Skip to content
2000
Volume 29, Issue 12
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Carbazole derivatives possess tricyclic structure consisting of two benzene rings fused on both sides with the central pyrrole ring. These compounds diversely appear both in natural and synthetic sources. Carbazole-based compounds have a wide range of bioactivities such as antimicrobial, anticancer, antiparasitic, antihypertensive, antineuropathic, and anti-inflammatory activities. Some carbazole derivatives have been employed as drugs in the market. The synthesis of carbazole derivatives has attracted intensive interest from chemists and a huge number of studies on the synthesis of carbazole-based compounds have been published over the years. In this article, we will give a comprehensive review of studies on the synthesis of carbazoles, which date back to 2012. One hundred twenty-six studies on the synthesis of carbazoles are summarized. A huge number of novel methods have been developed to improve efficiency or employ environmentally benign procedures. In most cases, reaction mechanisms were included. The review article might be useful for chemists who work in the synthesis of heterocycles or drug chemistry.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728340847241105111800
2025-01-07
2025-10-14
Loading full text...

Full text loading...

References

  1. GraebeC. GlaserC. Ueber carbazol.Justus Liebigs Ann. Chem.1872163334336010.1002/jlac.18721630305
    [Google Scholar]
  2. NandyB.C. GuptaA.K. MittalA. VyasV. Carbazole: It’s biological activity.J. Biomed. Pharm. Res.2014314248
    [Google Scholar]
  3. SchmidtA.W. ReddyK.R. KnölkerH.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids.Chem. Rev.201211263193332810.1021/cr200447s22480243
    [Google Scholar]
  4. GregerH. Phytocarbazoles: Alkaloids with great structural diversity and pronounced biological activities.Phytochem. Rev.20171661095115310.1007/s11101‑017‑9521‑5
    [Google Scholar]
  5. BashirM. BanoA. IjazA. ChaudharyB. Recent developments and biological activities of N-substituted carbazole derivatives: A review.Molecules2015208134961351710.3390/molecules20081349626213906
    [Google Scholar]
  6. SongF. LiuD. HuoX. QiuD. The anticancer activity of carbazole alkaloids.Arch. Pharm. (Weinheim)20223551210027710.1002/ardp.20210027734486161
    [Google Scholar]
  7. Nguyen-ThiC. Vo-CongD. GiangL.D. Dau-XuanD. Isolation and bioactivities of Stemona alkaloid: A review.Nat. Prod. Commun.20241951934578X24125545710.1177/1934578X241255457
    [Google Scholar]
  8. (a GraebeC. UllmannF. Ueber eine neue Carbazolsynthese.Justus Liebigs Annalen der Chemie18962911617
    [Google Scholar]
  9. (b DrechselE. Borsche-Drechsel cyclization.J. Prakt. Chem.18583826972
    [Google Scholar]
  10. PrestonR.W.G. TuckerS.H. JMLJCS1942500
    [Google Scholar]
  11. ThelakkatM. SchmitzC. HohleC. StrohrieglP. SchmidtH.W. HofmannU. SchloterS. HaarerD. Novel functional materials based on triarylamines–synthesis and application in electroluminescent devices and photorefractive systems.Phys. Chem. Chem. Phys.1999181693169810.1039/a808618d
    [Google Scholar]
  12. SmithC.J. TsangM.W.S. HolmesA.B. DanheiserR.L. TesterJ.W. Palladium catalysed aryl amination reactions in supercritical carbon dioxide.Org. Biomol. Chem.20053203767378110.1039/b509345g16211113
    [Google Scholar]
  13. LiuY. ChenX.L. LiX.Y. ZhuS.S. LiS.J. SongY. QuL.B. YuB. 4CzIPN-tBu-catalyzed proton-coupled electron transfer for photosynthesis of phosphorylated N-heteroaromatics.J. Am. Chem. Soc.2021143296497210.1021/jacs.0c1113833373207
    [Google Scholar]
  14. KaronK. LapkowskiM. Carbazole electrochemistry: A short review.J. Solid State Electrochem.2015192601261010.1007/s10008‑015‑2973‑x
    [Google Scholar]
  15. SadiqZ. HussainE.A. NazS. Carbazole derivatives by microwave promoted protocols: A mini review.Mini Rev. Org. Chem.201714646948810.2174/1570193X14666170518125756
    [Google Scholar]
  16. MunawarS. ZahoorA.F. ManshaA. BokhariT.H. IrfanA. Update on novel synthetic approaches towards the construction of carbazole nuclei: A review.RSC Advances20241452929294610.1039/D3RA07270C38239436
    [Google Scholar]
  17. XuZ. WuD. FangC. LiY. Mini-review on the novel synthesis and potential applications of carbazole and its derivatives.Des. Monomers Polym.20232619010510.1080/15685551.2023.219417437008385
    [Google Scholar]
  18. DucD.X. Recent progress in the synthesis of furan.Mini Rev. Org. Chem.201916542245210.2174/1570193X15666180608084557
    [Google Scholar]
  19. XuanD.D. Recent progress in the synthesis of pyrroles.Curr. Org. Chem.202024662265710.2174/1385272824666200228121627
    [Google Scholar]
  20. XuanD.D. Recent achievement in the synthesis of thiophenes.Mini Rev. Org. Chem.202118111013410.2174/1570193X17999200507095224
    [Google Scholar]
  21. DucD.X. Recent achievement in the synthesis of benzo[b]furans.Curr. Org. Synth.202017749851710.2174/157017941766620062521263932586253
    [Google Scholar]
  22. DucD.X. Recent progress in the synthesis of benzo[b]thiophene.Curr. Org. Chem.202024192256227110.2174/1385272824999200820151545
    [Google Scholar]
  23. DucD.X. ChungN.T. Recent achievements in the synthesis of oxazoles.Curr. Org. Chem.202125151755178210.2174/1385272825666210608114724
    [Google Scholar]
  24. DucD.X. DungV.C. Recent progress in the synthesis of isoxazoles.Curr. Org. Chem.202125242938298910.2174/1385272825666211118104213
    [Google Scholar]
  25. DucD.X. ChungN.T. Recent development in the synthesis of thiazoles.Curr. Org. Synth.202219670273010.2174/157017941966622021612263735170413
    [Google Scholar]
  26. ChungN.T. DungV.C. DucD.X. Recent achievements in the synthesis of benzimidazole derivatives.RSC Adv.20231346327343277110.1039/D3RA05960J37942457
    [Google Scholar]
  27. HieuT.T. DungV.C. ChungN.T. DucD.X. Recent achievement in the synthesis of imidazoles.Curr. Org. Chem.202127161398144610.2174/0113852728259414231010050749
    [Google Scholar]
  28. XuanD.D. Recent progress in the synthesis of quinolines.Curr. Org. Synth.201916567170810.2174/157017941666619071911242331984888
    [Google Scholar]
  29. MaitiS. BoseA. MalP. Oxidative N -arylation for carbazole synthesis by C–C bond activation.J. Org. Chem.201883158127813810.1021/acs.joc.8b0092129847942
    [Google Scholar]
  30. BalA. MaitiS. MalP. Iodine(III)-enabled distal C–H functionalization of biarylsulfonanilides.J. Org. Chem.20188318112781128710.1021/acs.joc.8b0185730129758
    [Google Scholar]
  31. ChoiS. ChatterjeeT. ChoiW.J. YouY. ChoE.J. Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process.ACS Catal.2015584796480210.1021/acscatal.5b00817
    [Google Scholar]
  32. TakamatsuK. HiranoK. SatohT. MiuraM. Synthesis of carbazoles by copper-catalyzed intramolecular C-H/N-H coupling.Org. Lett.201416112892289510.1021/ol501037j24813821
    [Google Scholar]
  33. FanW. JiangS. FengB. Rh(I)-catalyzed decarbonylation synthesis of carbazoles via C–N cleavage.Tetrahedron201571234035403810.1016/j.tet.2015.04.058
    [Google Scholar]
  34. BjørsvikH.R. ElumalaiV. Synthesis of the carbazole scaffold directly from 2-aminobiphenyl by means of a concurrent C–H activation and C–N bond formation.Eur. J. Org. Chem.20162016335474547910.1002/ejoc.201601191
    [Google Scholar]
  35. MonguchiY. OkamiH. IchikawaT. NozakiK. MaejimaT. OumiY. SawamaY. SajikiH. Palladium on carbon‐catalyzed C−H Amination for synthesis of carbazoles and its mechanistic study.Adv. Synth. Catal.2016358193145315110.1002/adsc.201600299
    [Google Scholar]
  36. AntonchickA. SamantaR. KulikovK. StrohmannC. Metal-free electrocyclization at ambient temperature: Synthesis of 1-arylcarbazoles.Synthesis201244152325233210.1055/s‑0032‑1316743
    [Google Scholar]
  37. KehlA. SchuppN. BreisingV.M. SchollmeyerD. WaldvogelS.R. Electrochemical synthesis of carbazoles by dehydrogenative coupling reaction.Chemistry20202668158471585110.1002/chem.20200343032737905
    [Google Scholar]
  38. JiangQ. Duan-MuD. ZhongW. ChenH. YanH. Amino-directed Rh(III)-catalyzed C-H activation leading to one-pot synthesis of N-H carbazoles.Chemistry20131961903190710.1002/chem.20120385623296591
    [Google Scholar]
  39. AntonchickA. SamantaR. Metal-free oxidative C-H bond amination at ambient temperature.Synlett201223680981310.1055/s‑0031‑1290531
    [Google Scholar]
  40. GuerraW.D. RossiR.A. PieriniA.B. BaroloS.M. "Transition-metal-free" synthesis of carbazoles by photostimulated reactions of 2′-halo[1,1′-biphenyl]-2-amines.J. Org. Chem.201580292894110.1021/jo502439325490433
    [Google Scholar]
  41. ChatterjeeT. RohG. ShoaibM.A. SuhlC.H. KimJ.S. ChoC.G. ChoE.J. Visible-light-induced synthesis of carbazoles by in situ formation of photosensitizing intermediate.Org. Lett.20171971906190910.1021/acs.orglett.7b0068128350473
    [Google Scholar]
  42. IshidaT. TsunodaR. ZhangZ. HamasakiA. HonmaT. OhashiH. YokoyamaT. TokunagaM. Supported palladium hydroxide-catalyzed intramolecular double C H bond functionalization for synthesis of carbazoles and dibenzofurans.Appl. Catal. B2014150-15152353110.1016/j.apcatb.2013.12.051
    [Google Scholar]
  43. TrosienS. BöttgerP. WaldvogelS.R. Versatile oxidative approach to carbazoles and related compounds using MoCl5.Org. Lett.201416240240510.1021/ol403304t24354638
    [Google Scholar]
  44. Anil KumarK. KannaboinaP. DhakedD.K. VishwakarmaR.A. BharatamP.V. DasP. Cu-catalyzed arylation of the amino group in the indazole ring: Regioselective synthesis of pyrazolo-carbazoles.Org. Biomol. Chem.20151351481149110.1039/C4OB02044H25474646
    [Google Scholar]
  45. LinS. HeX. MengJ. GuH. ZhangP. WuJ. An expedient synthesis of carbazoles through potassium tert ‐butoxide‐promoted intramolecular direct C–H bond arylation.Eur. J. Org. Chem.20172017344344710.1002/ejoc.201601293
    [Google Scholar]
  46. KongX. ZhangH. CaoC. ZhouS. PangG. ShiY. Synthesis of fluorinated carbazoles via C–H arylation catalyzed by Pd/Cu bimetal system and their antibacterial activities.Bioorg. Med. Chem.20162461376138310.1016/j.bmc.2016.02.01326879853
    [Google Scholar]
  47. MelnikaI. BringisK. KatkevicsM. Synthesis of N-methylcarbazoles from N-(2-iodoaryl)-N-methylanilines in the presence of potassium tert-butoxide and iron(II) bromide.Chem. Heterocycl. Compd.201349452953910.1007/s10593‑013‑1278‑1
    [Google Scholar]
  48. XuW. WangG. XieX. LiuY. Gold(I)-catalyzed formal intramolecular dehydro-Diels–Alder reaction of ynamide-ynes: Synthesis of functionalized benzo[b]carbazoles.Org. Lett.201820113273327710.1021/acs.orglett.8b0114529767992
    [Google Scholar]
  49. WangT. HoyeT.R. Hexadehydro-Diels–Alder (HDDA)-enabled carbazolyne chemistry: Single step, de novo construction of the pyranocarbazole core of alkaloids of the Murraya koenigii (curry tree) family.J. Am. Chem. Soc.201613842138701387310.1021/jacs.6b0962827734671
    [Google Scholar]
  50. TaguchiM. TokimizuY. OishiS. FujiiN. OhnoH. Synthesis of fused carbazoles by gold-catalyzed tricyclization of conjugated diynes via rearrangement of an N -propargyl group.Org. Lett.201517246250625310.1021/acs.orglett.5b0325426649487
    [Google Scholar]
  51. JamesM.J. ClubleyR.E. PalateK.Y. ProcterT.J. WytonA.C. O’BrienP. TaylorR.J.K. UnsworthW.P. Silver(I)-catalyzed dearomatization of alkyne-tethered indoles: Divergent synthesis of spirocyclic indolenines and carbazoles.Org. Lett.201517174372437510.1021/acs.orglett.5b0221626293968
    [Google Scholar]
  52. QiuY. KongW. FuC. MaS. Carbazoles via AuCl3-catalyzed cyclization of 1-(indol-2-yl)-3-alkyn-1-ols.Org. Lett.201214246198620110.1021/ol302949823228044
    [Google Scholar]
  53. WangJ. ZhuH.T. QiuY.F. NiuY. ChenS. LiY.X. LiuX.Y. LiangY.M. Facile synthesis of carbazoles via a tandem iodocyclization with 1,2-alkyl migration and aromatization.Org. Lett.201517123186318910.1021/acs.orglett.5b0159026061269
    [Google Scholar]
  54. LynamJ. TaylorR. UnsworthW. LiddonJ. Rossi-AshtonJ. ClarkeA. Divergent reactivity of indole-tethered ynones with silver(I) and Gold(I) catalysts: A combined synthetic and computational study.Synthesis201850244829483610.1055/s‑0037‑1610181
    [Google Scholar]
  55. FaltraccoM. Ortega-RosalesS. JanssenE. CiocR.C. Vande VeldeC.M.L. RuijterE. Synthesis of carbazoles by a diverted bischler–napieralski cascade reaction.Org. Lett.20212383100310410.1021/acs.orglett.1c0078533787266
    [Google Scholar]
  56. NaykodeM.S. HumneV.T. LokhandeP.D. A one-pot direct iodination of the Fischer-Borsche ring using molecular iodine and its utility in the synthesis of 6-oxygenated carbazole alkaloids.J. Org. Chem.20158042392239610.1021/jo502512825603152
    [Google Scholar]
  57. DalviB.A. LokhandeP.D. Copper(II) catalyzed aromatization of tetrahydrocarbazole: An unprecedented protocol and its utility towards the synthesis of carbazole alkaloids.Tetrahedron Lett.201859222145214910.1016/j.tetlet.2018.01.061
    [Google Scholar]
  58. SuárezA. Suárez-PantigaS. Nieto-FazaO. SanzR. Gold-catalyzed synthesis of 1-(Indol-3-yl)carbazoles: Selective 1,2-alkyl vs 1,2-vinyl migration.Org. Lett.201719195074507710.1021/acs.orglett.7b0230328920694
    [Google Scholar]
  59. PaulK. BeraK. JalalS. SarkarS. JanaU. Fe-catalyzed novel domino isomerization/cyclodehydration of substituted 2-[(indoline-3-ylidene)(methyl)]benzaldehyde derivatives: An efficient approach toward benzo[b]carbazole derivatives.Org. Lett.20141682166216910.1021/ol500505k24742160
    [Google Scholar]
  60. RajuP. MageshwaranT. RamalingamB.M. MohanakrishnanA.K. Synthesis of 2,3-disubstituted carbazoles, benzo[c]carbazoles, and phenanthrenes through FeCl3-mediated cyclization of triene frameworks.SynOpen201802030246025010.1055/s‑0037‑1609936
    [Google Scholar]
  61. MandalT. ChakrabortiG. KarmakarS. DashJ. Divergent and orthogonal approach to carbazoles and pyridoindoles from oxindoles via indole intermediates.Org. Lett.201820164759476310.1021/acs.orglett.8b0182730091929
    [Google Scholar]
  62. RajuS. AnnamalaiP. ChenP.L. LiuY.H. ChuangS.C. Palladium-catalyzed C–H bond activation by using iminoquinone as a directing group and an internal oxidant or a co-oxidant: Production of dihydrophenanthridines, phenanthridines, and carbazoles.Org. Lett.201719154134413710.1021/acs.orglett.7b0195628718655
    [Google Scholar]
  63. AlimiI. RemyR. BochetC.G. Photochemical C-H activation: Generation of indole and carbazole libraries, and first total synthesis of Clausenawalline D.Eur. J. Org. Chem.20172017223197321010.1002/ejoc.201700300
    [Google Scholar]
  64. SzewczykM. RyczkowskaM. MakowiecS. Transition-metal-promoted oxidative cyclization to give 1,2,4-trisubstituted carbazole scaffolds.Synthesis201951244625463410.1055/s‑0039‑1690681
    [Google Scholar]
  65. ChoiS. SrinivasuluV. HaS. ParkC.M. Synthesis of carbazoles based on gold–copper tandem catalysis.Chem. Commun. (Camb.)201753243481348410.1039/C7CC00103G28276553
    [Google Scholar]
  66. HuangY. GuoZ. SongH. LiuY. WangQ. Silver–copper co-catalyzed cascade intramolecular cyclization/desulfinamide/dehydrogenation: One-pot synthesis of substituted carbazoles.Chem. Commun. (Camb.)201854527143714610.1039/C8CC03600D29868659
    [Google Scholar]
  67. WeiB. DongK. ZhangJ. ZuL. Harnessing the chemistry of 4a H -carbazoles: A consecutive rearrangements approach to carbazoles.Org. Chem. Front.20218205668567310.1039/D1QO01053K
    [Google Scholar]
  68. JeonJ. CheonC.H. Synthesis of benzo[a]carbazoles via cyanide-catalyzed imino-Stetter reaction/Friedel–Crafts reaction sequence.Org. Chem. Front.20196445646710.1039/C8QO01209A
    [Google Scholar]
  69. LiQ. LiB. WangB. Rhodium-catalyzed intramolecular cascade sequence for the formation of fused carbazole-annulated medium-sized rings by cleavage of C(sp2)–H/C(sp3)–H bonds.Chem. Commun. (Camb.)201854669147915010.1039/C8CC04428G30059082
    [Google Scholar]
  70. YangJ. ZhangQ. ZhangW. YuW. Synthesis of benzo[a]carbazoles and indolo[2,3-a]carbazoles via photoinduced carbene-mediated C–H insertion reaction.RSC Adv.2014426137041370710.1039/C4RA00442F
    [Google Scholar]
  71. RathoreK.S. HarodeM. KatukojvalaS. Regioselective π-extension of indoles with rhodium enalcarbenoids – synthesis of substituted carbazoles.Org. Biomol. Chem.201412438641864510.1039/C4OB01693A25247844
    [Google Scholar]
  72. WuJ.Q. YangZ. ZhangS.S. JiangC.Y. LiQ. HuangZ.S. WangH. From indoles to carbazoles: Tandem Cp*Rh(III)-catalyzed C–H activation/brønsted acid-catalyzed cyclization reactions.ACS Catal.20155116453645710.1021/acscatal.5b01801
    [Google Scholar]
  73. NykazaT.V. RamirezA. HarrisonT.S. LuzungM.R. RadosevichA.T. Biphilic organophosphorus-catalyzed intramolecular C sp 2 –H amination: Evidence for a nitrenoid in catalytic cadogan cyclizations.J. Am. Chem. Soc.201814083103311310.1021/jacs.7b1380329389114
    [Google Scholar]
  74. LiuX. ShengH. ZhouY. SongQ. Palladium-catalyzed C–H bond activation for the assembly of N -aryl carbazoles with aromatic amines as nitrogen sources.Chem. Commun. (Camb.)202056111665166810.1039/C9CC09493H31939459
    [Google Scholar]
  75. TamarizJ. BautistaR. JerezanoA. Synthetic approach for constructing the 1-oxygenated carbazole core and its application to the preparation of natural alkaloids.Synthesis201244213327333610.1055/s‑0032‑1317175
    [Google Scholar]
  76. NiuY.N. QiaoY. WangK.Y. ShaB.X. LiG.Q. Cu(I)-catalyzed cross-coupling of primary amines with 2,20-dibromo-1,10-biphenyl for the synthesis of polysubstituted carbazole.RSC Adv.20221237242322423610.1039/D2RA03323B
    [Google Scholar]
  77. XiaW. ZhaoX. ChenM. HuangB. YangC. GaoY. Photoinduced cross-coupling of amines with 1,2-diiodobenzene and its application in the synthesis of carbazoles.Synthesis201850152981298910.1055/s‑0037‑1609444
    [Google Scholar]
  78. SahaS. BanerjeeA. MajiM.S. Brønsted acid catalyzed one-pot benzannulation of 2-alkenylindoles under aerial oxidation: A route to carbazoles and indolo[2,3-a]carbazole alkaloids.Org. Lett.201820216920692410.1021/acs.orglett.8b0306330358409
    [Google Scholar]
  79. SahaS. MajiM.S. One-pot access to tetrahydrobenzo[c]carbazoles from simple ketones by using O 2 as an oxidant.Org. Biomol. Chem.20201891765176810.1039/C9OB02751C32068756
    [Google Scholar]
  80. BanerjeeA. GuinA. SahaS. MondalA. MajiM.S. Formal [4 + 2] benzannulation of 2-alkenyl indoles with aldehydes: A route to structurally diverse carbazoles and bis-carbazoles.Org. Biomol. Chem.20191771822182610.1039/C8OB02875C30566164
    [Google Scholar]
  81. KunduS. BanerjeeA. MajiM.S. Brønsted acid-catalyzed tandem pinacol-type rearrangement for the synthesis of α-(3-indolyl) ketones by using α-hydroxy aldehydes.J. Org. Chem.20198424160031601210.1021/acs.joc.9b0247431747752
    [Google Scholar]
  82. LiQ. WangY. LiB. WangB. Cp*Co(III)-catalyzed regioselective synthesis of cyclopenta[b]carbazoles via Dual C(sp 2 )–H functionalization of 1-(Pyridin-2-yl)-indoles with Diynes.Org. Lett.201820247884788710.1021/acs.orglett.8b0343830517008
    [Google Scholar]
  83. WangY. LiB. WangB. Rh III -catalyzed synthesis of cyclopenta[b]carbazoles via Cascade C–H/C–C bond cleavage and cyclization reactions: Using amide as a traceless directing group.Org. Lett.2020221838710.1021/acs.orglett.9b0396931833779
    [Google Scholar]
  84. LuC. MarkinaN.A. LarockR.C. Synthesis of N-acylcarbazoles through palladium-catalyzed aryne annulation of 2-haloacetanilides.J. Org. Chem.20127724111531116010.1021/jo302172723214463
    [Google Scholar]
  85. ChakrabartyS. ChatterjeeI. TebbenL. StuderA. Reactions of arynes with nitrosoarenes--An approach to substituted carbazoles.Angew. Chem. Int. Ed.201352102968297110.1002/anie.20120944723364892
    [Google Scholar]
  86. ZhangW. BuJ. WangL. LiP. LiH. Sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes: An approach toward the carbazole skeleton.Org. Chem. Front.20218185045505110.1039/D1QO00739D
    [Google Scholar]
  87. WuL. HuangH. DangP. LiangY. PiS. Construction of benzo[a]carbazole derivatives via Diels–Alder reaction of arynes with vinylindoles.RSC Adv.2015579643546435710.1039/C5RA11025D
    [Google Scholar]
  88. GooD.Y. WooS.K. One-pot synthesis of carbazoles via tandem C–C cross-coupling and reductive amination.Org. Biomol. Chem.201614112213010.1039/C5OB01952D26542026
    [Google Scholar]
  89. KimH.S. GooD. WooS.K. Efficient synthesis of aryl-substituted carbazoles via tandem double or triple suzuki coupling and cadogan cyclization.Tetrahedron201773111413142310.1016/j.tet.2017.01.038
    [Google Scholar]
  90. SinghS. SamineniR. PabbarajaS. MehtaG. A general carbazole synthesis via stitching of indole–ynones with nitromethanes: Application to total synthesis of carbazomycin A, Calothrixin B, and Staurosporinone.Org. Lett.20192193372337610.1021/acs.orglett.9b0111131013110
    [Google Scholar]
  91. YangY. HuangJ. TanH. KongL. WangM. YuanY. LiY. Synthesis of cyano-substituted carbazoles via successive C–C/C–H cleavage.Org. Biomol. Chem.201917495896510.1039/C8OB03031F30631868
    [Google Scholar]
  92. WuF. HuangW. Yiliqi YangJ. GuY. Relay catalysis of bismuth trichloride and byproduct hydrogen bromide enables the synthesis of carbazole and benzo[α]carbazoles from indoles and α‐bromoacetaldehyde acetals.Adv. Synth. Catal.2018360173318333010.1002/adsc.201800669
    [Google Scholar]
  93. NiP. TanJ. ZhaoW. HuangH. XiaoF. DengG.J. Metal-free double csp 2 –h bond functionalization: strategy for synthesizing benzo[a]carbazoles from 2-arylindoles and acetophenones/alkynes.Org. Lett.201921103687369110.1021/acs.orglett.9b0113831038319
    [Google Scholar]
  94. LiM. WuF. GuY. Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system.Chin. J. Catal.201940811351140
    [Google Scholar]
  95. ChenG. ZhangX. JiaR. LiB. FanX. Selective synthesis of benzo[a]carbazoles and indolo[2,1‐a]‐isoquinolines via rh(iii)‐catalyzed C−H functionalizations of 2‐arylindoles with sulfoxonium ylides.Adv. Synth. Catal.2018360193781378710.1002/adsc.201800622
    [Google Scholar]
  96. MaitiS. AcharT.K. MalP. An organic intermolecular dehydrogenative annulation reaction.Org. Lett.20171982006200910.1021/acs.orglett.7b0056228406305
    [Google Scholar]
  97. MaitiS. MalP. Dehydrogenative aromatic ring fusion for carbazole synthesis via C–C/C–N bond formation and alkyl migration.Org. Lett.20171992454245710.1021/acs.orglett.7b0111728430447
    [Google Scholar]
  98. YuanZ.G. WangQ. ZhengA. ZhangK. LuL.Q. TangZ. XiaoW.J. Visible light-photocatalysed carbazole synthesis via a formal (4+2) cycloaddition of indole-derived bromides and alkynes.Chem. Commun. (Camb.)201652295128513110.1039/C5CC10542K26987917
    [Google Scholar]
  99. WangH. WangZ. WangY.L. ZhouR.R. WuG.C. YinS.Y. YanX. WangB. N-bromosuccinimide (NBS)-catalyzed C-H bond functionalization: An annulation of alkynes with electron withdrawing group (EWG)-substituted acetyl indoles for the synthesis of carbazoles.Org Lett.201719226140614310.1021/acs.orglett.7b03021
    [Google Scholar]
  100. ZhouT. LiB. WangB. Rhodium-catalyzed C2 and C4 C–H activation/annulation of 3-(1H-indol-3-yl)-3-oxopropanenitriles with internal alkynes: A facile access to substituted and fused carbazoles.Chem. Commun. (Camb.)201753476343634610.1039/C7CC02808C28548669
    [Google Scholar]
  101. WuJ. XieY. ChenX. DengG.J. Transition metal‐free carbazole synthesis from arylureas and cyclohexanones.Adv. Synth. Catal.2016358203206321110.1002/adsc.201600673
    [Google Scholar]
  102. WuJ. ChenX. XieY. GuoY. ZhangQ. DengG.J. Carbazole and triarylpyrrole synthesis from anilines and cyclohexanones or acetophenones under transition-metal free condition.J. Org. Chem.201782115743575010.1021/acs.joc.7b0055628474526
    [Google Scholar]
  103. ZhuC. MaS. Efficient carbazole synthesis via Pd/Cu-cocatalyzed cross-coupling/isomerization of 2-allyl-3-iodoindoles and terminal alkynes.Org. Lett.20141661542154510.1021/ol500119r24617639
    [Google Scholar]
  104. TambeS.D. IqbalN. ChoE.J. Nickel-catalyzed trans -carboamination across internal alkynes to access multifunctionalized indoles.Org. Lett.202022218550855410.1021/acs.orglett.0c0314833104355
    [Google Scholar]
  105. PointsG.L.III BeaudryC.M. Regioselective synthesis of substituted carbazoles, bicarbazoles, and clausine C.Org. Lett.202123176882688510.1021/acs.orglett.1c0244934424701
    [Google Scholar]
  106. GuoS. YuanK. GuM. LinA. YaoH. Rh(III)-catalyzed cascade annulation/C–H activation of o -ethynylanilines with diazo compounds: One-pot synthesis of benzo[a]carbazoles via 1,4-rhodium migration.Org. Lett.201618205236523910.1021/acs.orglett.6b0253427704860
    [Google Scholar]
  107. StephersonJ.R. AyalaC.E. TugwellT.H. HenryJ.L. FronczekF.R. KartikaR. Carbazole annulation via cascade nucleophilic addition–cyclization involving 2-(silyloxy)pentadienyl cation.Org. Lett.201618123002300510.1021/acs.orglett.6b0137627265237
    [Google Scholar]
  108. WuC.J. CaoW.X. ChenB. TungC.H. WuL.Z. Tandem [2 + 2] cycloaddition/rearrangement toward carbazoles by visible-light photocatalysis.Org. Lett.20212362135213910.1021/acs.orglett.1c0029033635659
    [Google Scholar]
  109. MenY. HuZ. DongJ. XuX. TangB. Formal [1 + 2 + 3] annulation: Domino access to carbazoles and indolocarbazole alkaloids.Org. Lett.201820175348535210.1021/acs.orglett.8b0226630110173
    [Google Scholar]
  110. LahaJ.K. DayalN. A tandem approach to functionalized carbazoles from indoles via two successive regioselective oxidative heck reactions followed by thermal electrocyclization.Org. Lett.201517194742474510.1021/acs.orglett.5b0226526402033
    [Google Scholar]
  111. LiN. LianX.L. LiY.H. WangT.Y. HanZ.Y. ZhangL. GongL.Z. Gold-catalyzed direct assembly of aryl-annulated carbazoles from 2-alkynyl arylazides and alkynes.Org. Lett.201618174178418110.1021/acs.orglett.6b0162727529360
    [Google Scholar]
  112. WangM. FanQ. JiangX. Nitrogen-iodine exchange of diaryliodonium salts: Access to acridine and carbazole.Org Lett.201820121621910.1021/acs.orglett.7b03564
    [Google Scholar]
  113. DebnathS. DasT. PatiT.K. MajumdarS. MaitiD.K. Metal-free indole–phenacyl bromide cyclization: A regioselective synthesis of 3,5-diarylcarbazoles.J. Org. Chem.20208520132721327910.1021/acs.joc.0c0167033006280
    [Google Scholar]
  114. CaoD. ChenG. ChenD. XiaZ. LiZ. WangY. XuD. YangJ. Synthesis of 4-hydroxycarbazole derivatives by benzannulation of 3-nitroindoles with alkylidene azlactones.ACS Omega2021626169691697910.1021/acsomega.1c0199234250355
    [Google Scholar]
  115. HaoT. HuangL. WeiY. ShiM. Copper-catalyzed synthesis of indolyl benzo[b]carbazoles and their photoluminescence property.Org. Lett.202123135133513710.1021/acs.orglett.1c0165934143628
    [Google Scholar]
  116. Raji ReddyC. SubbaraoM. SathishP. KolgaveD.H. DonthiriR.R. One-pot assembly of 3-hydroxycarbazoles via uninterrupted propargylation/hydroxylative benzannulation reactions.Org. Lett.202022268969310.1021/acs.orglett.9b0447231909623
    [Google Scholar]
  117. NanjoT. TsukanoC. TakemotoY. Palladium-catalyzed cascade process consisting of isocyanide insertion and benzylic C(sp3)-H activation: Concise synthesis of indole derivatives.Org. Lett.201214164270427310.1021/ol302035j22849720
    [Google Scholar]
  118. PandeyA.K. KangD. HanS.H. LeeH. MishraN.K. KimH.S. JungY.H. HongS. KimI.S. Reactivity of morita–baylis–hillman adducts in C–H functionalization of (hetero)aryl nitrones: Access to bridged cycles and carbazoles.Org. Lett.201820154632463610.1021/acs.orglett.8b0191030047738
    [Google Scholar]
  119. SaravananV. MageshwaranT. MohanakrishnanA.K. Synthesis of cyclo[b]fused carbazoles via sncl 4 -mediated domino reaction of 2-indolylmethylpivalates with arenes and heteroarenes.J. Org. Chem.201681188633864610.1021/acs.joc.6b0164627564513
    [Google Scholar]
  120. SamalaS. MandadapuA.K. SaifuddinM. KunduB. Gold-catalyzed sequential alkyne activation: one-pot synthesis of NH-carbazoles via cascade hydroarylation of alkyne/6-endo-dig carbocyclization reactions.J. Org. Chem.201378136769677410.1021/jo400799b23789909
    [Google Scholar]
  121. GuneyT. LeeJ.J. KrausG.A. First inverse electron-demand Diels-Alder methodology of 3-chloroindoles and methyl coumalate to carbazoles.Org. Lett.20141641124112710.1021/ol403733n24495130
    [Google Scholar]
  122. KaleA.P. KumarG.S. MangadanA.R.K. KapurM. Palladium-catalyzed α-arylation of enones in the synthesis of 2-alkenylindoles and carbazoles.Org. Lett.20151751324132710.1021/acs.orglett.5b0032425706978
    [Google Scholar]
  123. RasheedS. RaoD.N. ReddyK.R. AravindaS. VishwakarmaR.A. DasP. C–N bond formation via Cu-catalyzed cross-coupling with boronic acids leading to methyl carbazole-3-carboxylate: Synthesis of carbazole alkaloids.RSC Adv.20144104960496910.1039/c3ra44903c
    [Google Scholar]
  124. LupidiG. BassettiB. BalliniR. PetriniM. PalmieriA. A new and effective one‐pot synthesis of polysubstituted carbazoles starting from β‐nitro‐β,γ‐unsaturated‐ketones and indoles.Asian J. Org. Chem.20211092334233710.1002/ajoc.202100342
    [Google Scholar]
  125. MerkushevA.A. MakarovA.S. ShpuntovP.M. AbaevV.T. TrushkovI.V. UchuskinM.G. Oxidative rearrangement of 2‐(2‐aminobenzyl)furans: Synthesis of functionalized indoles and carbazoles.Eur. J. Org. Chem.2021202181274128510.1002/ejoc.202001608
    [Google Scholar]
  126. DuY. XueW. GaoR. GuY. HanL. [4+2] Annulation of 3-(2,2-diethoxyethyl)-1,3-dicarbonyl compounds with indoles catalyzed by Brønsted acid ionic liquid for the synthesis of carbazoles.Tetrahedron Lett.201859484221422510.1016/j.tetlet.2018.10.029
    [Google Scholar]
  127. ShaoC. ZhouB. WuZ. JiX. ZhangY. Synthesis of carbazoles from 2‐iodobiphenyls by palladium‐catalyzed C−H activation and amination with diaziridinone.Adv. Synth. Catal.2018360588789210.1002/adsc.201701039
    [Google Scholar]
  128. QiaoY. WuX.X. ZhaoY. SunY. LiB. ChenS. Copper‐catalyzed successive C−C bond formations on indoles or pyrrole: A convergent synthesis of symmetric and unsymmetric hydroxyl substituted n ‐H carbazoles.Adv. Synth. Catal.2018360112138214310.1002/adsc.201800154
    [Google Scholar]
  129. LeeJ.Y. HaH. BaeS. HanI. JooJ.M. Catalytic C‐2 allylation of indoles by electronic modulation of the indole ring and its application to the synthesis of functionalized carbazoles.Adv. Synth. Catal.2016358213458347010.1002/adsc.201600568
    [Google Scholar]
  130. LiY. PangZ. ZhangT. YangJ. YuW. Oxidative photochemical cyclization of ethyl 3-(indol-3-yl)-3-oxo-2-phenylpropanoate derivatives: Synthesis of benzo[a]carbazoles.Tetrahedron201571213351335810.1016/j.tet.2015.03.107
    [Google Scholar]
  131. MohanakrishnanA.K. SaravananV. Synthesis of annulated carbazoles via FECL3/SNCL4‑mediated domino reaction of vinyl ketone tethered bromomethylindoles with arenes and heteroarenes.Synthesis202153132304231810.1055/a‑1387‑9479
    [Google Scholar]
  132. BanJ. LimM. ShabbirS. BaekJ. RheeH. Site-specific synthesis of carbazole derivatives through aryl homocoupling and amination.Synthesis202052691792710.1055/s‑0039‑1690759
    [Google Scholar]
  133. LiuX. HuangJ. XuH. ZhangD. SunQ. HeL. Copper‐catalyzed synthesis of 2‐aminocarbazoles through cascade C–C and C–N bond formation and aromatization.Eur. J. Org. Chem.20192019590090610.1002/ejoc.201801297
    [Google Scholar]
  134. FangR.J. YanC. SunJ. HanY. YanC.G. Efficient synthesis of polyfunctionalized carbazoles and pyrrolo[3,4 -c ]carbazoles via domino Diels–Alder reaction.Beilstein J. Org. Chem.2021172425243210.3762/bjoc.17.15934621404
    [Google Scholar]
  135. GuoB. HuangX. FuC. MaS. Carbazoles from the [4C+2C] reaction of 2,3‐allenols with indoles.Chemistry20162251183431834810.1002/chem.20160431727726222
    [Google Scholar]
  136. DagarA. BiswasS. MobinS.M. SamantaS. An efficient, solvent-free and green one-pot protocol for the rapid access to polyfunctionalized carbazoles.ChemistrySelect20161206362636710.1002/slct.201601611
    [Google Scholar]
  137. JaiswalP.K. BiswasS. SinghS. SamantaS. An organocatalytic highly efficient approach to the direct synthesis of substituted carbazoles in water.Org. Biomol. Chem.201311488410841810.1039/c3ob42034e24189837
    [Google Scholar]
  138. KawadaY. OhmuraS. KobayashiM. NojoW. KondoM. MatsudaY. MatsuokaJ. InukiS. OishiS. WangC. SaitoT. UchiyamaM. SuzukiT. OhnoH. Direct synthesis of aryl-annulated [c]carbazoles by gold( i )-catalysed cascade reaction of azide-diynes and arenes.Chem. Sci. (Camb.)20189448416842510.1039/C8SC03525C30542591
    [Google Scholar]
  139. LiQ. PengX.S. WongH.N.C. Brønsted acid-catalyzed synthesis of carbazoles from 2-substituted indoles.Org. Chem. Front.20141101197120010.1039/C4QO00242C
    [Google Scholar]
  140. XiaoF. LiaoY. WuM. DengG.J. One-pot synthesis of carbazoles from cyclohexanones and arylhydrazine hydrochlorides under metal-free conditions.Green Chem.201214123277328010.1039/c2gc36473e
    [Google Scholar]
  141. GuoT. JiangQ. HuangF. ChenJ. YuZ. Palladium-catalyzed, copper-mediated construction of benzene rings from the reactions of indoles with in situ generated enones.Org. Chem. Front.20141670771110.1039/C4QO00122B
    [Google Scholar]
  142. GuoY. WangZ. ZhuY. ZhangQ. WeiD. LiuX. FuZ. Access to polyfunctionalized carbazoles through π-extension of 2-methyl-3-oxoacetate indoles.Org. Chem. Front.20196223741374510.1039/C9QO01093A
    [Google Scholar]
  143. BiswasS. JaiswalP.K. SinghS. MobinS.M. SamantaS. l-Proline catalyzed stereoselective synthesis of (E)-methyl-α-indol-2-yl-β-aryl/alkyl acrylates: Easy access to substituted carbazoles, γ-carbolines and prenostodione.Org. Biomol. Chem.201311417084708710.1039/c3ob41573b24057205
    [Google Scholar]
  144. KuoC.W. KonalaA. LinL. ChiangT.T. HuangC.Y. YangT.H. KavalaV. YaoC.F. Synthesis of benzo[a]carbazole derivatives from 3-ethylindoles by exploiting the dual character of benzoquinone as an oxidizing agent and dienophile.Chem. Commun. (Camb.)201652507870787310.1039/C6CC03124B27250103
    [Google Scholar]
  145. OzakiK. ZhangH. ItoH. LeiA. ItamiK. One-shot indole-to-carbazole π-extension by a Pd–Cu–Ag trimetallic system.Chem. Sci. (Camb.)2013493416342010.1039/c3sc51447a
    [Google Scholar]
  146. PoudelT.N. LeeY.R. Construction of highly functionalized carbazoles via condensation of an enolate to a nitro group.Chem. Sci. (Camb.)20156127028703310.1039/C5SC02407B29861941
    [Google Scholar]
  147. ChenS. LiY. NiP. HuangH. DengG.J. Indole-to-carbazole strategy for the synthesis of substituted carbazoles under metal-free conditions.Org. Lett.201618205384538710.1021/acs.orglett.6b0276227718584
    [Google Scholar]
  148. ChenS. WangL. ZhangJ. HaoZ. HuangH. DengG.J. Modular synthesis of carbazole-based conjugated molecules through a one-pot annulation/dehydrogenation sequence.J. Org. Chem.20178220111821119110.1021/acs.joc.7b0230528956611
    [Google Scholar]
  149. ChenS. LiY. NiP. YangB. HuangH. DengG.J. One-pot cascade synthesis of substituted carbazoles from indoles, ketones, and alkenes using oxygen as the oxidant.J. Org. Chem.20178262935294210.1021/acs.joc.6b0289228218522
    [Google Scholar]
  150. ChenS. JiangP. WangP. PeiY. HuangH. XiaoF. DengG.J. Three-component cascade synthesis of carbazoles through [1s,6s] sigmatropic shift under metal-free conditions.J. Org. Chem.20198463121313110.1021/acs.joc.8b0299430781946
    [Google Scholar]
  151. GuY. HuangW. ChenS. WangX. Bismuth(III) triflate catalyzed three-component reactions of indoles, ketones, and α-bromoacetaldehyde acetals enable indole-to-carbazole transformation.Org. Lett.201820144285428910.1021/acs.orglett.8b0170729978706
    [Google Scholar]
  152. GuoT. HanL. WangT. LeiL. ZhangJ. XuD. Copper-catalyzed three-component formal [3 + 1 + 2] benzannulation for carbazole and indole synthesis.J. Org. Chem.202085149117912810.1021/acs.joc.0c0105632545962
    [Google Scholar]
  153. HuangY.W. LiX.Y. FuL.N. GuoQ.X. Procedure for the synthesis of polysubstituted carbazoles from 3-vinyl indoles.Org. Lett.201618236200620310.1021/acs.orglett.6b0325727934374
    [Google Scholar]
  154. HuZ. MenY. XuZ. WuT. XuX. TangB. A catalyst-free aqueous mediated multicomponent reaction of isocyanide: expeditious synthesis of polyfunctionalized cyclo[b]fused mono-, di- and tricarbazoles.Org. Chem. Front.20207223720372610.1039/D0QO01095B
    [Google Scholar]
/content/journals/coc/10.2174/0113852728340847241105111800
Loading
/content/journals/coc/10.2174/0113852728340847241105111800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test