Skip to content
2000
Volume 29, Issue 16
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

In the present study, an immobilization support, polyaniline tin oxide nanocomposite (PANI-SnO-NC) was synthesized by polymerization of aniline and ammonium peroxydisulphate. The prepared nanocomposite was characterized by various state-of-the-art techniques. The average size of native SnO-NPs and PANI-SnO-NC was 65±19 nm and 93±15 nm, respectively. An important industrial enzyme, α-amylase from was immobilized on PANI-SnO-NC, which retained 87% enzyme activity. The improved stability of the immobilized enzyme was noticed against pH and temperature, as it retained 65% activity at 60°C while the free enzyme exhibited 41% activity under similar experimental conditions. Moreover, PANI-SnO-NC-immobilized α-amylase produced starch (26.42 mg mL-1) more efficiently than free enzyme (20.90 mg mL-1) after 8 h in batch hydrolysis. PANI-SnO-NC-bound α-amylase exhibited 54% activity after eight repeated uses. Molecular docking analysis of α-amylase with PANI suggested the ligand binding site to be located quite far away from the active site of the enzyme.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728295467240219051245
2024-03-14
2025-09-02
Loading full text...

Full text loading...

References

  1. KhanM.A. KhanM.J. Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity.Artif. Cells Nanomed. Biotechnol.20184611149115810.1080/21691401.2018.1446968
    [Google Scholar]
  2. KhanM.J. AhmadA. KhanM.A. SiddiquiS. Zinc oxide nanoparticle induces apoptosis in human epidermoid carcinoma cells through reactive oxygen species and DNA degradation.Biol. Trace Elem. Res.202119962172218110.1007/s12011‑020‑02323‑4 32840725
    [Google Scholar]
  3. DamodharanJ. Nanomaterials in medicine: An overview.Mater. Today Proc.20213738338510.1016/j.matpr.2020.05.380
    [Google Scholar]
  4. BeheraS. MohapatraS. BeheraB.C. ThatoiH. Recent updates on green synthesis of lignin nanoparticle and its potential applications in modern biotechnology.Crit. Rev. Biotechnol.202312110.1080/07388551.2023.2229512 37455422
    [Google Scholar]
  5. LiuD.M. DongC. Recent advances in nano-carrier immobilized enzymes and their applications.Process Biochem.20209246447510.1016/j.procbio.2020.02.005
    [Google Scholar]
  6. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnol.202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  7. ZhaoD. Louise LethM. Abou HachemM. AzizI. JančičN. LuxbacherT. Hélix-NielsenC. ZhangW. Facile fabrication of flexible ceramic nanofibrous membranes for enzyme immobilization and transformation of emerging pollutants.Chem. Eng. J.202345113890210.1016/j.cej.2022.138902
    [Google Scholar]
  8. NazarovaE.A. YushkovaE.D. IvanetsA.I. ProzorovichV.G. KrivoshapkinP.V. KrivoshapkinaE.F. α‐amylase immobilization on ceramic membranes for starch hydrolysis.Stärke2022741-2210001710.1002/star.202100017
    [Google Scholar]
  9. PotaG. Sapienza SalernoA. CostantiniA. SilvestriB. PassaroJ. CalifanoV. Co-immobilization of cellulase and β-glucosidase into mesoporous silica nanoparticles for the hydrolysis of cellulose extracted from Eriobotrya japonica Leaves.Langmuir202238185481549310.1021/acs.langmuir.2c00053 35476419
    [Google Scholar]
  10. ZhuY. WangM. ZhangX. CaoJ. SheY. CaoZ. WangJ. Abd El-AtyA.M. Acetylcholinesterase immobilized on magnetic mesoporous silica nanoparticles coupled with fluorescence analysis for rapid detection of carbamate pesticides.ACS Appl. Nano Mater.2022511327133810.1021/acsanm.1c03884
    [Google Scholar]
  11. PandeyG. TharmavaramM. KhatriN. RawtaniD. Halloysite nanotubes as nano-support matrix to tailor cellulase and acetylcholinesterase-based ‘nano-biocatalysts’ for waste degradation and electrochemical sensing.Appl. Clay Sci.202323410685210.1016/j.clay.2023.106852
    [Google Scholar]
  12. AlagözD. ToprakA. YildirimD. TükelS.S. Fernandez-LafuenteR. Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts.Enzyme Microb. Technol.202114410973910.1016/j.enzmictec.2020.109739 33541574
    [Google Scholar]
  13. KalsoomU. AhsanZ. BhattiH.N. AminF. NadeemR. AftabK. BilalM. Iron oxide nanoparticles immobilized Aspergillus flavus manganese peroxidase with improved biocatalytic, kinetic, thermodynamic, and dye degradation potentialities.Process Biochem.202211711713310.1016/j.procbio.2022.04.002
    [Google Scholar]
  14. KeshtaB.E. GemeayA.H. KhamisA.A. Impacts of horseradish peroxidase immobilization onto functionalized superparamagnetic iron oxide nanoparticles as a biocatalyst for dye degradation.Environ. Sci. Pollut. Res. Int.20222956633664510.1007/s11356‑021‑16119‑z 34455562
    [Google Scholar]
  15. geor malar, C.; Seenuvasan, M.; Kumar, K.S.; Kumar, A.; Parthiban, R. Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect.Biochem. Eng. J.202015810757410.1016/j.bej.2020.107574
    [Google Scholar]
  16. FarooqM.A. AliS. HassanA. TahirH.M. MumtazS. MumtazS. Biosynthesis and industrial applications of α-amylase: A review.Arch. Microbiol.202120341281129210.1007/s00203‑020‑02128‑y 33481073
    [Google Scholar]
  17. PatilA.G. KhanK. AishwaryaS. PadyanaS. HuchegowdaR. ReddyK.R. PaisR. AlrafasH. DsouzaR. MadhaviJ. YadavA.N. RaghuA.V. ZameerF. Industrially important fungi for sustainable development. Bioprospecting for Biomolecules. Abdel-AzeemA.M. YadavA.N. YadavN. SharmaM. Springer International Publishing2021407434
    [Google Scholar]
  18. MovahedpourA. AsadiM. KhatamiS.H. Taheri-AnganehM. AdelipourM. ShabaninejadZ. AhmadiN. IrajieC. MousaviP. A brief overview on the application and sources of α‐amylase and expression hosts properties in order to production of recombinant α‐amylase.Biotechnol. Appl. Biochem.202269265065910.1002/bab.2140 33655550
    [Google Scholar]
  19. RanaN. WaliaA. GaurA. α-Amylases from microbial sources and its potential applications in various industries.Natl. Acad. Sci. Lett.201336191710.1007/s40009‑012‑0104‑0
    [Google Scholar]
  20. SenT. MishraS. ShimpiN.G. Synthesis and sensing applications of polyaniline nanocomposites: A review.RSC Adv.2016648421964222210.1039/C6RA03049A
    [Google Scholar]
  21. WangQ. XueR. GuoH. WeiY. YangW. A facile horseradish peroxidase electrochemical biosensor with surface molecular imprinting based on polyaniline nanotubes.J. Electroanal. Chem.201881718419410.1016/j.jelechem.2018.04.013
    [Google Scholar]
  22. KushwahaC.S. SinghP. AbbasN.S. ShuklaS.K. Self-activating zinc oxide encapsulated polyaniline-grafted chitosan composite for potentiometric urea sensor.J. Mater. Sci. Mater. Electron.20203114118871189610.1007/s10854‑020‑03743‑7
    [Google Scholar]
  23. BayramogluG. AltintasB. AricaM.Y. Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking.Appl. Microbiol. Biotechnol.20139731149115910.1007/s00253‑012‑3999‑y 22419218
    [Google Scholar]
  24. KazemiF. NaghibS.M. ZareY. RheeK.Y. Biosensing applications of polyaniline (PANI)-based nanocomposites: A review.Polym. Rev.202161355359710.1080/15583724.2020.1858871
    [Google Scholar]
  25. SaravananM. GopinathV. ChaurasiaM.K. SyedA. AmeenF. PurushothamanN. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties.Microb. Pathog.2018115576310.1016/j.micpath.2017.12.039 29248514
    [Google Scholar]
  26. LiJ. ChenC. LiJ. LiS. DongC. Synthesis of tin-glycerate and it conversion into SnO2 spheres for highly sensitive low-ppm-level acetone detection.J. Mater. Sci. Mater. Electron.20203119165391654710.1007/s10854‑020‑04208‑7
    [Google Scholar]
  27. RathinabalaR. ThamizselviR. SagadevanS. MurugesanK. YusufM.B.M. Influence of reaction temperature on the physicochemical characteristics of tin oxide nanoparticles.J. Mater. Sci. Mater. Electron.20213214195941960410.1007/s10854‑021‑06479‑0
    [Google Scholar]
  28. Rangel-OlivaresF.R. Arce-EstradaE.M. Cabrera-SierraR. Synthesis and characterization of polyaniline-based polymer nanocomposites as anti-corrosion coatings.Coatings202111665310.3390/coatings11060653
    [Google Scholar]
  29. KishnaniV. VermaG. PipparaR.K. YadavA. ChauhanP.S. GuptaA. Highly sensitive, ambient temperature CO sensor using tin oxide based composites.Sens. Actuators A Phys.202133211311110.1016/j.sna.2021.113111
    [Google Scholar]
  30. ChenJ. WangH. DengJ. XuC. WangY. Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor.J. Mater. Chem. A Mater. Energy Sustain.20186198986899110.1039/C8TA01323C
    [Google Scholar]
  31. SawantS.A. WaikarM.R. RasalA.S. ChodankarG.R. DhasS.D. MoholkarA.V. ShirsatM.D. ChakarvartiS.K. SonkawadeR.G. Chemical synthesis and supercapacitive evaluation of polyaniline nanofibers (PANINFs).J. Mater. Sci. Mater. Electron.2021329118651187610.1007/s10854‑021‑05816‑7
    [Google Scholar]
  32. JiangJ. LiL. XuF. Polyaniline-LiNi ferrite core-shell composite: Preparation, characterization and properties.Mat. Sci. Eng. A.20074561-230030410.1016/j.msea.2006.11.143
    [Google Scholar]
  33. HeY. A novel emulsion route to sub-micrometer polyaniline/nano-ZnO composite fibers.Appl. Surf. Sci.20052491-41610.1016/j.apsusc.2004.11.061
    [Google Scholar]
  34. PaulG.K. BhaumikA. PatraA.S. BeraS.K. Enhanced photo-electric response of ZnO/polyaniline layer-by-layer self-assembled films.Mater. Chem. Phys.20071062-336036310.1016/j.matchemphys.2007.06.013
    [Google Scholar]
  35. AdnanR. RazanaN.A. RahmanI.A. FarrukhM.A. Synthesis and characterization of high surface area tin oxide nanoparticles via the sol‐gel method as a catalyst for the hydrogenation of styrene.J. Chin. Chem. Soc.201057222222910.1002/jccs.201000034
    [Google Scholar]
  36. NouriA. FakhriA. Photocatalytic degradation of methyl orange and Congo red using C, N, S-tridoped SnO2 nanoparticles.J. Phys. Chem.2014104225230
    [Google Scholar]
  37. AhmedF. KumarS. ArshiN. AnwarM.S. Su-YeonL. KilG.S. ParkD.W. KooB.H. LeeC.G. Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method.Thin Solid Films2011519238375837810.1016/j.tsf.2011.03.090
    [Google Scholar]
  38. SinghS. SaikiaJ.P. BuragohainA.K. A novel reusable PAni-PVA-Amylase film: Activity and analysis.Colloids Surf. B Biointerfaces2013106465010.1016/j.colsurfb.2013.01.031 23434690
    [Google Scholar]
  39. AshlyP.C. JosephM.J. MohananP.V. Activity of diastase α-amylase immobilized on polyanilines (PANIs).Food Chem.201112741808181310.1016/j.foodchem.2011.02.068 25213960
    [Google Scholar]
  40. BahriS. HomaeiA. MosaddeghE. Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase.Colloids Surf. B Biointerfaces202221811275410.1016/j.colsurfb.2022.112754 35963144
    [Google Scholar]
  41. KlapiszewskiŁ. ZdartaJ. JesionowskiT. Titania/lignin hybrid materials as a novel support for α-amylase immobilization: A comprehensive study.Colloids Surf. B Biointerfaces2018162909710.1016/j.colsurfb.2017.11.045 29169053
    [Google Scholar]
  42. AlmulaikyY.Q. AqlanF.M. AldhahriM. BaeshenM. KhanT.J. KhanK.A. AfifiM. AL-FargaA. WarsiM.K. AlkhaledM. AlayafiA.A.M. α-Amylase immobilization on amidoximated acrylic microfibres activated by cyanuric chloride.R. Soc. Open Sci.201851117216410.1098/rsos.172164 30564380
    [Google Scholar]
  43. PortoM.D.A. dos SantosJ.P. HackbartH. BruniG.P. FonsecaL.M. da Rosa ZavarezeE. DiasA.R.G. Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates.Int. J. Biol. Macromol.201912683484110.1016/j.ijbiomac.2018.12.263 30610943
    [Google Scholar]
  44. RaviyanP. TangJ. RascoB.A. Thermal stability of α-amylase from Aspergillus oryzae entrapped in polyacrylamide gel.J. Agric. Food Chem.200351185462546610.1021/jf020906j 12926898
    [Google Scholar]
  45. AlmulaikyY.Q. KhalilN.M. El-ShishtawyR.M. AltalhiT. AlgamalY. AldhahriM. Al-HarbiS.A. AllehyaniE.S. BilalM. MohammedM.M. Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability.Int. J. Biol. Macromol.202116729930810.1016/j.ijbiomac.2020.11.150 33275970
    [Google Scholar]
  46. KhanN. HusainQ. QayyumN. Enhanced dye decolorization efficiency of gellan gum complexed Ziziphus mauritiana peroxidases in a stirred batch process.Int. J. Biol. Macromol.2020165Pt B2000200910.1016/j.ijbiomac.2020.09.25033031855
    [Google Scholar]
  47. KhanM.J. QayyumS. AlamF. HusainQ. Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens.Nanotechnology2011224545570810.1088/0957‑4484/22/45/455708 22020314
    [Google Scholar]
  48. MillerG.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem.195931342642810.1021/ac60147a030
    [Google Scholar]
  49. BernfeldP. Amylases a and b. Methods in Enzymology ColowickS.P. KaplanN.O. New YorkAcademic195514915810.1016/0076‑6879(55)01021‑5
    [Google Scholar]
  50. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  51. BrzozowskiA.M. DaviesG.J. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution.Biochemistry19973636108371084510.1021/bi970539i 9283074
    [Google Scholar]
  52. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
/content/journals/coc/10.2174/0113852728295467240219051245
Loading
/content/journals/coc/10.2174/0113852728295467240219051245
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Amylase; Aspergillus oryzae; immobilization; molecular docking; PANI-SnO2-NC; polymerization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test