Skip to content
2000
Volume 29, Issue 14
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Efficient synthesis of heterocyclic has always been a very important task in drug discovery. Most of the drugs contain heterocycles to provide an interface between chemistry and biology. Among the various heterocyclic compounds, quinazoline, a heterocyclic compound, offers multiple advantages like pyrimidine, pyridine, piperidine, imidazole, morpholine, quinoline, purine, Many research groups have demonstrated numerous synthesis techniques to harvest the advantage of quinazoline. Therefore, it is necessary to understand the various aspects of the development techniques of quinazoline as industry-oriented application. Various methodologies have been recently developed for the formation of quinazoline moiety. In this review article, the synthetic methods of quinazoline derivatives are classified based on metal-catalysed and miscellaneous synthetic aspects.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728349742241115060532
2025-01-10
2025-09-19
Loading full text...

Full text loading...

References

  1. HameedA. Al-RashidaM. UroosM. AliS.A. Arshia IshtiaqM. KhanK.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011–2016).Expert Opin. Ther. Pat.201828428129710.1080/13543776.2018.143259629368977
    [Google Scholar]
  2. ShafiS.S. SenthilkumarS. Synthesis and microbial activity of novel quinazoline derivatives.Int. J. Chemtech Res.201581164169
    [Google Scholar]
  3. DangiR. ChundawatN.S. AmetaK.L. Synthesis and biological evaluation of some quinazoline heterocyclic derivatives.Green Chem.2014393412
    [Google Scholar]
  4. RavezS. Castillo-AguileraO. DepreuxP. GoossensL. Quinazoline derivatives as anticancer drugs: A patent review (2011 – present).Expert Opin. Ther. Pat.201525778980410.1517/13543776.2015.103951225910402
    [Google Scholar]
  5. JaiswalS. DeviM. SharmaN. RathiK. DwivediJ. SharmaS. Emerging approaches for synthesis of 1,2,3-triazole derivatives. A review.Org. Prep. Proced. Int.202254538742210.1080/00304948.2022.2069456
    [Google Scholar]
  6. DeviM. JaiswalS. DwivediJ. KaurN. Synthetic aspects of condensed pyrimidine derivatives.Curr. Org. Chem.202125212625264910.2174/1385272825666210706123734
    [Google Scholar]
  7. DeviM. JaiswalS. JainS. KaurN. DwivediJ. Synthetic and biological attributes of pyrimidine derivatives: A recent update.Curr. Org. Synth.202118879082510.2174/157017941866621070615251534886770
    [Google Scholar]
  8. KaurN. DeviM. GrewalP. AhlawatN. BhardwajP. VermaY. JangidN.K. Synthesis of five-membered nitrogen-containing heterocycles using copperJ. Iran Chem. Soc.2021149
    [Google Scholar]
  9. KaurN. BhardwajP. DeviM. VermaY. AhlawatN. GrewalP. Ionic liquids for the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles.Curr. Org. Chem.201923111214123810.2174/1385272823666190717101741
    [Google Scholar]
  10. KaurN. DeviM. VermaY. GrewalP. JangidN.K. DwivediJ. Seven and higher-membered oxygen heterocycles: Metal and non-metal.Synth. Commun.201949121508154210.1080/00397911.2019.1579916
    [Google Scholar]
  11. KaurN. DeviM. VermaY. GrewalP. BhardwajP. AhlawatN. JangidN.K. Applications of metal and non-metal catalysts for the synthesis of oxygen containing five-membered polyheterocylces: A mini review.SN Appl. Sci.20191996310.1007/s42452‑019‑1007‑1
    [Google Scholar]
  12. KaurN. DeviM. VermaY. GrewalP. BhardwajP. AhlawatN. JangidN.K. Photochemical synthesis of fused five-membered O-heterocycles.Curr. Green Chem.20196315518310.2174/2213346106666190904145200
    [Google Scholar]
  13. AroraA. KapoorA. GillN.S. RanaA.C. Quinazoline: An overview.Int. J. Pharm. Sci. Rev. Res.201122228
    [Google Scholar]
  14. KaurN. BhardwajP. DeviM. VermaY. GrewalP. Synthesis of five-membered O, N -heterocycles using metal and nonmetal.Synth. Commun.201949111345138410.1080/00397911.2019.159430833093687
    [Google Scholar]
  15. ZhaoJ. ZhangY. WangM. LiuQ. LeiX. WuM. GuoS. YiD. LiQ. MaL. LiuZ. GuoF. WangJ. LiX. WangY. CenS. Quinoline and quinazoline derivatives inhibit viral RNA synthesis by SARS-CoV-2 RdRp.ACS Infect. Dis.2021761535154410.1021/acsinfecdis.1c0008334038639
    [Google Scholar]
  16. AlossaimiM.A. RiadiY. GeesiM.H. AnouarE.H. AldhafiriM.K. AlanaziA.I. DehbiO. IbnoufE.O. AzzallouR. Characterization, biological evaluation and molecular docking of a synthesised quinazolinone-based derivative.J. Mol. Struct.2022126613351910.1016/j.molstruc.2022.133519
    [Google Scholar]
  17. KaurN. GrewalP. BhardwajP. DeviM. AhlawatN. VermaY. Synthesis of five-membered N -heterocycles using silver metal.Synth. Commun.201949223058310010.1080/00397911.2019.1655767
    [Google Scholar]
  18. KaurN. BhardwajP. DeviM. VermaY. GrewalP. Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles.SN Appl. Sci.20191890310.1007/s42452‑019‑0920‑7
    [Google Scholar]
  19. LongS. DuarteD. CarvalhoC. OliveiraR. SantarémN. PalmeiraA. ResendeD.I.S.P. SilvaA.M.S. MoreiraR. KijjoaA. Cordeiro da SilvaA. NogueiraF. SousaE. PintoM.M.M. Indole-containing pyrazino[2,1- b ]quinazoline-3,6-diones active against plasmodium and trypanosomatids.ACS Med. Chem. Lett.202213222523510.1021/acsmedchemlett.1c0058935178179
    [Google Scholar]
  20. JainS. DhallE. DeviM. SharmaS. DwivediJ. SahuS.K. Phenyl substituted thiazole linked 1,2,4-triazole derivatives: synthesis and their biological evaluation.Lett. Org. Chem.202118972773410.2174/1570178617999201106113641
    [Google Scholar]
  21. KumarK.S. GangulyS. VeerasamyR. De ClercqE. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones.Eur. J. Med. Chem.201045115474547910.1016/j.ejmech.2010.07.05820724039
    [Google Scholar]
  22. DaiH. SiX. WangH. ChiL. GaoC. WangZ. LiuL. QianZ. KeY. ZhangQ. LiuH. Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives.Med. Chem. Res.20223181351136810.1007/s00044‑022‑02897‑9
    [Google Scholar]
  23. VashiR.T. ShelatC.D. PatelH. Synthesis and antifungal activity of quinazoline-4-one derivatives containing 8-hydroxy quinazoline ligand and its transition metal chelates.Pharma Chem.20102216222
    [Google Scholar]
  24. KhanI. IbrarA. AhmedW. SaeedA. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue.Eur. J. Med. Chem.20159012416910.1016/j.ejmech.2014.10.08425461317
    [Google Scholar]
  25. AbuelizzH.A. MarzoukM. GhabbourH. Al-SalahiR. Synthesis and anticancer activity of new quinazoline derivatives.Saudi Pharm. J.20172571047105410.1016/j.jsps.2017.04.02229158714
    [Google Scholar]
  26. ShibaS.A. el-KhamryA.A. ShabanM.E. AtiaK.S. Synthesis and antimicrobial activity of some bis-quinazoline derivatives.Pharmazie19975231891949109167
    [Google Scholar]
  27. ModhR.P. De ClercqE. PannecouqueC. ChikhaliaK.H. Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline–triazine derivatives.J. Enzyme Inhib. Med. Chem.201429110010810.3109/14756366.2012.75562223327639
    [Google Scholar]
  28. BoshtaN.M. El-EssawyF.A. AlshammariM.B. NoreldeinS.G. DarweshO.M. Discovery of quinazoline-2,4(1H,3H)-dione derivatives as potential antibacterial agent: Design, synthesis, and their antibacterial activity.Molecules20222712385310.3390/molecules2712385335744976
    [Google Scholar]
  29. PanJ. MaL. TangY.X. TianY. LinY.H. ZhangL.J. GaoF. LuG.M. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential NF-κβ inhibitors.Arab. J. Chem.202215710390810.1016/j.arabjc.2022.103908
    [Google Scholar]
  30. WangD. GaoF. Quinazoline derivatives: Synthesis and bioactivities.Chem. Cent. J.2013719510.1186/1752‑153X‑7‑9523731671
    [Google Scholar]
  31. SelvamT.P. KumarP.V. Quinazoline marketed drugs - A review.Res. Pharm.201111121
    [Google Scholar]
  32. KaurN. GrewalP. BhardwajP. DeviM. VermaY. Nickel-catalyzed synthesis of five-membered heterocycles.Synth. Commun.201949121543157710.1080/00397911.2019.1594306
    [Google Scholar]
  33. ManivannanE. ChaturvediS.C. Analogue-based design, synthesis and molecular docking analysis of 2,3-diaryl quinazolinones as non-ulcerogenic anti-inflammatory agents.Bioorg. Med. Chem.201119154520452810.1016/j.bmc.2011.06.01921724403
    [Google Scholar]
  34. KaurN. BhardwajP. DeviM. VermaY. GrewalP. Photochemical reactions in five and six-membered polyheterocycles synthesis.Synth. Commun.201949182281231810.1080/00397911.2019.1622732
    [Google Scholar]
  35. NoolviM.N. PatelH.M. Synthesis, method optimization, anticancer activity of 2,3,7-trisubstituted Quinazoline derivatives and targeting EGFR-tyrosine kinase by rational approach.Arab. J. Chem.201361354810.1016/j.arabjc.2010.12.031
    [Google Scholar]
  36. PeterB. RobertH.B. CraigS.H. LaurentF.A.H. MarkH. JasonG.K. JaneK. TeresaK. DonaldJ.O. StuartE.P. EmmaJ.W. Design, synthesis and in vitro antitumor activity of 4-amino quinoline and 4-amino quinazoline derivatives targeting EGFR tyrosine kinase.Bioorg. Med. Chem. Lett.2006164908
    [Google Scholar]
  37. KaurN. VermaY. GrewalP. BhardwajP. DeviM. Application of titanium catalysts for the syntheses of heterocycles.Synth. Commun.201949151847189410.1080/00397911.2019.1606922
    [Google Scholar]
  38. MalasalaS. AhmadM.N. AkunuriR. ShuklaM. KaulG. DasguptaA. MadhaviY.V. ChopraS. NanduriS. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem.202121211299610.1016/j.ejmech.2020.11299633190958
    [Google Scholar]
  39. LiuT. PengF. CaoX. LiuF. WangQ. LiuL. XueW. Design, synthesis, antibacterial activity, antiviral activity, and mechanism of myricetin derivatives containing a quinazolinone moiety.ACS Omega2021645308263083310.1021/acsomega.1c0525634805711
    [Google Scholar]
  40. ConconiM.T. MarzaroG. GuiottoA. UrbaniL. ZanussoI. TonusF. TommasiniM. ParnigottoP.P. ChilinA. New Vandetanib analogs: Fused tricyclic quinazolines with antiangiogenic potential.Invest. New Drugs201230259460310.1007/s10637‑010‑9621‑121184131
    [Google Scholar]
  41. Al-RashoodS.T. AboldahabI.A. NagiM.N. AbouzeidL.A. Abdel-AzizA.A.M. Abdel-hamideS.G. YoussefK.M. Al-ObaidA.M. El-SubbaghH.I. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs.Bioorg. Med. Chem.200614248608862110.1016/j.bmc.2006.08.03016971132
    [Google Scholar]
  42. KabriY. GellisA. VanelleP. Microwave-assisted synthesis in aqueous medium of new quinazoline derivatives as anticancer agent precursors.Green Chem.200911220120810.1039/B816723K
    [Google Scholar]
  43. (a BarghiL. AghanejadA. ValizadehH. BararJ. AsgariD. Modified synthesis of erlotinib hydrochloride.Adv. Pharm. Bull.20122111912224312780
    [Google Scholar]
  44. (b KumarA. DeviM. KumarM. ShrivastavaA. SharmaR. DixitT. SinghV. ShehzadK. XuY. SinghK. HuH. Silicon nanostructures and nanocomposites for antibacterial and theranostic applications.Sens. Actuator A Phys2022113912
    [Google Scholar]
  45. YangY. Expedient synthesis of 4-aryl quinazoline analogues via direct nucleophilic arylation of 2-chloroquinazoline.Synthesis201648142255226210.1055/s‑0035‑1561587
    [Google Scholar]
  46. (a MohiuddinM.D. KasaharaK. The mechanisms of the growth inhibitory effects of paclitaxel on gefitinib-resistant non-small cell lung cancer cells.Cancer Genomics Proteomics202118566167310.21873/cgp.2028834479918
    [Google Scholar]
  47. (b KikuchiH. HoroiwaS. KasaharaR. HariguchiN. MatsumotoM. OshimaY. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial.Eur. J. Med. Chem.2014769101910.1016/j.ejmech.2014.01.03624565569
    [Google Scholar]
  48. (c TamatamR. KimS.H. ShinD. Transition-metal-catalyzed synthesis of quinazolines: A review.Front Chem.202311114056210.3389/fchem.2023.114056237007059
    [Google Scholar]
  49. (a PriecelP. Lopez-SanchezJ.A. Advantages and limitations of microwave reactors: From chemical synthesis to the catalytic valorization of biobased chemicals.ACS Sustain. Chem. Eng.20197132110.1021/acssuschemeng.8b03286
    [Google Scholar]
  50. (b SuratiM.A. JauhariS. DesaiK.R. A brief review: Microwave assisted organic reaction.Arch. Appl. Sci. Res.201241645661
    [Google Scholar]
  51. ChenZ. ChenJ. LiuM. DingJ. GaoW. HuangX. WuH. Unexpected copper-catalyzed cascade synthesis of quinazoline derivatives.J. Org. Chem.20137822113421134810.1021/jo401908g24134489
    [Google Scholar]
  52. (a HuF.P. CuiX.F. LuG.Q. HuangG.S. Base-promoted Lewis acid catalyzed synthesis of quinazoline derivatives.Org. Biomol. Chem.202018234376438010.1039/D0OB00225A32458847
    [Google Scholar]
  53. (b AbeT. TakahashiY. MatsubaraY. YamadaK. An Ullmann N-arylation/2-amidation cascade by self-relay copper catalysis: One-pot synthesis of indolo[1,2-a]quinazolinones.Org. Chem. Front.20174112124212710.1039/C7QO00549K
    [Google Scholar]
  54. (c AbeT. KidaK. YamadaK. A copper-catalyzed Ritter-type cascade via iminoketene for the synthesis of quinazolin-4(3H)-ones and diazocines.Chem. Commun. (Camb.)201753314362436510.1039/C7CC01406F28374023
    [Google Scholar]
  55. (d BrendelM. SakhareP.R. DahiyaG. SubramanianP. KaliappanK.P. Serendipitous synthesis of pyridoquinazolinones via an oxidative C-C bond cleavage.J. Org. Chem.202085128102811010.1021/acs.joc.0c0098232456430
    [Google Scholar]
  56. (e DuttaN. DuttaB. DuttaA. SarmaB. SarmaD. Room temperature ligand-free Cu 2 O–H 2 O 2 catalyzed tandem oxidative synthesis of quinazoline-4(3 H )-one and quinazoline derivatives.Org. Biomol. Chem.202321474875310.1039/D2OB02085H36602007
    [Google Scholar]
  57. (f ZhouX. QianF. ZhouW. WangA. HouT. TianX. JiS. HeM. QianJ. Cooperation between the Cu + and Cu 2+ species in CuCoAl layered double hydroxide and the substrate promoting effect afford a really simple protocol for the efficient synthesis of quinazolines.Org. Biomol. Chem.202422224494450110.1039/D4OB00481G38742377
    [Google Scholar]
  58. (a HaoZ. ZhouX. MaZ. ZhangC. HanZ. LinJ. LuG.L. Dehydrogenative synthesis of quinolines and quinazolines via ligand-free cobalt-catalyzed cyclization of 2-aminoaryl alcohols with ketones or nitriles.J. Org. Chem.20228719125961260710.1021/acs.joc.2c0073436162131
    [Google Scholar]
  59. (b PalD. MondalA. SarmahR. SrimaniD. Srimani, D. Designing cobalt(II) complexes for tandem dehydrogenative synthesis of quinoline and quinazoline derivatives.Org. Lett.202426251451810.1021/acs.orglett.3c0394438194364
    [Google Scholar]
  60. (a MondalA. SahooM.K. SubaramanianM. BalaramanE. Manganese(I)-catalyzed sustainable synthesis of quinoxaline and quinazoline derivatives with the liberation of dihydrogen.J. Org. Chem.202085117181719110.1021/acs.joc.0c0056132400155
    [Google Scholar]
  61. (b MondalS. ChakrabortyS. KhanraS. ChakrabortyS. PalS. BrandãoP. PaulN.D. A Phosphine-free air-stable Mn(II)-catalyst for sustainable synthesis of quinazolin-4(3H)-ones, quinolines, and quinoxalines in water.J. Org. Chem.20248985250526510.1021/acs.joc.3c0257938554095
    [Google Scholar]
  62. XingH. ChenJ. ShiY. HuangT. HaiL. WuY. Synthesis of 4-ethenyl quinazolines via rhodium( iii )-catalyzed [5 + 1] annulation reaction of N -arylamidines with cyclopropenones.Org. Chem. Front.20207467267710.1039/C9QO01372E
    [Google Scholar]
  63. WangJ. ZhaS. ChenK. ZhangF. SongC. ZhuJ. Quinazoline synthesis via Rh(III)-catalyzed intermolecular C-H functionalization of benzimidates with dioxazolones.Org. Lett.20161892062206510.1021/acs.orglett.6b0069127058735
    [Google Scholar]
  64. (a BhattacharyyaD. AdhikariP. DeoriK. DasA. Ruthenium pincer complex catalyzed efficient synthesis of quinoline, 2-styrylquinoline and quinazoline derivatives via acceptorless dehydrogenative coupling reactions.Catal. Sci. Technol.202212185695570210.1039/D2CY01030E
    [Google Scholar]
  65. (b SundarS. VeerappanT. PennamuthiriyanA. RenganR. Arene ruthenium(II)-catalyzed sustainable synthesis of 2,4-disubstituted quinazolines via acceptorless dual dehydrogenative coupling of alcohols.J. Org. Chem.20238824169671697710.1021/acs.joc.3c0180838029325
    [Google Scholar]
  66. HouJ. WanS. WangG. ZhangT. LiZ. TianY. YuY. WuX. ZhangJ. Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor.Eur. J. Med. Chem.201611827628910.1016/j.ejmech.2016.04.02627132165
    [Google Scholar]
  67. ZhangD. AiJ. LiangZ. LiC. PengX. JiY. JiangH. GengM. LuoC. LiuH. Discovery of novel 2-aminopyridine-3-carboxamides as c-Met kinase inhibitors.Bioorg. Med. Chem.201220175169518010.1016/j.bmc.2012.07.00722863529
    [Google Scholar]
  68. ChenW.M. WanS.H. New Straightforward Synthesis of 2‐Amino‐6‐methyl‐5‐(pyridin‐4‐ylsulfanyl)‐3 H ‐quinazolin‐4‐one.Synth. Commun.2007371536110.1080/00397910600978085
    [Google Scholar]
  69. MahdaviM. PedroodK. SafaviM. SaeediM. PordeliM. ArdestaniS.K. EmamiS. AdibM. ForoumadiA. ShafieeA. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold.Eur. J. Med. Chem.20159549249910.1016/j.ejmech.2015.03.05725847767
    [Google Scholar]
  70. HanW. LiuN. LiuC. JinZ.L. A ligand-free Heck reaction catalyzed by the in situ-generated palladium nanoparticles in PEG-400.Chin. Chem. Lett.201021121411141410.1016/j.cclet.2010.06.019
    [Google Scholar]
  71. MahdaviM. ForoughiN. SaeediM. KarimiM. AlinezhadH. ForoumadiA. ShafieeA. AkbarzadehT. Synthesis of novel benzo[6,7][1,4]oxazepino[4,5-a] quinazolinone derivatives via transition-metal-free intramolecular hydroamination.Synlett20142503385388
    [Google Scholar]
  72. SyedT. AsiriY.I. ShaheenS. GangarapuK. Design, synthesis and anticancer evaluation of structurally modified substituted aryl-quinazoline derivatives as anticancer agents.Synth. Commun.202151182782279510.1080/00397911.2021.1941113
    [Google Scholar]
  73. YaduvanshiN. TewariS. JaiswalS. DeviM. ShuklaS. DwivediJ. SharmaS. Biogenic synthesis of Pd-Fe@LLR nanocomposites as magnetically recyclable catalysts for C C and C N bond formation.Inorg. Chem. Commun.202416111192710.1016/j.inoche.2023.111927
    [Google Scholar]
  74. HeiY.Y. XinM. ZhangH. XieX.X. MaoS. ZhangS.Q. Synthesis and antitumor activity evaluation of 4,6-disubstituted quinazoline derivatives as novel PI3K inhibitors.Bioorg. Med. Chem. Lett.201626184408441310.1016/j.bmcl.2016.08.01527544401
    [Google Scholar]
  75. YaduvanshiN. DeviM. TewariS. JaiswalS. HashmiS.Z. ShuklaS. DwivediJ. SharmaS. Exploration of catalytic activity of newly developed Pd/KLR and Pd-Cu/KLR nanocomposites (NCs) for synthesis of biologically active novel heterocycles via Suzuki cross-coupling reaction.J. Mol. Struct.2023129413639510.1016/j.molstruc.2023.136395
    [Google Scholar]
  76. SajadiM.S. KazemiE. DarehkordiA. Palladium-catalyzed synthesis of novel trifluoromethylated quinazolinone, N-arylquinazoline and N-benzylquinazoline derivatives.Tetrahedron Lett.20217115305310.1016/j.tetlet.2021.153053
    [Google Scholar]
  77. (a Mendoza-MartínezC. Correa-BasurtoJ. Nieto-MenesesR. Márquez-NavarroA. Aguilar-SuárezR. Montero-CortesM.D. Nogueda-TorresB. Suárez-ContrerasE. Galindo-SevillaN. Rojas-RojasÁ. Rodriguez-LezamaA. Hernández-LuisF. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents.Eur. J. Med. Chem.20159629630710.1016/j.ejmech.2015.04.02825899334
    [Google Scholar]
  78. (b BalajiS. BalamuruganG. RameshR. SemerilD. Palladium(II) N^O chelating complexes catalyzed one-pot approach for synthesis of quinazolin-4(3H)-ones via acceptorless dehydrogenative coupling of benzyl alcohols and 2-aminobenzamide.Organometallics202140672573410.1021/acs.organomet.0c00814
    [Google Scholar]
  79. (c SundarramanB. RenganR. SemerilD. NNO pincer ligand-supported palladium (II) complexes: Direct synthesis of quinazolines via acceptorless double dehydrogenative coupling of alcohols.Organometallics202241111314132410.1021/acs.organomet.2c00062
    [Google Scholar]
  80. MadhaviS. SreenivasuluR. YazalaJ.P. RajuR.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents.Saudi Pharm. J.201725227527910.1016/j.jsps.2016.06.00528344479
    [Google Scholar]
  81. MalasalaS. GourJ. AhmadM.N. GatadiS. ShuklaM. KaulG. DasguptaA. MadhaviY.V. ChopraS. NanduriS. Copper mediated one-pot synthesis of quinazolinones and exploration of piperazine linked quinazoline derivatives as anti-mycobacterial agents.RSC Adv.20201071435334353810.1039/D0RA08644D35519697
    [Google Scholar]
  82. ZhangY. YangC.R. TangX. CaoS.L. RenT.T. GaoM. LiaoJ. XuX. Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position.Bioorg. Med. Chem. Lett.201626194666467010.1016/j.bmcl.2016.08.06027575478
    [Google Scholar]
  83. JaiswalS. AryaN. YaduvanshiN. DeviM. JainS. JainS. DwivediJ. SharmaS. Current updates on green synthesis and biological properties of 4-quinolone derivatives.J. Mol. Struct.2023129413656510.1016/j.molstruc.2023.136565
    [Google Scholar]
  84. Le-Nhat-ThuyG. Nguyen ThiN. Pham-TheH. Dang ThiT.A. Nguyen ThiH. Nguyen ThiT.H. Nguyen HoangS. NguyenT.V. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease.Bioorg. Med. Chem. Lett.2020301812740410.1016/j.bmcl.2020.12740432717612
    [Google Scholar]
  85. AlafeefyA.M. KadiA.A. Al-DeebO.A. El-TahirK.E.H. Al-jaberN.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives.Eur. J. Med. Chem.201045114947495210.1016/j.ejmech.2010.07.06720817329
    [Google Scholar]
  86. KhodairA.I. AlsafiM.A. NafieM.S. Synthesis, molecular modeling and anti-cancer evaluation of a series of quinazoline derivatives.Carbohydr. Res.201948610783210.1016/j.carres.2019.10783231622868
    [Google Scholar]
  87. ZhangB. LiuZ. XiaS. LiuQ. GouS. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors.Eur. J. Med. Chem.202121611330010.1016/j.ejmech.2021.11330033640672
    [Google Scholar]
  88. JuY. WuJ. YuanX. ZhaoL. ZhangG. LiC. QiaoR. Design and evaluation of potent EGFR inhibitors through the incorporation of macrocyclic polyamine moieties into the 4-anilinoquinazoline scaffold.J. Med. Chem.20186124113721138310.1021/acs.jmedchem.8b0161230508379
    [Google Scholar]
  89. LiR.D. ZhangX. LiQ.Y. GeZ.M. LiR.T. Novel EGFR inhibitors prepared by combination of dithiocarbamic acid esters and 4-anilinoquinazolines.Bioorg. Med. Chem. Lett.201121123637364010.1016/j.bmcl.2011.04.09621570843
    [Google Scholar]
  90. McKeeR.L. BostR.W. Para-substituted phenyl isothiocyanates and some related thioureas.J. Am. Chem. Soc.194668122506250710.1021/ja01216a02220282387
    [Google Scholar]
  91. BanerjiB. ChandrasekharK. SreenathK. RoyS. NagS. SahaK.D. Synthesis of triazole-substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent.ACS Omega2018311161341614210.1021/acsomega.8b0196030556027
    [Google Scholar]
  92. HonglinD. ChaoG. XiaojieS. YutongZ. ZhengjieW. LiminL. TaoW. LuyeZ. YangZ. QinY. PeirongZ. Synthesis and antitumor activity evaluation of 2,4,6-trisubstituted quinazoline derivatives containing acrylamideRuss. J. Bioorg. Chem.202248510891100
    [Google Scholar]
  93. Al-SuwaidanI.A. Abdel-AzizA.A.M. ShawerT.Z. AyyadR.R. AlanaziA.M. El-MorsyA.M. MohamedM.A. Abdel-AzizN.I. El-SayedM.A.A. El-AzabA.S. Synthesis, antitumor activity and molecular docking study of some novel 3-benzyl-4(3H)quinazolinone analogues.J. Enzyme Inhib. Med. Chem.2016311788910.3109/14756366.2015.100405925815668
    [Google Scholar]
  94. ShaoL.H. FanS.L. MengY.F. GanY.Y. ShaoW.B. WangZ.C. ChenD.P. OuyangG.P. Design, synthesis, biological activities and 3D-QSAR studies of quinazolinone derivatives containing hydrazone structural units.New J. Chem.202145104626463110.1039/D0NJ05450J
    [Google Scholar]
  95. ZayedM.F. AhmedH.E.A. IhmaidS. OmarA.S.M. AbdelrahimA.S. Synthesis and screening of some new fluorinated quinazolinone–sulphonamide hybrids as anticancer agents.J. Taibah Univ. Med. Sci.201510333333910.1016/j.jtumed.2015.02.007
    [Google Scholar]
  96. El-ShershabyM.H. GhiatyA. BayoumiA.H. AhmedH.E.A. El-ZoghbiM.S. El-AdlK. AbulkhairH.S. 1,2,4-Triazolo[4,3- c ]quinazolines: A bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity.New J. Chem.20214525111361115210.1039/D1NJ00710F
    [Google Scholar]
  97. BabuS.K. PrabhakarV. RavindranathL.K. PrasadS.S. LathaJ. Synthesis, characterization and biological evaluation of some novel quinazoline derivatives as potential antimicrobial agents.J. Chem. Chem. Sci.20166648664
    [Google Scholar]
  98. Abul-KhairH. ElmeligieS. BayoumiA. GhiatyA. El-MorsyA. HassanM.H. Synthesis and evaluation of some new (1,2,4)triazolo(4,3‐a)quinoxalin‐4(5H)‐one derivatives as AMPA receptor antagonists.J. Heterocycl. Chem.20135051202120810.1002/jhet.714
    [Google Scholar]
  99. PathakP. RimacH. GrishinaM. VermaA. PotemkinV. Design, synthesis, and computational study of hybrid quinazoline 1,3,5-triazines as epidermal growth factor receptor (EGFR) inhibitors with anticancer activity.ChemMedChem202016582283810.1002/cmdc.20200064633155373
    [Google Scholar]
  100. AbbasS.Y. El-BayoukiK.A.M. BasyouniW.M. MostafaE.A. New series of 4(3H)-quinazolinone derivatives: Syntheses and evaluation of antitumor and antiviral activities.Med. Chem. Res.201827257158210.1007/s00044‑017‑2083‑7
    [Google Scholar]
  101. WuT. QinQ. LvR. LiuN. YinW. HaoC. SunY. ZhangC. SunY. ZhaoD. ChengM. Discovery of quinazoline derivatives CZw-124 as a pan-TRK inhibitor with potent anticancer effects in vitro and in vivo. Eur. J. Med. Chem.202223811445110.1016/j.ejmech.2022.11445135617855
    [Google Scholar]
  102. HaoC. ZhaoF. SongH. GuoJ. LiX. JiangX. HuanR. SongS. ZhangQ. WangR. WangK. PangY. LiuT. LuT. HuangW. WangJ. LinB. HeZ. LiH. LiF. ZhaoD. ChengM. Structure-based design of 6-chloro-4-aminoquinazoline-2-carboxamide derivatives as potent and selective p21-activated kinase 4(PAK4) inhibitors.J. Med. Chem.201861126528510.1021/acs.jmedchem.7b0134229190083
    [Google Scholar]
  103. CuartasV. Aragón-MurielA. LiscanoY. Polo-CerónD. Crespo-OrtizM.P. QuirogaJ. AboniaR. InsuastyB. Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: Synthesis, DNA binding and molecular docking.RSC Adv.20211138233102332910.1039/D1RA03509F35479808
    [Google Scholar]
  104. LiuF. ChenX. Allali-HassaniA. QuinnA.M. WigleT.J. WasneyG.A. DongA. SenisterraG. ChauI. SiarheyevaA. NorrisJ.L. KireevD.B. JadhavA. HeroldJ.M. JanzenW.P. ArrowsmithC.H. FryeS.V. BrownP.J. SimeonovA. VedadiM. JinJ. Protein lysine methyltransferase G9a inhibitors: Design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines.J. Med. Chem.201053155844585710.1021/jm100478y20614940
    [Google Scholar]
  105. HuX. ZhaoH. WangY. LiuZ. FengB. TangC. Synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as potent CDK2 inhibitors.Bioorg. Med. Chem. Lett.201828203385339010.1016/j.bmcl.2018.08.03530197029
    [Google Scholar]
  106. DeviM. JaiswalS. YaduvanshiN. JainS. JainS. VermaK. VermaR. KishoreD. DwivediJ. SharmaS. Design, synthesis, molecular docking, and antibacterial study of aminomethyl triazolo substituted analogues of benzimidazolo [1,4]-benzodiazepine.J. Mol. Struct.2023128613557110.1016/j.molstruc.2023.135571
    [Google Scholar]
  107. (a DeviM. JaiswalS. YaduvanshiN. KaurN. KishoreD. DwivediJ. SharmaS. Design, synthesis, antibacterial evaluation and docking studies of triazole and tetrazole linked 1,4-benzodiazepine nucleus via click approach.ChemistrySelect202386e20220471010.1002/slct.202204710
    [Google Scholar]
  108. (b JaiswalS. DeviM. YaduvanshiN. JainS. DwivediJ. KishoreD. KuznetsovA.E. SharmaS. Identification of new triazolo annulated dipyridodiazepine derivatives as HIV-1 reverse transcriptase inhibitors: Design, synthesis, DFT, molecular modelling and in silico studies.J. Mol. Struct.2024131413873410.1016/j.molstruc.2024.138734
    [Google Scholar]
  109. ItohT. ChibaY. KawaguchiS. KoitayaY. YonetaY. YamadaK. AbeT. Total synthesis of pyrano[3,2- e ]indole alkaloid fontanesine B by a double cyclization strategy.RSC Adv.2019918104201042410.1039/C9RA02321F35520921
    [Google Scholar]
  110. AbeT. YamadaK. Amination/cyclization cascade by acid-catalyzed activation of indolenine for the one-pot synthesis of phaitanthrin E.Org. Lett.201618246504650710.1021/acs.orglett.6b0346627978673
    [Google Scholar]
  111. SrivastavaA. PalanivelL. BaskaranS. One‐pot synthesis of 2‐aminoindole through SET oxidative cyclization: Concise synthesis of Tryptanthrin and Phaitanthrin E.Chemistry20232934e20230082810.1002/chem.20230082836989236
    [Google Scholar]
  112. VaidyaS.D. ArgadeN.P. A biomimetic synthesis of Phaitanthrin E involving a fragmentation of sp3 carbon-carbon bond: synthesis and rearrangement of Phaitanthrin D to Phaitanthrin E.Org. Lett.201517246218622110.1021/acs.orglett.5b0320326650567
    [Google Scholar]
/content/journals/coc/10.2174/0113852728349742241115060532
Loading
/content/journals/coc/10.2174/0113852728349742241115060532
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biological molecules; DNA and RNA; Heterocycles; metals; nitrogen; pyrimidine; quinazoline
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test