of bis(indolyl)methanes, bispyrazoles and biscoumarins using 4-sulfophthalic acid.Res. Chem. Intermed.20174331635164910.1007/s11164‑016‑2720‑7
    [Google Scholar]
  65. SoltaniS. MontazeriN. ZeydiM.M. HeraviM.M. Synthesis of new bis(indolyl)methanes catalyzed by benzylsulfamic acid and evaluation of their antimicrobial activities.Pharm. Chem. J.2020531094795210.1007/s11094‑020‑02103‑3
    [Google Scholar]
  66. EkboteS.S. DeshmukhK.M. QureshiZ.S. BhanageB.M. Polyvinylsulfonic acid as a novel Brønsted acid catalyst for the synthesis of bis(indolyl)methanes.Green Chem. Lett. Rev.20114217718310.1080/17518253.2010.528048
    [Google Scholar]
  67. VaidR. GuptaM. ChambyalO.S. GuptaR. SiO2-Diphenic acid: An efficient and recyclable heterogeneous catalyst for one-pot synthesis of bis-(indolyl)methane derivatives in liquid phase.J. Chem. Sci.2015127698799710.1007/s12039‑015‑0859‑1
    [Google Scholar]
  68. DeshmukhS.R. NalkarA.S. ThopateS.R. Ultrasound-Promoted Pyruvic Acid Catalyzed Green Synthesis of Biologically Relevant Bis(Indolyl)Methanes Scaffold under Aqueous Condition.Polycycl. Aromat. Compd.20224296501650910.1080/10406638.2021.1984259
    [Google Scholar]
  69. PasuparthyS.D. MaitiB. Facile synthesis of bis(indol-3-yl)methane derivatives catalyzed by carboxylic acid functionalized ionic liquid at room temperature: Investigation of photophysical properties, DFT calculations and molecular docking with bovine serum albumin.Tetrahedron202415313384510.1016/j.tet.2024.133845
    [Google Scholar]
  70. LiangD. HuangW. YuanL. MaY. MaJ. NingD. An underrated cheap Lewis acid: Molecular bromine as a robust catalyst for bis(indolyl)methanes synthesis.Catal. Commun.201455111410.1016/j.catcom.2014.06.005
    [Google Scholar]
  71. SwethaA. BabuB.M. MeshramH.M. An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes.Tetrahedron Lett.201556141775177910.1016/j.tetlet.2015.02.032
    [Google Scholar]
  72. MerinosJ. RuízH. LópezY. LimaS. LimaS.R. Synthesis of bis(indolyl)methanes catalyzed by triethylborane.Lett. Org. Chem.201512533233610.2174/1570178612666150220225335 26120289
    [Google Scholar]
  73. JiS.J. ZhouM.F. GuD.G. JiangZ.Q. LohT.P. Efficient FeIII-catalyzed synthesis of bis(indolyl)methanes in ionic liquids.Eur. J. Org. Chem.2004200471584158710.1002/ejoc.200300719
    [Google Scholar]
  74. VeisiH. MalekiB. EshbalaF.H. VeisiH. MastiR. AshrafiS.S. BaghayeriM. In situ generation of Iron(III) dodecyl sulfate as Lewis acid-surfactant catalyst for synthesis of bis-indolyl, tris-indolyl, Di(bis-indolyl), Tri(bis-indolyl), tetra(bis-indolyl)methanes and 3-alkylated indole compounds in water.RSC Adv.2014458306833068810.1039/C4RA03194F
    [Google Scholar]
  75. KatrunP. AtthawilaiK. KuhakarnC. A simple and efficient preparation of bis(indolyl)methanes catalyzed by HCl/silica gel under solvent-free conditions.Arkivoc20218108203
    [Google Scholar]
  76. FanC. LiR. DuanJ. XuK. LiuY. WangD. HeX. Meldrum’s acid-induced and FeCl3-catalyzed one-pot domino reactions for construction of bis(indolyl)methanes.Synth. Commun.20225281155116410.1080/00397911.2022.2076245
    [Google Scholar]
  77. SatamJ.R. ParghiK.D. JayaramR.V. 12-Tungstophosphoric acid supported on zirconia as an efficient and heterogeneous catalyst for the synthesis of bis(indolyl)methanes and tris(indolyl)methanes.Catal. Commun.2008961071107810.1016/j.catcom.2007.10.009
    [Google Scholar]
  78. DevassyB.M. LefebvreF. BöhringerW. FletcherJ. HalligudiS.B. Synthesis of linear alkyl benzenes over zirconia-supported 12-molybdophosphoric acid catalysts.J. Mol. Catal. Chem.20052361-216216710.1016/j.molcata.2005.03.033
    [Google Scholar]
  79. YadavJ.S. GuptaM.K. JainR. YadavN.N. ReddyB.V.S. A practical synthesis of bis(indolyl)methanes employing boric acid.Monatsh. Chem.201014191001100410.1007/s00706‑010‑0355‑8
    [Google Scholar]
  80. FaisalM. LarikF.A. SalmanM. SaeedA. Phospho sulfonic acid: A highly efficient and novel catalyst for formation of bis(indolyl)alkanes from aldehydes and indole under aqueous conditions.Kinet. Catal.201960452253510.1134/S0023158419040049
    [Google Scholar]
  81. ZolfigolM.A. SalehiP. ShiriM. SayadiA. AbdoliA. KeypourH. RezaeivalaM. NiknamK. KolvariE. A simple and efficient route for the synthesis of di and tri(bis(indolyl) methanes) as new triarylmethanes.Mol. Divers.2008123-420320710.1007/s11030‑008‑9091‑y 18841491
    [Google Scholar]
  82. KarimiB. KhalkhaliM. Solid silica-based sulfonic acid as an efficient and recoverable interphase catalyst for selective tetrahydropyranylation of alcohols and phenols.J. Mol. Catal. Chem.20052321-211311710.1016/j.molcata.2005.01.028
    [Google Scholar]
  83. KarthikM. MageshC.J. PerumalP.T. PalanichamyM. ArabindooB. MurugesanV. Zeolite-catalyzed ecofriendly synthesis of vibrindole A and bis(indolyl)methanes.Appl. Catal. A Gen.2005286113714110.1016/j.apcata.2005.03.017
    [Google Scholar]
  84. NarsaleB.S. GadhaveA.G. RautK.S. ThubeD.R. One pot approach of novel xanthan perchloric acid catalyst in synthesis of bis(indolyl)methane derivatives via greener perspective.Polycycl. Aromat. Compd.20234375826583910.1080/10406638.2022.2108075
    [Google Scholar]
  85. AlinezhadH. HaghighiA.H. SalehianF. A green method for the synthesis of bis-indolylmethanes and 3,3′-indolyloxindole derivatives using cellulose sulfuric acid under solvent-free conditions.Chin. Chem. Lett.201021218318610.1016/j.cclet.2009.09.001
    [Google Scholar]
  86. BanariH. KiyaniH. PouraliA.R. Bisindolization reaction employing phthalimide-N-sulfonic acid as an efficient catalyst.Curr. Organocatal.20207212413310.2174/2213337206666191022110730
    [Google Scholar]
  87. RaviK. KrishnakumarB. SwaminathanM. BiCl3-loaded montmorillonite K10: a new solid acid catalyst for solvent-free synthesis of bis(indolyl)methanes.Res. Chem. Intermed.20154185353536410.1007/s11164‑014‑1636‑3
    [Google Scholar]
  88. ChaudhariV. PatilA. PatilS.R. BorseG.P. PatilV. Synthesis of 3, 3′- bis (indolyl) methanes using Bio-Waste metal free super acid as efficient with recyclable catalysts.Mater. Today Proc.202410.1016/j.matpr.2024.06.002
    [Google Scholar]
  89. MallikA.K. PalR. GuhaC. MallikH. A convenient, eco-friendly, and efficient method for synthesis of bis(3-indolyl)methanes “on-water”.Green Chem. Lett. Rev.20125332132710.1080/17518253.2011.630027
    [Google Scholar]
  90. LiJ.T. DaiH.G. XuW.Z. LiT.S. An efficient and practical synthesis of bis(indolyl)methanes catalyzed by aminosulfonic acid under ultrasound.Ultrason. Sonochem.2006131242710.1016/j.ultsonch.2004.12.004 16223682
    [Google Scholar]
  91. PengY.Y. ZhangQ.L. YuanJ.J. ChengJ.P. A facile aqueous synthesis of bis(indol-3-yl)alkanes catalyzed by dodecylbenzenesulfonic acid.Chin. J. Chem.200826122228223210.1002/cjoc.200890396
    [Google Scholar]
  92. GanesanA. KothandapaniJ. NanuboluJ.B. GanesanS.S. Oleic acid: a benign Brønsted acidic catalyst for densely substituted indole derivative synthesis.RSC Adv.2015536285972860010.1039/C5RA02906F
    [Google Scholar]
  93. PatilR.C. DamateS.A. ZambareD.N. PatilS.S. Chickpea leaf exudates: a green Brønsted acid type biosurfactant for bis(indole)methane and bis(pyrazolyl)methane synthesis.New J. Chem.202145209152916210.1039/D1NJ00382H
    [Google Scholar]
  94. PalR. New greener alternative for biocondensation of aldehydes and indoles using lemon juice: Formation of Bis-, Tris-, and tetraindoles.Int. J. Org. Chem. (Irvine)20133213614210.4236/ijoc.2013.32015
    [Google Scholar]
  95. SunD. JiangG. XieZ. LeZ. α ‐Chymotrypsin‐catalyzed synthesis of bis(indolyl)alkanes in water.Chin. J. Chem.201533440941210.1002/cjoc.201400892
    [Google Scholar]
  96. PalR. Tamarind fruit juice as a natural catalyst: An excellent catalyst for efficient and green synthesis of bis-, tris-, and tetraindolyl compounds in water.ChemInform20144547chin.20144711810.1002/chin.201447118
    [Google Scholar]
  97. KarthikeyanK. SivaprasadG. Synthesis of some bis(indolyl)methanes catalyzed by ascorbic acid under mild conditions.Org. Prep. Proced. Int.201547644945310.1080/00304948.2015.1088755
    [Google Scholar]
  98. RajputJ. KoliS. MohiteB. BendreR. PatilS. PatilV. A green tactic for the synthesis of classical 3,3-bisindolylmethanes in waste curd water.SN Appl. Sci.2019110118710.1007/s42452‑019‑1212‑y
    [Google Scholar]
  99. KasarS.B. ThopateS.R. Ultrasonically assisted efficient and green protocol for the synthesis of bisindolylmethanes using malic acid as a homogeneous and reusable organocatalyst.Curr. Green Chem.20185317718410.2174/2213346105666180821114459
    [Google Scholar]
  100. Naik CP. G BA. SeikhA.H. DuttaS. Synthesis, characterization, and antibacterial activity of novel bis(indolyl)methanes sourced from biorenewable furfurals using gluconic acid aqueous solution (GAAS) as a sustainable catalyst.RSC Adv.20241430215532156210.1039/D4RA03905J 38979445
    [Google Scholar]
  101. ShengS.R. WangQ.Y. DingY. LiuX.L. CaiM.Z. Synthesis of bis(indolyl)methanes using recyclable PEG-supported sulfonic acid as catalyst.Catal. Lett.20091283-441842210.1007/s10562‑008‑9767‑z
    [Google Scholar]
/content/journals/coc/10.2174/0113852728352142241007074507
Loading
/content/journals/coc/10.2174/0113852728352142241007074507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test