Skip to content
2000
Volume 29, Issue 16
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

According to the PLOS Neglected Tropical Diseases Journal, infection caused by the Gram-negative bacterium is a neglected tropical disease. is the most dangerous Gram-positive bacterium among staphylococcal bacteria. Moreover, resistance to is an urgent public health issue. In this sense, cinnamic acid and acetamide derivatives have been used as strategic nuclei in the design of antimicrobial agents. With the aim of investigating whether antibacterial activity is improved with the junction of cinnamic and acetamide nuclei, cinnamic amidoesters were planned and evaluated as potential antibacterial agents. (ADMET test and molecular docking) and (antibacterial and antituberculosis evaluation, and toxicity on larvae) studies were performed. Twelve cinnamic amidoesters were synthesized, which present positive characteristics for possible drug candidates, and showed subtle activity against , however, against , unsubstituted and -substituted compounds (R3 = H, Me, Cl, Br) showed significant activity, with MIC = 156.25-625 µg/mL-1. Only one -substituted compound (R3 = Bu) showed discrete activity against , with MIC = 200 µM. For the most active compounds against , the molecular docking study demonstrated affinity with the TtRNA enzyme, which plays a central role in the assembly of amino acids into polypeptide chains. The most active compounds against and were non-toxic on , with LC > 1000 µg/mL-1. According to / studies, the non-toxic compound (R3 = Cl) stands out as a potential antibacterial agent for further studies.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728310711240525123954
2024-06-15
2025-09-03
Loading full text...

Full text loading...

References

  1. OrtizY. García-HerediaA. Merino-MascorroA. GarcíaS. Solís-SotoL. HerediaN. Natural and synthetic antimicrobials reduce adherence of enteroaggregative and enterohemorrhagic Escherichia coli to epithelial cells.PLoS One2021165e025109610.1371/journal.pone.0251096 33939753
    [Google Scholar]
  2. ZhaoY. WeiJ. LiC. AhmedA.F. LiuZ. MaC. A comprehensive review on mechanism of natural products against Staphylococcus aureus.J. Future Foods202221253310.1016/j.jfutfo.2022.03.014
    [Google Scholar]
  3. ArrigoniR. BalliniA. TopiS. BottalicoL. JirilloE. SantacroceL. Antibiotic resistance to Mycobacterium tuberculosis and potential use of natural and biological products as alternative anti-mycobacterial agents.Antibiotics (Basel)202211101431144510.3390/antibiotics11101431 36290089
    [Google Scholar]
  4. RodriguesM.P. TomazD.C. Ângelo de SouzaL. OnofreT.S. Aquiles de MenezesW. Almeida-SilvaJ. Suarez-FontesA.M. Rogéria de AlmeidaM. Manoel da SilvaA. BressanG.C. Vannier-SantosM.A. Rangel FiettoJ.L. TeixeiraR.R. Synthesis of cinnamic acid derivatives and leishmanicidal activity against Leishmania braziliensis.Eur. J. Med. Chem.201918311168810.1016/j.ejmech.2019.111688 31542714
    [Google Scholar]
  5. KumarN. ParleA. Cinnamic acid derivatives: An ERA.J. Pharm. Innov.20198558059510.22271/tpi.2019.v8.i3j.25396
    [Google Scholar]
  6. ChandraS. RoyA. JanaM. PahanK. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model.Neurobiol. Dis.201912437939510.1016/j.nbd.2018.12.007 30578827
    [Google Scholar]
  7. ZhangW.X. WangH. CuiH.R. GuoW.B. ZhouF. CaiD.S. XuB. JiaX.H. HuangX.M. YangY.Q. ChenH.S. QiJ.C. WangP.L. LeiH.M. Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect.Eur. J. Med. Chem.201918311169510.1016/j.ejmech.2019.111695 31541868
    [Google Scholar]
  8. MalheiroJ.F. MaillardJ.Y. BorgesF. SimõesM. Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control.Int. Biodeterior. Biodegradation2019141717810.1016/j.ibiod.2018.06.003
    [Google Scholar]
  9. SpagnolC.M. AssisR.P. BrunettiI.L. IsaacV.L.B. SalgadoH.R.N. CorrêaM.A. In vitro methods to determine the antioxidant activity of caffeic acid.Spectrochim. Acta A Mol. Biomol. Spectrosc.201921935836610.1016/j.saa.2019.04.025 31055242
    [Google Scholar]
  10. PerkovićI. Raić-MalićS. FontinhaD. PrudêncioM. Pessanha de CarvalhoL. HeldJ. TandarićT. VianelloR. ZorcB. RajićZ. Harmicines − harmine and cinnamic acid hybrids as novel antiplasmodial hits.Eur. J. Med. Chem.202018711192710.1016/j.ejmech.2019.111927 31812035
    [Google Scholar]
  11. LopesS.P. YepesL.M. Pérez-CastilloY. RobledoS.M. de SousaD.P. Alkyl and aryl derivatives based on p-coumaric acid modification and inhibitory action against Leishmania braziliensis and Plasmodium falciparum.Molecules20202514317810.3390/molecules25143178 32664596
    [Google Scholar]
  12. Atmaram UpareA. GadekarP.K. SivaramakrishnanH. NaikN. KhedkarV.M. SarkarD. ChoudhariA. Mohana RoopanS. Design, synthesis and biological evaluation of (E)-5-styryl-1,2,4-oxadiazoles as anti-tubercular agents.Bioorg. Chem.20198650751210.1016/j.bioorg.2019.01.054 30776681
    [Google Scholar]
  13. PelleritoC. EmanueleS. FerranteF. CelesiaA. GiulianoM. FioreT. Tributyltin(IV) ferulate, a novel synthetic ferulic acid derivative, induces autophagic cell death in colon cancer cells: From chemical synthesis to biochemical effects.J. Inorg. Biochem.202020511099910.1016/j.jinorgbio.2020.110999 31986423
    [Google Scholar]
  14. SarveAhrabiY. Zarrabi AhrabiN. SouldoziA. Synthesis and antimicrobial evaluation of new series of 1,3,4-oxadiazole containing cinnamic acid derivatives.Avicenna J. Clin. Microbiol. Infect.202181111610.34172/ajcmi.2021.03
    [Google Scholar]
  15. de MoraisM.C. de Oliveira LimaE. Perez-CastilloY. de SousaD.P. Synthetic cinnamides and cinnamates: antimicrobial activity, mechanism of action, and in silico study.Molecules2023284191810.3390/molecules28041918 36838906
    [Google Scholar]
  16. Abdel-LatifE. FahadM.M. IsmailM.A. Synthesis of N -aryl 2-chloroacetamides and their chemical reactivity towards various types of nucleophiles.Synth. Commun.202050328931410.1080/00397911.2019.1692225
    [Google Scholar]
  17. RadhakrishnaV.Y. KhatikG.L. VijayaB.S. NairV.A. A mild and eco-friendly, one-pot synthesis of 2-hydroxy-N-arylacetamides from 2-chloro-N-arylacetamides.Lett. Org. Chem.202421539139910.2174/0115701786279583231124093402
    [Google Scholar]
  18. IshakE.A. MousaS.A.S. BakheetM.E.M. Abu-ShanabF.A. Reaction, reactivity and behaviour of α-chloroacetamides in the synthesis of acrylamide derivatives.Res Sq20242024385353610.21203/rs.3.rs‑3853536/v1
    [Google Scholar]
  19. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  20. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  21. BarrosA.G. Avaliação ADMET de substâncias.BIOINFO2023312510.51780/bioinfo‑03‑25
    [Google Scholar]
  22. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  23. GhoseA.K. ViswanadhanV.N. WendoloskiJ.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases.J. Comb. Chem.199911556810.1021/cc9800071 10746014
    [Google Scholar]
  24. EganW.J. MerzK.M.Jr BaldwinJ.J. Prediction of drug absorption using multivariate statistics.J. Med. Chem.200043213867387710.1021/jm000292e 11052792
    [Google Scholar]
  25. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  26. VelayuthamB. JawaharM.S. NairD. NavaneethapandianP. PonnurajaC. ChandrasekaranK. Narayan SivaramakrishnanG. Makesh KumarM. Paul KumaranP. Ramesh KumarS. BaskaranD. Bella DevaleenalD. SirasanambatiD.R. VasanthaM. PalaniyandiP. RamachandranG. Uma DeviK.R. Elizabeth HannahL. SekarG. RadhakrishnanA. KalaiselviD. DhanalakshmiA. ThiruvalluvanE. Raja SakthivelM. MahilmaranA. SridharR. JayabalL. RathinamP. AngamuthuP. Soorappa PonnusamyK. VenkatesanP. NatrajanM. Prasad TripathyS. SwaminathanS. 4‐month moxifloxacin containing regimens in the treatment of patients with sputum‐positive pulmonary tuberculosis in South India – A randomised clinical trial.Trop. Med. Int. Health202025448349510.1111/tmi.13371 31944502
    [Google Scholar]
  27. CavalcantiA.B.S. MaiaM.S. FigueiredoP.T.R. MenezesR.P.B. MonteiroA.F.M. MeirelesR.A.R. RodriguesG.C.S. Rodrigues de Almeida SilvaA.R. LinsJ.S. CordeiroL.V. JuniorV.S.R. Castelo BrancoA.P.O.T. AgraM.F. SessionsZ.L. MuratovE.N. ScottiL. SilvaM.S. CostaV.C.O. TavaresJ.F. ScottiM.T. Four diterpenes identified in silico were isolated from Hyptidinae and demonstrated in vitro activity against Mycobacterium tuberculosis.Nat. Prod. Res.202337690391110.1080/14786419.2022.2096604 35819986
    [Google Scholar]
  28. Global Tuberculosis Report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.Available from: https://www.who.int/publications/i/item/9789240083851 2023
  29. ParumasivamT. Naveen KumarH.S. IbrahimP. SadikunA. MohamadS. Anti-tuberculosis activity of lipophilic isoniazid derivatives and their interactions with first-line anti-tuberculosis drugs.J. Pharm. Res.20137431331710.1016/j.jopr.2013.04.039
    [Google Scholar]
  30. BattS.M. MinnikinD.E. BesraG.S. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host’s immune system.Biochem. J.2020477101983200610.1042/BCJ20200194 32470138
    [Google Scholar]
  31. RastogiN. MoreauB. CapmauM.L. GohK.S. DavidH.L. Antibacterial action of amphipathic derivatives of isoniazid against the Mycobacterium avium complex.Zentralbl. Bakteriol. Mikrobiol. Hyg. A1988268445646210.1016/S0176‑6724(88)80123‑8 3213317
    [Google Scholar]
  32. LunaI.S. SouzaT.A. da SilvaM.S. Franca RodriguesK.A. ScottiL. ScottiM.T. Mendonça-JuniorF.J.B. Computer-Aided drug design of new 2-amino-thiophene derivatives as anti-leishmanial agents.Eur. J. Med. Chem.202325011522310.1016/j.ejmech.2023.115223 36848847
    [Google Scholar]
  33. de Sousa LuisJ.A. da Silva SouzaH.D. LiraB.F. da Silva AlvesF. de Athayde-FilhoP.F. de Souza LimaT.K. RochaJ.C. Mendonça JuniorF.J.B. ScottiL. ScottiM.T. Combined structure- and ligand-based virtual screening aiding discovery of selenoglycolicamides as potential multitarget agents against Leishmania species.J. Mol. Struct.2019119812687210.1016/j.molstruc.2019.126872
    [Google Scholar]
  34. VanithaU. ElancheranR. ManikandanV. KabilanS. KrishnasamyK. Design, synthesis, characterization, molecular docking and computational studies of 3-phenyl-2-thioxoimidazolidin-4-one derivatives.J. Mol. Struct.2021124613121210.1016/j.molstruc.2021.131212
    [Google Scholar]
  35. VanithaU. ElancheranR. KabilanS. KrishnasamyK. Screening of 1,3,4-thiadiazole derivatives by in silico molecular docking to target estrogen receptor for breast cancer.Biointerface Res. Appl. Chem.2023132160
    [Google Scholar]
  36. KapoorG. SaigalS. ElongavanA. Action and resistance mechanisms of antibiotics: A guide for clinicians.J. Anaesthesiol. Clin. Pharmacol.201733330030510.4103/joacp.JOACP_349_15 29109626
    [Google Scholar]
  37. BayazeedA. AlenaziN.A. AlsaediA.M.R. IbrahimM.H. Al-QurashiN.T. FarghalyT.A. Formazan analogous: Synthesis, antimicrobial activity, dihydrofolate reductase inhibitors and docking study.J. Mol. Struct.2022125813265310.1016/j.molstruc.2022.132653
    [Google Scholar]
  38. IwaloyeO. ElekofehintiO.O. KikiowoB. FadipeT.M. AkinjiyanM.O. AriyoE.O. AiyekuO.O. AdewumiN.A. Discovery of traditional Chinese medicine derived compounds as wild type and mutant Plasmodium falciparum dihydrofolate reductase inhibitors: induced fit docking and ADME studies.Curr. Drug Discov. Technol.202118455456910.2174/1570163817999200729122753 32729419
    [Google Scholar]
  39. SoniS. MalikJ.K. SarankarS.K. SoniH. Rutin as a potent inhibitor of dihydrofolate reductase: A computational design and docking.EAS J Pharm Pharmacol201916130134
    [Google Scholar]
  40. KhanT. SankheK. SuvarnaV. SherjeA. PatelK. DravyakarB. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents.Biomed. Pharmacother.201810392393810.1016/j.biopha.2018.04.021 29710509
    [Google Scholar]
  41. DigheS.N. ColletT.A. Recent advances in DNA gyrase-targeted antimicrobial agents.Eur. J. Med. Chem.202019911232610.1016/j.ejmech.2020.112326 32460040
    [Google Scholar]
  42. OthmanI.M.M. Gad-ElkareemM.A.M. AnouarE.H. SnoussiM. AouadiK. KadriA. Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies.J. Mol. Struct.2020121912865110.1016/j.molstruc.2020.128651
    [Google Scholar]
  43. OthmanI.M.M. Gad-ElkareemM.A.M. Hassane AnouarE. AouadiK. KadriA. SnoussiM. Design, synthesis ADMET and molecular docking of new imidazo[4,5-b]pyridine-5-thione derivatives as potential tyrosyl-tRNA synthetase inhibitors.Bioorg. Chem.202010210410510.1016/j.bioorg.2020.104105 32717689
    [Google Scholar]
  44. OthmanI.M.M. Gad-ElkareemM.A.M. Hassane AnouarE. AouadiK. SnoussiM. KadriA. New substituted pyrazolones and dipyrazolotriazines as promising tyrosyl-tRNA synthetase and peroxiredoxin-5 inhibitors: Design, synthesis, molecular docking and structure-activity relationship (SAR) analysis.Bioorg. Chem.202110910470410.1016/j.bioorg.2021.104704 33609915
    [Google Scholar]
  45. FarshadfarC. MollicaA. RafiiF. NoorbakhshA. NikzadM. SeyediS.H. AbdiF. VerkiS.A. MirzaieS. Novel potential inhibitor discovery against tyrosyl-tRNA synthetase from Staphylococcus aureus by virtual screening, molecular dynamics, MMPBSA and QMMM simulations.Mol. Simul.202046750752010.1080/08927022.2020.1726911
    [Google Scholar]
  46. BegM.A. AnsariS. AtharF. Molecular docking studies of Calotropis gigantea phytoconstituents against Staphylococcus aureus. tyrosyl-tRNA synthetase protein.J. Bacteriol. Mycol.202083789110.15406/jbmoa.2020.08.00278
    [Google Scholar]
  47. MilitoA. BrancaccioM. LisurekM. MasulloM. PalumboA. CastellanoI. Probing the interactions of sulfur-containing histidine compounds with human gamma-glutamyl transpeptidase.Mar. Drugs2019171265010.3390/md17120650 31757046
    [Google Scholar]
  48. IbezimA.E. OnoabedjeE.A. AkpomieK.G. Docking and biological screening of bezo[A]phenothiazinones as novel inhibitors of bacterial peptidogloycan transpeptidase.Iran. J. Chem. Eng.2019386243250
    [Google Scholar]
  49. AlshiekheidM.A. Evaluation of the antibacterial activities of mangrove honeybee propolis extract and the identification of transpeptidase and transglycosylase as targets for new antibiotics using molecular docking.Antibiotics (Basel)2023127119710.3390/antibiotics12071197 37508293
    [Google Scholar]
  50. SemenyutaI. TrushM. HodynaD. KachaevaM. MetelytsiaL. BrovaretsV. In vitro and in silico study of 1,3-oxazol-4-yltriphenyl-phosphonium salts as potential inhibitors of Candida albicans transglycosylase.Ukr. Bioorg. Acta2021161253310.15407/bioorganica2021.01.025
    [Google Scholar]
  51. YuJ.Y. ChengH.J. WuH.R. WuW.S. LuJ.W. ChengT.J. WuY.T. FangJ.M. Structure-based design of bacterial transglycosylase inhibitors incorporating biphenyl, amine linker and 2-alkoxy-3-phosphorylpropanoate moieties.Eur. J. Med. Chem.201815072974110.1016/j.ejmech.2018.03.034 29574202
    [Google Scholar]
  52. SalaikumaranM.R. Prasad BurraV.L.S. In silico design of novel SAM analogs as potential inhibitors against N2G966 16s rRNA methyltransferase (RsmD).Lett. Drug Des. Discov.202320121898191010.2174/1570180819666220616105517
    [Google Scholar]
  53. UgbokoH.U. FatokiT.H. NwinyiO.C. Computational study of 16S rRNA of microbe cluster implicated in diarrhoeal: Phylogeny, docking, and dynamics.Res Sq2021202111910.21203/rs.3.rs‑984331/v1
    [Google Scholar]
  54. FoikI.P. TuszynskaI. FederM. PurtaE. StefaniakF. BujnickiJ.M. Novel inhibitors of the rRNA ErmC′ methyltransferase to block resistance to macrolides, lincosamides, streptogramine B antibiotics.Eur. J. Med. Chem.2018146606710.1016/j.ejmech.2017.11.032 29396363
    [Google Scholar]
  55. TsunodaM. KusakabeY. TanakaN. OhnoS. NakamuraM. SendaT. MoriguchiT. AsaiN. SekineM. YokogawaT. NishikawaK. NakamuraK.T. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms.Nucleic Acids Res.200735134289430010.1093/nar/gkm417 17576676
    [Google Scholar]
  56. NgutaJ.M. MbariaJ.M. GakuyaD.W. GathumbiP.K. KabasaJ.D. KiamaS.G. Biological screening of kenyan medicinal plants using Artemia salina L. (Artemiidae).Pharmacologyonline20112458478
    [Google Scholar]
  57. FerreiraC.S.G. NunesB.A. Henriques-AlmeidaJ.M.M. GuilherminoL. Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica.Ecotoxicol. Environ. Saf.200767345245810.1016/j.ecoenv.2006.10.006 17418415
    [Google Scholar]
  58. KalinowskaM. ŚwisłockaR. LewandowskiW. The spectroscopic (FT-IR, FT-Raman and 1H, 13C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates.J. Mol. Struct.2007834-83657258010.1016/j.molstruc.2006.11.043
    [Google Scholar]
  59. SouzaH.D.S. SousaR.P.F. LiraB.F. Synthesis, in silico study and antimicrobial evaluation of new selenoglycolicamides.J. Braz. Chem. Soc.2019301188197
    [Google Scholar]
  60. LiX. ZouH. HuangK. Synthesis and medical application of amido substituted cinnamic acid derivative.C.N. Patent 101230015A2008
  61. AliA. AshrafZ. RafiqM. KumarA. JabeenF. LeeG.J. NazirF. AhmedM. RheeM. ChoiE.H. Novel amide derivatives as potent tyrosinase inhibitors; in-vitro, in-vivo antimelanogenic activity and computational studies.Med. Chem.201915771572810.2174/1573406415666190319101329 30892163
    [Google Scholar]
  62. CleelandL. SquiresE. Evaluation of new antimicrobials in vitro and experimental animal infections. Antibiotics in laboratory medicine. LorianV.M.D. BaltimoreWilliams & Wilkins1991739788
    [Google Scholar]
  63. EloffJ. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria.Planta Med.199864871171310.1055/s‑2006‑957563 9933989
    [Google Scholar]
  64. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard – third edition. CLSI document M27-A3. Wayne, PA: Clinical and laboratory standards institute.Available from: https://clsi.org/media/1461/m27a3_sample.pdf 2008
  65. RampersadS.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays.Sensors (Basel)2012129123471236010.3390/s120912347 23112716
    [Google Scholar]
  66. MuradásT.C. AbbadiB.L. VillelaA.D. MacchiF.S. BergoP.F. de FreitasT.F. SperottoN.D.M. TimmersL.F.S.M. Norberto de SouzaO. PicadaJ.N. FachiniJ. da SilvaJ.B. de AlbuquerqueN.C.P. HabenschusM.D. CarrãoD.B. RochaB.A. Barbosa JuniorF. de OliveiraA.R.M. MascarelloA. NeuenfeldfP. NunesR.J. MorbidoniH.R. CamposM.M. BassoL.A. Rodrigues-JuniorV.S. Pre-clinical evaluation of quinoxaline-derived chalcones in tuberculosis.PLoS One2018138e020256810.1371/journal.pone.0202568 30114296
    [Google Scholar]
  67. ThomsenR. ChristensenM.H. MolDock: a new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e 16722650
    [Google Scholar]
  68. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  69. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  70. OnoderaK. SatouK. HirotaH. Evaluations of molecular docking programs for virtual screening.J. Chem. Inf. Model.20074741609161810.1021/ci7000378 17602548
    [Google Scholar]
  71. MeyerB. FerrigniN. PutnamJ. JacobsenL. NicholsD. McLaughlinJ. Brine shrimp: A convenient general bioassay for active plant constituents.Planta Med.1982455313410.1055/s‑2007‑971236 17396775
    [Google Scholar]
  72. SorgeloosP. Remiche-Van Der WielenC. PersooneG. The use of Artemia nauplii for toxicity tests-A critical analysis.Ecotoxicol. Environ. Saf.197823-424925510.1016/S0147‑6513(78)80003‑7 751788
    [Google Scholar]
  73. LagartoparraA. Silva YhebraR. Guerra SardiñasI. Iglesias BuelaL. Comparative study of the assay of and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts.Phytomedicine20018539540010.1078/0944‑7113‑00044 11695884
    [Google Scholar]
  74. PourB.M. SasidharanS. In vivo toxicity study of Lantana camara.Asian Pac. J. Trop. Biomed.20111323023210.1016/S2221‑1691(11)60033‑6 23569765
    [Google Scholar]
  75. BataliniC. StoccoL.O. FernandesR.T.S. Marques JuniorJ. Phytochemical, phytothoxic and antifungal evaluations of stem bark of Pterodon pubescens Benth (sucupira branca).Braz. J. Dev.2020610775897760710.34117/bjdv6n10‑258
    [Google Scholar]
  76. MedeirosH.I.R. SilvaB.B.M. AguiarC.E.R. BritoT.A.M. FerreiraF.E.S. FernandesN.D. MouraÉ.P. Medeiros JúniorF.C. Synthesis, elucidation of molecular architecture and evaluation of the cytotoxic potential of a promising drug candidate derived from amidoxime.Braz. J. Dev.202069660706607910.34117/bjdv6n9‑149
    [Google Scholar]
/content/journals/coc/10.2174/0113852728310711240525123954
Loading
/content/journals/coc/10.2174/0113852728310711240525123954
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test