Skip to content
2000
Volume 29, Issue 12
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Natural compounds are pivotal sources for synthesizing a vast array of biologically active substances in chemistry. Camphor is one of these substances, and both enantiomers are readily obtainable and play significant roles in various synthetic and therapeutic applications. This mini-review provides information on a few synthetic routes for camphor production that have been documented over time. It presents several rearrangements that this chemical and its derivatives can undergo to showcase possible starting points for new compounds that may have biological activity.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728344503240927082154
2024-11-07
2025-09-27
Loading full text...

Full text loading...

References

  1. ChenW. VermaakI. ViljoenA. Camphor-a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon-A review.Molecules20131855434545410.3390/molecules1805543423666009
    [Google Scholar]
  2. MalabadiR.B. KolkarK.P. MetiN.T. ChalannavarR.K. Camphor tree, Cinnamomum camphora (L.); Ethnobotany and pharmacological updates.Biomedicine202141218118410.51248/.v41i2.779
    [Google Scholar]
  3. Van WykB.E. van OudtshoornB. GerickeN. Medicinal plants of South Africa.2nd edPretoria, South AfricaBriza Publications200992
    [Google Scholar]
  4. Natural Resources Conservation Service. Cinnamomum camphora (L.) J. Presl (camphor tree).2024Available from: http://plants.usda.gov/
  5. OppolzerW. Camphor derivatives as chiral auxiliaries in asymmetric synthesis.Tetrahedron19874391969200410.1016/S0040‑4020(01)86780‑6
    [Google Scholar]
  6. HamidpourR. HamidpourS. HamidpourM. ShahlariM. Camphor (Cinnamomum camphora), a traditional remedy with the history of treating several diseases.Int. J. Case Rep. Imag.201342868910.5348/ijcri‑2013‑02‑267‑RA‑1
    [Google Scholar]
  7. JuteauF. MasottiV. BessièreJ.M. DherbomezM. VianoJ. Antibacterial and antioxidant activities of Artemisia annua essential oil.Fitoterapia200273653253510.1016/S0367‑326X(02)00175‑212385883
    [Google Scholar]
  8. KamdemD. GageD. Chemical composition of essential oil from the root bark of Sassafras albidum.Planta Med.199561657457510.1055/s‑2006‑9593798824955
    [Google Scholar]
  9. ViljoenA. van VuurenS. ErnstE. KlepserM. DemirciB. BaşerH. van WykB.E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy.J. Ethnopharmacol.2003882-313714310.1016/S0378‑8741(03)00191‑012963133
    [Google Scholar]
  10. HammerschmidtF. ClarkA. SolimanF. El-KashouryE.S. Abd El-KawyM. El-FishawyA. Chemical composition and antimicrobial activity of essential oils of Jasonia candicans and J. montana.Planta Med.1993591687010.1055/s‑2006‑9596078441785
    [Google Scholar]
  11. PhilpottN.W. Intramuscular injections of camphor in the treatment of engorgement of the breasts.Can. Med. Assoc. J.192920549449520317326
    [Google Scholar]
  12. CroteauR. ShaskusJ. Biosynthesis of monoterpenes: Demonstration of a geranyl pyrophosphate:(−)-bornyl pyrophosphate cyclase in soluble enzyme preparations from tansy (Tanacetum vulgare).Arch. Biochem. Biophys.1985236253554310.1016/0003‑9861(85)90656‑33970524
    [Google Scholar]
  13. KomppaG. Ueber die synthese des camphers.Ber. Dtsch. Chem. Ges.190336222502259
    [Google Scholar]
  14. ElderfieldR.C. HinshelwoodC.N. The synthesis of camphor.J. Chem. Soc. Trans.192212113531359
    [Google Scholar]
  15. BarbeC.R. A new synthesis of camphor from pinene.J. Am. Chem. Soc.192749923332337
    [Google Scholar]
  16. RobinsonR. WilliamsJ. M. Cyclic ketones. Part III. The stereoisomerism of ketocamphors and some derivatives.J. Chem. Soc.193314831491
    [Google Scholar]
  17. BirchA. J. BarbourJ. F. Studies on camphor and related substances. Part X. The formation of camphor from the isobornylketone.J. Chem. Soc.1945387392
    [Google Scholar]
  18. WoodwardR.B. The total synthesis of camphor.J. Am. Chem. Soc.194971621482154
    [Google Scholar]
  19. CoreyE.J. A new synthesis of camphor.J. Am. Chem. Soc.1952741742244225
    [Google Scholar]
  20. IrelandR.E. SchusterD.I. A stereoselective total synthesis of (±)-camphor.J. Am. Chem. Soc.1976981234783487
    [Google Scholar]
  21. StorkG. SchonholzerP. CoganD.A. ChênevertR. A total synthesis of (-)-camphor.J. Am. Chem. Soc.19791012470887090
    [Google Scholar]
  22. NoyoriR. KitamuraS. Asymmetric hydrogenation of alpha, beta-unsaturated carboxylic esters. A practical, purely chemical access to beta-hydroxycarboxylic esters, alcohols, and acids.J. Am. Chem. Soc.19841063670671
    [Google Scholar]
  23. WenderP.A. BasakA. RajskiS.R. A practical stereoselective synthesis of (−)-camphor.J. Am. Chem. Soc.19851072371167118
    [Google Scholar]
  24. EvansD.A. RarigK.L. A stereocontrolled total synthesis of (-)-camphor.J. Am. Chem. Soc.19891112281378138
    [Google Scholar]
  25. MurakamiM. NakadaM. ItoY. YanagiT. TakahashiY. A concise enantiospecific synthesis of (+)-camphor.Angew. Chem. Int. Ed.2000393559561
    [Google Scholar]
  26. GrošeljU. BevkD. JakšeR. RečnikS. MedenA. StanovnikB. SveteJ. Cyclocondensations of (+)-camphor derived enaminones with hydrazine derivatives.Tetrahedron200561163991399810.1016/j.tet.2005.02.048
    [Google Scholar]
  27. MeerweinH. On the reaction mechanism of the conversion of borneol into camphene; [Third communication on pinacolin rearrangements.].Justus Liebigs Ann. Chem.1914405212917510.1002/jlac.19144050202
    [Google Scholar]
  28. KovalevV. ShokovaE. ChertkovV. TafeenkoV. Unknown camphor: Regioselective rearrangement under acylation in a CF3SO3H/(CF3CO)2O system.Eur. J. Org. Chem.2016201681508151210.1002/ejoc.201501581
    [Google Scholar]
  29. ArbuzovB.A. IsaevaZ.G. Molecular rearrangements in the series of carane derivatives.Russ. Chem. Rev.197645867368310.1070/RC1976v045n08ABEH002703
    [Google Scholar]
  30. NoyceD.S. A rearrangement of camphenilone.J. Am. Chem. Soc.195072292492510.1021/ja01158a074
    [Google Scholar]
  31. LutzR.P. RobertsJ.D. The mechanism of the rearrangement of fenchone.J. Am. Chem. Soc.196284193715372110.1021/ja00878a024
    [Google Scholar]
  32. RodigO.R. SyskoR.J. Acid-catalyzed rearrangement of camphor to 3,4-dimethylacetophenone.J. Am. Chem. Soc.197294186475647910.1021/ja00773a034
    [Google Scholar]
  33. DoeringW.E. BeringerF.M. Sulfonic acids in the rearrangement and aromatization of some cyclic ketones.J. Am. Chem. Soc.19497162221222610.1021/ja01174a084
    [Google Scholar]
  34. WangF. TongZ. Dehydro-aromatization of cyclohexene-carboxylic acids by sulfuric acid: Critical route for bio-based terephthalic acid synthesis.RSC Advances20144126314631710.1039/c3ra46670a
    [Google Scholar]
  35. KhanvilkarA.N. GuptaR. BedekarA.V. An unexpected reaction of camphor with sodium metal.Indian J. Chem.201554B13271331
    [Google Scholar]
  36. EvansM.D. KayeP.T. Formation and structure elucidation of two novel spiroterpenoid systems.S. Afr. Chem.1998514160161
    [Google Scholar]
  37. BlattA.H. The beckmann rearrangement.Chem. Rev.193312221526010.1021/cr60042a002
    [Google Scholar]
  38. KrowG.R. SzczepanskiS. Unusual regiochemistry in a beckmann-like rearrangement of camphor. α-Camphidone via methylene migration.Tetrahedron Lett.198021484593459610.1016/0040‑4039(80)80082‑7
    [Google Scholar]
  39. BartonD.H.R. DayM.J. HesseR.H. PechetM.M. A new rearrangement of ketonic nitrones; A convenient alternative to the Beckmann rearrangement.J. Chem. Soc., Perkin Trans. 119751181764176710.1039/p19750001764
    [Google Scholar]
  40. DiMaioG. PermuttiV. Ring enlargements-II - The schmidt reaction on cis-8-methylhydrindan-l-one.Tetrahedron19662220592067
    [Google Scholar]
  41. GrošeljU. SevšekA. RičkoS. GolobičA. SveteJ. StanovnikB. Synthesis and structural characterization of novel camphor-derived amines.Chirality2012241077878810.1002/chir.2206922740342
    [Google Scholar]
  42. McIntoshJ.M. CassidyK.C. An unexpected acyloin rearrangement and oxidation of a camphor derivative.Can. J. Chem.19916981315131910.1139/v91‑195
    [Google Scholar]
  43. RaoH.S.P. SahaA. VijjapuS. Studies in the rearrangement reactions involving camphorquinone.RSC Adv.202111137180718610.1039/D0RA09839F35423248
    [Google Scholar]
  44. LaraL. RochaM.G. MenezesL.R. CorrerA.B. SinhoretiM.A.C. OliveiraD. Effect of combining photoinitiators on cure efficiency of dental resin-based composites.J. Appl. Oral Sci.202129e2020046710.1590/1678‑7757‑2020‑046734320117
    [Google Scholar]
  45. ChaiW. HamadaH. SuharaJ. Akira HoriuchiC. Biotransformation of (+)- and (−)-camphorquinones by plant cultured cells.Phytochemistry200157566967310.1016/S0031‑9422(01)00133‑911397432
    [Google Scholar]
  46. WhiteJ. D. SundermannK. T. Champhoquinone and camphorquinone monoxide.Org. Synth.200410204
    [Google Scholar]
  47. WangJ. LiP. NiC. YanH. ZhongR. Efficient synthesis of camphorquinone from camphor.Synth. Commun.201343111543154810.1080/00397911.2011.645988
    [Google Scholar]
  48. HattoriK. YoshidaT. RikutaK. MiyakoshiT. A new oxidation of 3-bromocamphor to camphorquinone.Chem. Lett.199423101885188810.1246/cl.1994.1885
    [Google Scholar]
  49. KannappanJ. BedekarA.V. An environment friendly preparation of 3-bromocamphor and camphorquinone.J. Chem. Res.201236314114310.3184/174751912X13295761942437
    [Google Scholar]
  50. YangD.T.C. ZhangC.J. FuP.P. KabalkaG.W. Oxidation of a-substituted carbonyl compounds to carboxylic acids in aqueous media using ultrasound.Synth. Commun.19972791601160510.1080/00397919708006098
    [Google Scholar]
  51. San FilippoJ.Jr ChernC.I. ValentineJ.S. Oxidative cleavage of. α.-keto. α.-hydroxy, and. α.-halo ketones, esters, and carboxylic acids by superoxide.J. Org. Chem.19764161077107810.1021/jo00868a037
    [Google Scholar]
  52. Nowicka-ScheibeJ. Easy access to cis-3-(benzoxazol-2-yl)cyclopentanecarboxylic acids from camphorquinone and o-aminophenols via an unexpected opening of camphor ring.Synth. Commun.201343162198220710.1080/00397911.2012.696302
    [Google Scholar]
  53. JiS.J. LuJ. LangJ.P. HoriuchiC.A. Synthesis of camphoric anhydride via unsensitized photo-oxidation of camphorquinone.Synth. Commun.200232111659166310.1081/SCC‑120004256
    [Google Scholar]
  54. MeinwaldJ. KlingeleH.O. Photochemical reactions of camphorquinone.J. Am. Chem. Soc.19668892071207310.1021/ja00961a056
    [Google Scholar]
  55. MosnáčekJ. LukáčI. Irradiation of camphorquinone in glassy polymer matrices in the absence and presence of molecular oxygen.J. Photochem. Photobiol. Chem.20021511-39510410.1016/S1010‑6030(02)00024‑2
    [Google Scholar]
  56. RaoH.S.P. SatishV. KanniyappanS. KumariP. Studies towards iodine-catalyzed dehydrative-cycloisomerization of pent-4-yne-1,2-diols to di- and tri-substituted furans.Tetrahedron201874416047605610.1016/j.tet.2018.08.032
    [Google Scholar]
/content/journals/coc/10.2174/0113852728344503240927082154
Loading
/content/journals/coc/10.2174/0113852728344503240927082154
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Camphor; camphor quinone; mechanism; rearrangement; structural modifications; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test