Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Background

Alga (comprising of many varieties of algae) are our wealth from nature. They are abundant, and do not require any special sustenance measure; in fact, they sustain the fauna on Earth. Alga provide ‘nutritive’ and ‘ceutic’ functionalities, simultaneously. Their insignificant demand for sustenance, but the plethora of useful products they produce is intriguing. It’s also true that the impact of algae on our nutrition and pharmaceuticals is tremendous.

Objective

Despite their utility, a coherent overview and an in-depth discussion on the various facets of alga as a source of nutraceuticals and pharmaceuticals is awaited. Currently, focus on specialization-wise utilization of algae is practiced by researchers, which could be owing to the lack of a review article that presents a comprehensive discussion on algal utilization in medicine and nutraceuticals. To know more about them functionally as a nutraceutical and pharmaceutical, a review article could provide a holistic understanding of algal utilization.

Methods

A narrative review for collation of findings, and developing an interlink among various findings has been adopted in the present article. This method was envisaged to better aid in understanding the lacunae in existing research, and formulate the way forward. The present disquisition focusses on discussing nutraceuticals and pharmaceuticals used or derived from alga that have significant utility.

Results

The exposition provides an in-depth understanding on the developments that have been made, and attempts to apprise on the future scope available in the research for processes as well as products development, for the optimum utilization of this valuable bioresource. Compiling the article revealed that algal research has provided evidence-based insight into their utility spectra that establishes this botanical as a reliable bioresource for supplementation of food and medical care in the times to come.

Conclusion

Interdisciplinary studies comprising botany, applied science, and product development should be envisaged as a futuristic strategy for algal product development, utilization, and commercialization. This is because standalone approaches could not realize the complete potential of this bioresource. Future research could benefit from using various applications of algal products. Algal products' relevance is more realizable since the said botanical is both affordable and available in plenty (or at least be conveniently harvested). More inclusion of algae-based food products in our regular diet for functional attributes could be also considered as one of the useful outcomes of this review. Natural medicines based on algae could also be more consumed in the near future.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978604666230518150209
2023-07-19
2025-09-02
Loading full text...

Full text loading...

References

  1. ChapmanR.L. Algae: The world’s most important “plants”-an introduction.Mitig. Adapt. Strategies Glob. Change201318151210.1007/s11027‑010‑9255‑9
    [Google Scholar]
  2. BehrensP. DelenteJ. Microalgae in the pharmacetuical industry Biopharm - The Applied Technologies of Biopharmacetuical Development.1991465458
    [Google Scholar]
  3. WijffelsR.H. Potential of sponges and microalgae for marine biotechnology.Trends Biotechnol.2008261263110.1016/j.tibtech.2007.10.00218037175
    [Google Scholar]
  4. MiyashitaK. NishikawaS. BeppuF. TsukuiT. AbeM. HosokawaM. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds.J. Sci. Food Agric.20119171166117410.1002/jsfa.435321433011
    [Google Scholar]
  5. BocanegraA. BastidaS. BenedíJ. RódenasS. Sánchez-MunizF.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds.J. Med. Food200912223625810.1089/jmf.2008.015119459725
    [Google Scholar]
  6. NortonT.A. MelkonianM. AndersenR.A. Algal biodiversity.Phycologia199635430832610.2216/i0031‑8884‑35‑4‑308.1
    [Google Scholar]
  7. UdayanA. ArumugamM. PandeyA. Nutraceuticals from algae and cyanobacteriaAlgal Green Chemistry: Recent Progess in Biotechnology RastogiR.P. MadamwarD. PandeyA. Elsevier2017658910.1016/B978‑0‑444‑63784‑0.00004‑7
    [Google Scholar]
  8. WellsM.L. PotinP. CraigieJ.S. RavenJ.A. MerchantS.S. HelliwellK.E. SmithA.G. CamireM.E. BrawleyS.H. Algae as nutritional and functional food sources: revisiting our understanding.J. Appl. Phycol.201729294998210.1007/s10811‑016‑0974‑528458464
    [Google Scholar]
  9. AnandN. RachelD. ThangarajuN. AnantharamanP. Potential of marine algae (sea weeds) as source of medicinally important compounds.Plant Genet. Resour.201614430331310.1017/S1479262116000381
    [Google Scholar]
  10. SinghA.K. GangulyR. KumarS. PandeyA.K. Microalgae: A source of nutraceuticals and industrial product. Molecular Biology and Pharmacognosy of Beneficial Plant MahdiA.A. AbidM. Delhi, IndiaLenin Media Private Limited2017
    [Google Scholar]
  11. SuleriaH. OsborneS. MasciP. GobeG. Marine-based nutraceuticals: An innovative trend in the food and supplement industries.Mar. Drugs201513106336635110.3390/md1310633626473889
    [Google Scholar]
  12. HoppeH.A. Marine algae and their products and constituents in pharmacy. Mar. Algae Pharm. Sci. HeinzA. HoppeT.L. 1979
    [Google Scholar]
  13. GarcíaJ.L. de VicenteM. GalánB. Microalgae, old sustainable food and fashion nutraceuticals.Microb. Biotechnol.20171051017102410.1111/1751‑7915.1280028809450
    [Google Scholar]
  14. HasanM.M. AhmedS. HasanM. Algae as nutrition, medicine and cosmetic: The forgotten history, present status and future trends.World J. Pharm. Pharm. Sci.2017661934195910.20959/wjpps20176‑9447
    [Google Scholar]
  15. KolanjinathanK. GaneshP. SaranrajP. Pharmacological importance of seaweeds: A review.World J. Fish Mar. Sci.20146111510.5829/idosi.wjfms.2014.06.01.76195
    [Google Scholar]
  16. PalA. KamthaniaM.C. KumarA. Bioactive compounds and properties of seaweeds-A review.OAlib20141411710.4236/oalib.1100752
    [Google Scholar]
  17. El GamalA.A. Biological importance of marine algae.Saudi Pharm. J.201018112510.1016/j.jsps.2009.12.00123960716
    [Google Scholar]
  18. MurakamiK. YamaguchiY. NodaK. FujiiT. ShinoharaN. UshirokawaT. Sugawa-KatayamaY. KatayamaM. Seasonal variation in the chemical composition of a marine brown alga, Sargassum horneri (Turner)C. Agardh. J. Food Compos. Anal.201124223123610.1016/j.jfca.2010.08.004
    [Google Scholar]
  19. Jiménez-EscrigA. Gómez-OrdóñezE. RupérezP. Brown and red seaweeds as potential sources of antioxidant nutraceuticals.J. Appl. Phycol.20122451123113210.1007/s10811‑011‑9742‑8
    [Google Scholar]
  20. O’SullivanA.M. O’CallaghanY.C. O’GradyM.N. QueguineurB. HanniffyD. TroyD.J. KerryJ.P. O’BrienN.M. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland.Food Chem.201112631064107010.1016/j.foodchem.2010.11.127
    [Google Scholar]
  21. DeviG.K. ManivannanK. ThirumaranG. RajathiF.A.A. AnantharamanP. In vitro antioxidant activities of selected seaweeds from Southeast coast of India.Asian Pac. J. Trop. Med.20114320521110.1016/S1995‑7645(11)60070‑921771454
    [Google Scholar]
  22. XiaojunY. XiancuiL. ChengxuZ. XiaoF. Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum.J. Appl. Phycol.19968320120310.1007/BF02184972
    [Google Scholar]
  23. YanX. ChudaY. SuzukiM. NagataT. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed.Biosci. Biotechnol. Biochem.199963360560710.1271/bbb.63.60510227153
    [Google Scholar]
  24. KangS.M. HeoS.J. KimK.N. LeeS.H. JeonY.J. Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect.J. Funct. Foods20124115816610.1016/j.jff.2011.10.001
    [Google Scholar]
  25. KangS.M. LeeS.H. HeoS.J. KimK.N. JeonY.J. Evaluation of antioxidant properties of a new compound, pyrogallol-phloroglucinol-6,6′-bieckol isolated from brown algae, Ecklonia cava.Nutr. Res. Pract.20115649550210.4162/nrp.2011.5.6.49522259673
    [Google Scholar]
  26. KangK.A. LeeK.H. ChaeS. ZhangR. JungM.S. HamY.M. BaikJ.S. LeeN.H. HyunJ.W. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.J. Cell. Biochem.200697360962010.1002/jcb.2066816215988
    [Google Scholar]
  27. JungH.A. JinS.E. AhnB.R. LeeC.M. ChoiJ.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages.Food Chem. Toxicol.20135919920610.1016/j.fct.2013.05.06123774261
    [Google Scholar]
  28. WeiY. LiuQ. XuC. YuJ. ZhaoL. GuoQ. Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii.J. Aquat. Food Prod. Technol.201625332333310.1080/10498850.2013.851757
    [Google Scholar]
  29. WangY. XuZ. BachS.J. McAllisterT.A. Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins.Asian-Australas. J. Anim. Sci.200922223824510.5713/ajas.2009.80213
    [Google Scholar]
  30. GlombitzaK.W. Große-DamhuesJ. Antibiotics from algae XXXIII: Phlorotannins of the brown alga Himanthalia elongata.Planta Med.1985511424610.1055/s‑2007‑96938917340399
    [Google Scholar]
  31. GrinaF. UllahZ. KaplanerE. MoujahidA. EddohaR. NasserB. TerzioğluP. YilmazM.A. ErtaşA. ÖztürkM. EssamadiA. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds.S. Afr. J. Bot.202012815216010.1016/j.sajb.2019.10.021
    [Google Scholar]
  32. MobleyH.L. HausingerR.P. Microbial ureases: Significance, regulation, and molecular characterization.Microbiol. Rev.19895318510810.1128/mr.53.1.85‑108.19892651866
    [Google Scholar]
  33. HoldtS.L. KraanS. Bioactive compounds in seaweed: Functional food applications and legislation.J. Appl. Phycol.201123354359710.1007/s10811‑010‑9632‑5
    [Google Scholar]
  34. MurataM. NakazoeJ. Production and use of marine aIgae in Japan.Jpn. Agric. Res. Q.200135428129010.6090/jarq.35.281
    [Google Scholar]
  35. WijesekaraI. KimS.K. Angiotensin-I-Converting Enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry.Mar. Drugs2010841080109310.3390/md804108020479968
    [Google Scholar]
  36. El-BarotyG. MoussaM. ShallanM. AliM. SabhA. ShalabyE. Contribution to the aroma, biological activities, minerals, protein, pigments and lipid contents of the red alga: Asparagopsis taxiformis (Delile).Trevisan. Res. J. Appl. Sci.200731218251834
    [Google Scholar]
  37. EluvakkalT. SivakumarS.R. ArunkumarK. Fucoidan in some Indian brown seaweeds found along the Coast Gulf of Mannar.Int. J. Bot.20106217618110.3923/ijb.2010.176.181
    [Google Scholar]
  38. SangeethaK.S. UmamaheswariS. ReddyC.U.M. KalkuraS.N. Flavonoids: Therapeutic potential of natural pharmacological agents.Int. J. Pharm. Sci. Res.20167103924393010.13040/IJPSR.0975‑8232.7(10).3924‑30
    [Google Scholar]
  39. XiaoZ.P. PengZ.Y. PengM.J. YanW.B. OuyangY.Z. ZhuH.L. Flavonoids health benefits and their molecular mechanism.Mini Rev. Med. Chem.201111216917710.2174/13895571179451954621222576
    [Google Scholar]
  40. HamidiM. KozaniP.S. KozaniP.S. PierreG. MichaudP. DelattreC. Marine bacteria versus microalgae: Who is the best for bio-technological production of bioactive compounds with antioxidant properties and other biological applications?Mar. Drugs20191812810.3390/md1801002831905716
    [Google Scholar]
  41. DengR. ChowT.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina.Cardiovasc. Ther.2010284e33e4510.1111/j.1755‑5922.2010.00200.x20633020
    [Google Scholar]
  42. KimK.N. HeoS.J. SongC.B. LeeJ. HeoM.S. YeoI.K. KangK.A. HyunJ.W. JeonY.J. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage.Process Biochem.200641122393240110.1016/j.procbio.2006.06.028
    [Google Scholar]
  43. KarawitaR. SenevirathneM. AthukoralaY. AffanA. LeeY.J. KimS.K. LeeJ.B. JeonY.J. Protective effect of enzymatic extracts from microalgae against DNA damage induced by H2O2.Mar. Biotechnol.20079447949010.1007/s10126‑007‑9007‑317520314
    [Google Scholar]
  44. Galland-IrmouliA.V. FleurenceJ. LamghariR. LuçonM. RouxelC. BarbarouxO. BronowickiJ.P. VillaumeC. GuéantJ.L. Nutritional value of proteins from edible seaweed Palmaria palmata (dulse).J. Nutr. Biochem.199910635335910.1016/S0955‑2863(99)00014‑515539310
    [Google Scholar]
  45. WongK.H. CheungP.C.K. Nutritional evaluation of some subtropical red and green seaweeds.Food Chem.200071447548210.1016/S0308‑8146(00)00175‑8
    [Google Scholar]
  46. BatistaA.P. GouveiaL. BandarraN.M. FrancoJ.M. RaymundoA. Comparison of microalgal biomass profiles as novel functional ingredient for food products.Algal Res.20132216417310.1016/j.algal.2013.01.004
    [Google Scholar]
  47. LeeC.M. BarrowC.J. KimS-K. MiyashitaK. ShahidiF. Global trends in marine nutraceuticals.Food Technol.201165122231
    [Google Scholar]
  48. ChuW-L. Potential applications of antioxidant compounds derived from algae.Curr. Top. Nutraceutical Res.2011938398
    [Google Scholar]
  49. RyanA.S. ZellerS. NelsonE.B. Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients.Single Cell Oils: Microbal and Algal Oils Zvi CohenC.R. AOCS Press201031735010.1016/B978‑1‑893997‑73‑8.50019‑0
    [Google Scholar]
  50. MercerP. ArmentaR.E. Developments in oil extraction from microalgae.Eur. J. Lipid Sci. Technol.2011113553954710.1002/ejlt.201000455
    [Google Scholar]
  51. LarkumA.W.D. KühlM. Chlorophyll d: The puzzle resolved.Trends Plant Sci.200510835535710.1016/j.tplants.2005.06.00516019251
    [Google Scholar]
  52. BeckerE.W. Microalgae: Biotechnology and Microbiology.Cambridge University Press1994Vol. 10
    [Google Scholar]
  53. MatsunoT. Aquatic animal carotenoids.Fish. Sci.200167577178310.1046/j.1444‑2906.2001.00323.x
    [Google Scholar]
  54. TerasakiM. HiroseA. NarayanB. BabaY. KawagoeC. YasuiH. SagaN. HosokawaM. MiyashitaK. Evaluation of recoverable functional lipid components of several brown seaweeds (phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents.J. Phycol.200945497498010.1111/j.1529‑8817.2009.00706.x27034228
    [Google Scholar]
  55. Le TutourB. BenslimaneF. GouleauM.P. GouygouJ.P. SaadanB. QuemeneurF. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum.J. Appl. Phycol.199810212112910.1023/A:1008007313731
    [Google Scholar]
  56. BrännbackM. WiklundP. A new dominant logic and its implications for knowledge management: A study of the Finnish food industry.Knowl. Process Manage.20018419720610.1002/kpm.123
    [Google Scholar]
  57. Sánchez-MachadoD.I. López-HernándezJ. Paseiro-LosadaP. López-CervantesJ. An HPLC method for the quantification of sterols in edible seaweeds.Biomed. Chromatogr.200418318319010.1002/bmc.31615103705
    [Google Scholar]
  58. ChoT.J. RheeM.S. Health functionality and quality conrol of Laver (Porphyra, Pyropia): Current issues and future perspectives as an edible seaweed.Mar. Drugs20191811410.3390/md1801001431877971
    [Google Scholar]
  59. García-CasalM.N. PereiraA.C. LeetsI. RamírezJ. QuirogaM.F. High iron content and bioavailability in humans from four species of marine algae.J. Nutr.2007137122691269510.1093/jn/137.12.269118029485
    [Google Scholar]
  60. WatanabeF. TakenakaS. KatsuraH. MasumderS.A.M.Z.H. AbeK. TamuraY. NakanoY. Dried green and purple lavers (Nori) contain substantial amounts of biologically active vitamin B(12) but less of dietary iodine relative to other edible seaweeds.J. Agric. Food Chem.19994762341234310.1021/jf981065c10794633
    [Google Scholar]
  61. KleinB. BuchholzR. Microalgae as sources of food ingredients and nutraceuticals. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals McNeilB. GiavasisI. HarveyL. Woodhead Publishing Series201355957010.1533/9780857093547.2.559
    [Google Scholar]
  62. KatiyarR. AroraA. Health promoting functional lipids from microalgae pool: A review.Algal Res.20204610180010.1016/j.algal.2020.101800
    [Google Scholar]
  63. AnsorenaD. AstiasaránI. Development of nutraceuticals containing marine algae oils. Functional Ingredients from Algae for Foods and Nutraceuticals.Woodhead Publishing201363465710.1533/9780857098689.4.634
    [Google Scholar]
  64. HuangT.L. WenY.T. HoY.C. WangJ.K. LinK.H. TsaiR.K. Algae oil treatment protects retinal ganglion cells (RGCS) via ERK signaling pathway in experimental optic nerve ischemia.Mar. Drugs20201828310.3390/md1802008332012745
    [Google Scholar]
  65. Vizetto-DuarteC. PereiraH. Bruno de SousaC. Pilar RauterA. AlbericioF. CustódioL. BarreiraL. VarelaJ. Fatty acid profile of different species of algae of the Cystoseira genus: A nutraceutical perspective.Nat. Prod. Res.201529131264127010.1080/14786419.2014.99234325554366
    [Google Scholar]
  66. YangT.H. YaoH.T. ChiangM.T. Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet.J. Food Drug Anal.201725493193810.1016/j.jfda.2016.12.00828987370
    [Google Scholar]
  67. PangestutiR. KimS.K. Biological activities and health benefit effects of natural pigments derived from marine algae.J. Funct. Foods20113425526610.1016/j.jff.2011.07.001
    [Google Scholar]
  68. DurmazY. KilicliM. TokerO.S. KonarN. PalabiyikI. TamtürkF. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties.Algal Res.20204710181110.1016/j.algal.2020.101811
    [Google Scholar]
  69. MarshamS. ScottG.W. TobinM.L. Comparison of nutritive chemistry of a range of temperate seaweeds.Food Chem.200710041331133610.1016/j.foodchem.2005.11.029
    [Google Scholar]
  70. ČernáM. Seaweed proteins and amino acids as nutraceuticals. Advances in Food and Nutrition Research. KimS.K. Elsevier201129731210.1016/B978‑0‑12‑387669‑0.00024‑7
    [Google Scholar]
  71. SuiY. VlaeminckS.E. Dunaliella microalgae for nutritional protein: An undervalued asset.Trends Biotechnol.2020381101210.1016/j.tibtech.2019.07.01131451287
    [Google Scholar]
  72. Jiménez-EscrigA. Gómez-OrdóñezE. RupérezP. Seaweed as a source of novel nutraceuticals: Sulfated polysaccharides and peptides. Adv. Food Nutr. Res. KimS.K. Elsevier201132533710.1016/B978‑0‑12‑387669‑0.00026‑0
    [Google Scholar]
  73. RajapakseN. KimS-K. Nutritional and digestive health benefits of seaweed. Adv. Food Nutr. Res. KimS.K. Elsevier2011172810.1016/B978‑0‑12‑387669‑0.00002‑8
    [Google Scholar]
  74. SamarakoonK. JeonY.J. Bio-functionalities of proteins derived from marine algae — A review.Food Res. Int.201248294896010.1016/j.foodres.2012.03.013
    [Google Scholar]
  75. ChristakiE. BonosE. GiannenasI. Florou-PaneriP. Functional properties of carotenoids originating from algae.J. Sci. Food Agric.201393151110.1002/jsfa.590223044813
    [Google Scholar]
  76. DelaneyA. FrangoudesK. IiS-A. Society and seaweed: understanding the past and present. Seaweed Health Dis. Prev. LevineJ.F. Academic Press201674010.1016/B978‑0‑12‑802772‑1.00002‑6
    [Google Scholar]
  77. PereiraL. Characterization of bioactive components in edible algae.Mar. Drugs20201816510.3390/md1801006531963775
    [Google Scholar]
  78. PlazaM. CifuentesA. IbáñezE. In the search of new functional food ingredients from algae.Trends Food Sci. Technol.2008191313910.1016/j.tifs.2007.07.012
    [Google Scholar]
  79. AbdulQ.A. ChoiR.J. JungH.A. ChoiJ.S. Health benefit of fucosterol from marine algae: A review.J. Sci. Food Agric.20169661856186610.1002/jsfa.748926455344
    [Google Scholar]
  80. NwosuF. MorrisJ. LundV.A. StewartD. RossH.A. McDougallG.J. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae.Food Chem.201112631006101210.1016/j.foodchem.2010.11.111
    [Google Scholar]
  81. SuzukiA. SaekiT. IkujiH. UchidaC. UchidaT. Brown algae polyphenol, a prolyl isomerase Pin1 inhibitor, prevents obesity by inhibiting the differentiation of stem cells into adipocytes.PLoS One20161112e016883010.1371/journal.pone.016883028036348
    [Google Scholar]
  82. MiyaiK. TokushigeT. KondoM. GroupI.R. Suppression of thyroid function during ingestion of seaweed “Kombu” (Laminaria japonoca) in normal Japanese adults.Endocr. J.20085561103110810.1507/endocrj.K08E‑12518689954
    [Google Scholar]
  83. NitschkeU. StengelD.B. Quantification of iodine loss in edible Irish seaweeds during processing.J. Appl. Phycol.20162863527353310.1007/s10811‑016‑0868‑6
    [Google Scholar]
  84. García-CasalM.N. RamírezJ. LeetsI. PereiraA.C. QuirogaM.F. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects.Br. J. Nutr.20091011798510.1017/S000711450899475718634709
    [Google Scholar]
  85. Adarme-VegaT.C. Thomas-HallS.R. SchenkP.M. Towards sustainable sources for omega-3 fatty acids production.Curr. Opin. Biotechnol.201426141810.1016/j.copbio.2013.08.00324607804
    [Google Scholar]
  86. KumariP. KumarM. GuptaV. ReddyC.R.K. JhaB. Tropical marine macroalgae as potential sources of nutritionally important PUFAs.Food Chem.2010120374975710.1016/j.foodchem.2009.11.006
    [Google Scholar]
  87. LordanS. RossR.P. StantonC. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases.Mar. Drugs2011961056110010.3390/md906105621747748
    [Google Scholar]
  88. ParrR.M. ArasN.K. IyengarG.V. Dietary intakes of essential trace elements: Results from total diet studies supported by the IAEA.J. Radioanal. Nucl. Chem.2006270115516110.1007/s10967‑006‑0323‑2
    [Google Scholar]
  89. SalvadorN. Gómez GarretaA. LavelliL. RiberaM.A. Antimicrobial activity of Iberian macroalgae.Sci. Mar.200771110111410.3989/scimar.2007.71n1101
    [Google Scholar]
  90. BluntJ.W. CoppB.R. MunroM.H.G. NorthcoteP.T. PrinsepM.R. Marine natural products.Nat. Prod. Rep.201128219626810.1039/C005001F21152619
    [Google Scholar]
  91. ShanmughapriyaS. ManilalA. SujithS. SelvinJ. KiranG.S. NatarajaseenivasanK. Antimicrobial activity of seaweeds extracts against multiresistant pathogens.Ann. Microbiol.200858353554110.1007/BF03175554
    [Google Scholar]
  92. Seghal KiranG. ManilalA. SujithS. SelvinJ. ShakirC. Premnath LiptonA. Antimicrobial potential of marine organisms collected from the southwest coast of India against multiresistant human and shrimp pathogens.Sci. Mar.201074228729610.3989/scimar.2010.74n2287
    [Google Scholar]
  93. PoojaS. Algae used as medicine and food-A short review.J. Pharm. Sci. Res.2014613335
    [Google Scholar]
  94. DomínguezH. Algae as a source of biologically active ingredients for the formulation of functional foods and nutraceuticals. Func. In-gredients Algae Foods Nutraceuticals. DomínguezH. 201311910.1533/9780857098689.1
    [Google Scholar]
  95. SousaI. GouveiaL. BatistaA.P. RaymundoA. BandarraN.M. Microalgae in novel food products. Food Chem. Res. Dev. Papa-doupoulosK. Nova Science PublishersNew York200875112
    [Google Scholar]
  96. RajaA. VipinC. AiyappanA. Biological importance of marine algae-An overview.Int. J. Curr. Microbiol.201325222227
    [Google Scholar]
  97. Herry CahyanaA. ShutoY. KinoshitaY. Pyropheophytin a as an antioxidative substance from the marine alga, Arame (Eisenia bicyclis).Biosci. Biotechnol. Biochem.199256101533153510.1271/bbb.56.1533
    [Google Scholar]
  98. KharkwalH. JoshiD. PanthariP. PantM.K. KharkwalA.C. Algae as future drugs.Asian J. Pharm. Clin. Res.20125414
    [Google Scholar]
  99. MišurcováL. KráčmarS. KlejdusB. VacekJ. Nitrogen content, dietary fiber, and digestibility in algal food products.Czech J. Food Sci.2010281273510.17221/111/2009‑CJFS
    [Google Scholar]
  100. FradinhoP. NiccolaiA. SoaresR. RodolfiL. BiondiN. TrediciM.R. SousaI. RaymundoA. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta.Algal Res.20204510174310.1016/j.algal.2019.101743
    [Google Scholar]
  101. FradiqueM. BatistaA.P. NunesM.C. GouveiaL. BandarraN.M. RaymundoA. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation.J. Sci. Food Agric.201090101656166410.1002/jsfa.399920564448
    [Google Scholar]
  102. BatistaA.P. NiccolaiA. FradinhoP. FragosoS. BursicI. RodolfiL. BiondiN. TrediciM.R. SousaI. RaymundoA. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility.Algal Res.20172616117110.1016/j.algal.2017.07.017
    [Google Scholar]
  103. HongsthongA. BunnagB. Overview of Spirulina: Biotechnological, biochemical and molecular biological aspects. Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications.New York, USANova Science Publishers200951103
    [Google Scholar]
  104. BarakatE. El-KewaisnyN. SalamaA. Chemical and nutritional evaluation of fortified biscuits with dried spirulina algae.J. Food and Dairy Sci.20167316717710.21608/jfds.2016.42960
    [Google Scholar]
  105. SharmaV. DunkwalV. Development of Spirulina based “biscuits”: A potential method of value addition.Stud. Ethno-Med.201261313410.1080/09735070.2012.11886417
    [Google Scholar]
  106. Rodríguez De MarcoE. SteffolaniM.E. MartínezC.S. LeónA.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta.Lebensm. Wiss. Technol.201458110210810.1016/j.lwt.2014.02.054
    [Google Scholar]
  107. TeasJ. HurleyT.G. HebertJ.R. FrankeA.A. SepkovicD.W. KurzerM.S. Dietary seaweed modifies estrogen and phytoestrogen metabolism in healthy postmenopausal women.J. Nutr.2009139593994410.3945/jn.108.10083419321575
    [Google Scholar]
  108. TaboadaM.C. MillánR. MiguezM.I. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements.J. Appl. Phycol.20132551271127610.1007/s10811‑012‑9951‑9
    [Google Scholar]
  109. ZhangC. LiX. KimS. Application of marine biomaterials for nutraceuticals and functional foods.Food Sci. Biotechnol.201221362563110.1007/s10068‑012‑0081‑6
    [Google Scholar]
  110. MehtaP. SinghD. SaxenaR. RaniR. GuptaR.P. PuriS.K. MathurA.S. High-value coproducts from algae—An innovational way to deal with advance algal industry. Waste to Wealth KumarP. SukumaranR. SingaporeSpringer201810.1007/978‑981‑10‑7431‑8_15
    [Google Scholar]
  111. Ortega-CalvoJ.J. MazuelosC. HermosinB. Sáiz-JiménezC. Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain.J. Appl. Phycol.19935442543510.1007/BF02182735
    [Google Scholar]
  112. Herber-McNeillS.M. Van ElswykM.E. Dietary marine algae maintains egg consumer acceptability while enhancing yolk color.Poult. Sci.199877349349610.1093/ps/77.3.4939521466
    [Google Scholar]
  113. MachůL. MišurcováL. SamekD. HraběJ. FišeraM. In vitro digestibility of different commercial edible algae products.J. Aquat. Food Prod. Technol.201423542343510.1080/10498850.2012.721873
    [Google Scholar]
  114. FaulknerD.J. Marine natural products.Nat. Prod. Rep.19863113310.1039/np98603000012872636
    [Google Scholar]
  115. FrankmölleW.P. KnübelG. MooreR. PattersonG.M.L. KnubelG. LevineI.A. MooreR.E. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. II. Structures of laxaphycins A, B, D and E.J. Antibiot.19924591458146610.7164/antibiotics.45.14581429232
    [Google Scholar]
  116. Perez GR.M. Avila AJ.G. Perez GS. Martinez CA. Martinez CG. Antimicrobial activity of some american algae.J. Ethnopharmacol.199029111111610.1016/0378‑8741(90)90104‑22345456
    [Google Scholar]
  117. RasalaB.A. MutoM. LeeP.A. JagerM. CardosoR.M.F. BehnkeC.A. KirkP. HokansonC.A. CreaR. MendezM. MayfieldS.P. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii.Plant Biotechnol. J.20108671973310.1111/j.1467‑7652.2010.00503.x20230484
    [Google Scholar]
  118. FernandoI.P.S. NahJ.W. JeonY.J. Potential anti-inflammatory natural products from marine algae.Environ. Toxicol. Pharmacol.201648223010.1016/j.etap.2016.09.02327716532
    [Google Scholar]
  119. BarchiJ.J.Jr NortonT.R. FurusawaE. PattersonG.M.L. MooreR.E. Identification of a cytotoxin from Tolypothrix byssoidea as tubercidin.Phytochemistry198322122851285210.1016/S0031‑9422(00)97712‑4
    [Google Scholar]
  120. PattersonG.M.L. BaldwinC.L. BolisC.M. CaplanF.R. KarusoH. LarsenL.K. LevineI.A. MooreR.E. NelsonC.S. TschappatK.D. TuangG.D. FurusawaE. FurusawaS. NortonT.R. RaybourneR.B. Antineoplastic activity of cultured blue-green algae (cyanophyta) 1.J. Phycol.199127453053610.1111/j.0022‑3646.1991.00530.x
    [Google Scholar]
  121. PattersonG.M.L. BolisC.M. Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. II. Nutrient requirements.Appl. Microbiol. Biotechnol.199543469270010.1007/BF001647757546607
    [Google Scholar]
  122. SchwartzR.E. HirschC.F. SesinD.F. FlorJ.E. ChartrainM. FromtlingR.E. HarrisG.H. SalvatoreM.J. LieschJ.M. YudinK. Pharmaceuticals from cultured algae.J. Ind. Microbiol.199052-311312310.1007/BF01573860
    [Google Scholar]
  123. RiadN. ZahiM.R. TrovatoE. BouzidiN. DaghboucheY. UtczásM. MondelloL. El HattabM. Chemical screening and antibacterial activity of essential oil and volatile fraction of Dictyopteris polypodioides.Microchem. J.202015210441510.1016/j.microc.2019.104415
    [Google Scholar]
  124. KamenarskaZ. GasicM.J. ZlatovicM. RasovicA. SladicD. KljajicZ. StefanovK. SeizovaK. NajdenskiH. KujumgievA. TsvetkovaI. PopovS. Chemical composition of the brown alga Padina pavonia (L.) Gaill. from the Adriatic Sea.Bot. Mar.200245433934510.1515/BOT.2002.034
    [Google Scholar]
  125. SultanaV. Ehteshamul-HaqueS. AraJ. AtharM. Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra.Int. J. Environ. Sci. Technol.20052212913210.1007/BF03325866
    [Google Scholar]
  126. Algae Essential Oils: Chemistry, Ecology, and Biological Activities. El Hattab, M., Ed.; Essential Oils—Bioactive Compounds, New Perspectives and Applications, 2020, pp. 1-20.
  127. BonjouklianR. SmitkaT.A. DoolinL.E. MolloyR.M. DebonoM. ShafferS.A. MooreR.E. StewartJ.B. PattersonG.M.L. Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis.Tetrahedron199147377739775010.1016/S0040‑4020(01)81932‑3
    [Google Scholar]
  128. ShannonE. Abu-GhannamN. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications.Mar. Drugs20161448110.3390/md1404008127110798
    [Google Scholar]
  129. BhattacharjeeM. Pharmaceutically valuable bioactive compounds of algae.Asian J. Pharm. Clin. Res.201696434710.22159/ajpcr.2016.v9i6.14507
    [Google Scholar]
  130. GleasonF.K. Cyanobacterin herbicide.Patent US4626271A1986
  131. VoT.S. KimS.K. Potential anti-HIV agents from marine resources: An overview.Mar. Drugs20108122871289210.3390/md812287121339954
    [Google Scholar]
  132. CannellR.J.P. Algae as a source of biologically active products.Pestic. Sci.199339214715310.1002/ps.2780390208
    [Google Scholar]
  133. BakerJ.T. Seaweeds in pharmaceutical studies and applications.Eleventh International Seaweed Symposium, Vol 22.Springer, Dordrecht198410.1007/978‑94‑009‑6560‑7_4
    [Google Scholar]
  134. LincolnR.A. StrupinskiK. WalkerJ. Bioactive compounds from algae.Life Chem. Rep.1991897183
    [Google Scholar]
  135. BorowitzkaM.A. Microalgae as sources of pharmaceuticals and other biologically active compounds.J. Appl. Phycol.19957131510.1007/BF00003544
    [Google Scholar]
  136. KeithM. Overview of drug therapy for spondyloarthritis.Rheumatol Curr Res20133210.4172/2161‑1149.1000119
    [Google Scholar]
  137. MccartyM. Low-glycotoxin diets and Spirulina may have potential for slowing the growth and spread of rage-expressing cancers.J. Interv. Oncol.20154114
    [Google Scholar]
  138. ManikandanM.K. KumarM. ManikandanS. ChandrasekaranN. MukherjeeA. KumaraguruA. Drug delivery system for controlled cancer therapy using physico-chemically stabilized bioconjugated gold nanoparticles synthesized from marine macroalgae, Padina gymnospora.J. Nanomed. Nanotechnol.2011s51110.4172/2157‑7439.S5‑009
    [Google Scholar]
  139. WatersA.L. HillR.T. PlaceA.R. HamannM.T. The expanding role of marine microbes in pharmaceutical development.Curr. Opin. Biotechnol.201021678078610.1016/j.copbio.2010.09.01320956080
    [Google Scholar]
  140. TorresF.A.E. PassalacquaT.G. VelásquezA.M.A. de SouzaR.A. ColepicoloP. GraminhaM.A.S. New drugs with antiprotozoal activity from marine algae: A review.Rev. Bras. Farmacogn.201424326527610.1016/j.bjp.2014.07.001
    [Google Scholar]
  141. RinehartK.L. NamikoshiM. ChoiB.W. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria).J. Appl. Phycol.19946215917610.1007/BF02186070
    [Google Scholar]
  142. GustafsonK.R. CardellinaJ.H.II FullerR.W. WeislowO.S. KiserR.F. SnaderK.M. PattersonG.M.L. BoydM.R. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae).J. Natl. Cancer Inst.198981161254125810.1093/jnci/81.16.12542502635
    [Google Scholar]
  143. PattersonG.M.L. BakerK.K. BaldwinC.L. BolisC.M. CaplanF.R. LarsenL.K. LavineI.A. MooreR.E. NelsonC.S. TschappatK.D. TuangG.D. BoydM.R. CardellinaJ.H. CollinsR.P. GustafsonK.R. SnaderK.M. WeisloiO.S. LewinR.A. Antiviral activity of cultured blue-green algae (cyanophyta) 1.J. Phycol.199329112513010.1111/j.1529‑8817.1993.tb00290.x
    [Google Scholar]
  144. SutapaB.M. DhrutiA. GopaR.B. Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulfated polysaccharides from marine algae and bacteria.Afr. J. Pharm. Pharmacol.2017115687710.5897/AJPP2016.4695
    [Google Scholar]
  145. Sithranga BoopathyN. KathiresanK. Anticancer drugs from marine flora: An overview.J. Oncol.2010201011810.1155/2010/21418621461373
    [Google Scholar]
  146. IgeO.O. UmoruL.E. AriboS. Natural products: A minefield of biomaterials.ISRN Mater. Sci.2012201212010.5402/2012/983062
    [Google Scholar]
  147. FinkJ.K. Marine, Waterborne, and Water-resistant Polymers: Chemistry and Applications.John Wiley & Sons201510.1002/9781119185000
    [Google Scholar]
  148. FindlayJ.A. PatilA.D. Antibacterial constituents of the diatom Navicula delognei.J. Nat. Prod.198447581581810.1021/np50035a0106512534
    [Google Scholar]
  149. TrickC.G. AndersenR.J. HarrisonP.J. Environmental factors influencing the production of an antibacterial metabolite from a marine dinoflagellate, Prorocentrum minimum.Can. J. Fish. Aquat. Sci.198441342343210.1139/f84‑050
    [Google Scholar]
  150. de CanoM.M.S. de MuléM.C. de CaireG.Z. de HalperinD.R. Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum.J. Appl. Phycol.199021798110.1007/BF02179772
    [Google Scholar]
  151. PedersénM. DasilvaE.J. Simple brominated phenols in the bluegreen alga Calothrix brevissima West.Planta19731151838610.1007/BF0038860824458820
    [Google Scholar]
  152. SilvaT.H. AlvesA. PopaE.G. ReysL.L. GomesM.E. SousaR.A. SilvaS.S. ManoJ.F. ReisR.L. Marine algae sulfated poly-saccharides for tissue engineering and drug delivery approaches.Biomatter20122427828910.4161/biom.2294723507892
    [Google Scholar]
  153. BerthonJ.Y. Nachat-KappesR. BeyM. CadoretJ.P. RenimelI. FilaireE. Marine algae as attractive source to skin care.Free Radic. Res.201751655556710.1080/10715762.2017.135555028770671
    [Google Scholar]
  154. ProteauP.J. GerwickW.H. Garcia-PichelF. CastenholzR. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria.Experientia199349982582910.1007/BF019235598405307
    [Google Scholar]
  155. YoshiokaH. IshidaM. NishiK. OdaH. ToyoharaH. SugaharaT. Studies on anti-allergic activity of Sargassum horneri extract.J. Funct. Foods20141015416010.1016/j.jff.2014.06.002
    [Google Scholar]
  156. SugiuraY. MatsudaK. YamadaY. NishikawaM. ShioyaK. KatsuzakiH. ImaiK. AmanoH. Isolation of a new anti-allergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea.Biosci. Biotechnol. Biochem.200670112807281110.1271/bbb.6041717090915
    [Google Scholar]
  157. PalanisamyS.K. ArumugamV. RajendranS. RamadossA. NachimuthuS. Peter DM. SundaresanU. Chemical diversity and anti-proliferative activity of marine algae.Nat. Prod. Res.201933142120212410.1080/14786419.2018.148870130253657
    [Google Scholar]
  158. ManzoorZ. MathemaV.B. ChaeD. KangH.K. YooE.S. JeonY.J. KohY.S. Octaphlorethol A inhibits the CpG-induced inflammatory response by attenuating the mitogen-activated protein kinase and NF-κB pathways.Biosci. Biotechnol. Biochem.20137791970197210.1271/bbb.13029924018681
    [Google Scholar]
  159. LeeM.S. KwonM.S. ChoiJ.W. ShinT. NoH.K. ChoiJ.S. ByunD.S. KimJ.I. KimH.R. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells.J. Agric. Food Chem.201260369120912910.1021/jf302201822897701
    [Google Scholar]
  160. JungW.K. HeoS.J. JeonY.J. LeeC.M. ParkY.M. ByunH.G. ChoiY.H. ParkS.G. ChoiI.W. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells.J. Agric. Food Chem.200957104439444610.1021/jf900391319408937
    [Google Scholar]
  161. BluntJ.W. CoppB.R. KeyzersR.A. MunroM.H.G. PrinsepM.R. Marine natural products.Nat. Prod. Rep.201229214422210.1039/C2NP00090C22193773
    [Google Scholar]
  162. BluntJ.W. CoppB.R. KeyzersR.A. MunroM.H.G. PrinsepM.R. Marine natural products.Nat. Prod. Rep.201330223732310.1039/C2NP20112G23263727
    [Google Scholar]
  163. SantosA.O. BrittaE.A. BiancoE.M. Ueda-NakamuraT. FilhoB.P.D. PereiraR.C. NakamuraC.V. 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent.Mar. Drugs20119112369238310.3390/md911236922163190
    [Google Scholar]
  164. SantosA.O. Veiga-SantosP. Ueda-NakamuraT. FilhoB.P.D. SudattiD.B. BiancoÉ.M. PereiraR.C. NakamuraC.V. Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis.Mar. Drugs20108112733274310.3390/md811273321139841
    [Google Scholar]
  165. KangJ. Illustrated Encyclopedia of Fauna and Flora of Korea: Marine algae.J. Ethnopharmacol.200811618719010.1016/j.jep.2007.10.03218079077
    [Google Scholar]
  166. Moo-PucR. RobledoD. Freile-PelegrinY. Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity.J. Ethnopharmacol.20081201929710.1016/j.jep.2008.07.03518725281
    [Google Scholar]
  167. MashjoorS. YousefzadiM. EsmaeiliM.A. RafieeR. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf.Cytotechnology20166851717172610.1007/s10616‑015‑9921‑626507649
    [Google Scholar]
  168. BoujaberN. OumaskourK. HassouN. LakhdarF. AssobheiO. EtahiriS. Antimicrobial effect of two marine algae Gelidium ses-quipedale and Laminaria ochroleuca collected from the coast of El Jadida-Morocco.J. Innov. Biol.2016511623
    [Google Scholar]
  169. BhagavathyS. SumathiP. Jancy Sherene BellI. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity.Asian Pac. J. Trop. Biomed.201111S1S710.1016/S2221‑1691(11)60111‑1
    [Google Scholar]
  170. ČermákL. PražákováŠ. MarounekM. SkřivanM. SkřivanováE. Effect of green alga Planktochlorella nurekis on selected bacteria revealed antibacterial activity in vitro.Czech J. Anim. Sci.2015601042743510.17221/8522‑CJAS
    [Google Scholar]
  171. PugazhendhiA. PrabakarD. JacobJ.M. KaruppusamyI. SarataleR.G. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria.Microb. Pathog.2018114414510.1016/j.micpath.2017.11.01329146498
    [Google Scholar]
  172. ArumugamG. RajendranR. Anti-candidal activity and synergetic interaction of antifungal drugs with differential extract of brown algae Stocheospermum marginatum.Biocatal. Agric. Biotechnol.20191910114510.1016/j.bcab.2019.101145
    [Google Scholar]
  173. FathyS. MohamedS. GhareebD. EmamM. MegeedD. In vitro screening of anticandidal activity of some marine algae extracts collected from Abo-Qir bay (Alexandria, Egypt). Egypt.J. Experim. Biol.2017132110.5455/egyjebb.20170723055646
    [Google Scholar]
  174. SunQ.L. LiY. NiL.Q. LiY.X. CuiY.S. JiangS.L. XieE.Y. DuJ. DengF. DongC.X. Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum.Carbohydr. Polym.202022911548710.1016/j.carbpol.2019.11548731826428
    [Google Scholar]
  175. SahaS. NavidM.H. BandyopadhyayS.S. SchnitzlerP. RayB. Sulfated polysaccharides from Laminaria angustata: Structural features and in vitro antiviral activities.Carbohydr. Polym.201287112313010.1016/j.carbpol.2011.07.02634662940
    [Google Scholar]
  176. Cirne-SantosC.C. BarrosC.S. NogueiraC.C.R. AzevedoR.C. YamamotoK.A. MeiraG.L.S. VasconcelosZ.F.M. RatcliffeN.A. TeixeiraV.L. Schmidt-ChanasitJ. FerreiraD.F. PaixãoI.C.N.P. Inhibition by marine algae of chikungunya virus isolated from patients in a recent disease outbreak in Rio de Janeiro.Front. Microbiol.201910242610.3389/fmicb.2019.0242631708898
    [Google Scholar]
  177. KhalidM. Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and biore-source management.Crit. Rev. Biotechnol.2020401466310.1080/07388551.2019.168059931645143
    [Google Scholar]
  178. NarayananK.B. SakthivelN. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents.Adv. Colloid Interface Sci.20111692597910.1016/j.cis.2011.08.00421981929
    [Google Scholar]
  179. KannanR.R.R. ArumugamR. RamyaD. ManivannanK. AnantharamanP. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum.Appl. Nanosci.20133322923310.1007/s13204‑012‑0125‑5
    [Google Scholar]
  180. SudhaS.S. RajamanickamK. RengaramanujamJ. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria.Indian J. Exp. Biol.201351539339923821828
    [Google Scholar]
  181. SingaraveluG. ArockiamaryJ.S. KumarV.G. GovindarajuK. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville.Colloids Surf. B Biointerfaces20075719710110.1016/j.colsurfb.2007.01.01017350236
    [Google Scholar]
  182. YousefzadiM. RahimiZ. GhaforiV. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen)J. Agardh. Mater. Lett.20141371410.1016/j.matlet.2014.08.110
    [Google Scholar]
  183. El-RafieH.M. El-RafieM.H. ZahranM.K. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae.Carbohydr. Polym.201396240341010.1016/j.carbpol.2013.03.07123768580
    [Google Scholar]
  184. MubarakAliD. ArunkumarJ. NagK.H. SheikSyedIshackK.A. BaldevE. PandiarajD. ThajuddinN. Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms—Comparative studies on synthesis and its application on biolabelling.Colloids Surf. B Biointerfaces201310316617310.1016/j.colsurfb.2012.10.01423201734
    [Google Scholar]
  185. XieJ. LeeJ.Y. WangD.I.C. TingY.P. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nano-plates in algal solutions.Small20073467268210.1002/smll.20060061217299827
    [Google Scholar]
  186. ThakkarK.N. MhatreS.S. ParikhR.Y. Biological synthesis of metallic nanoparticles.Nanomedicine20106225726210.1016/j.nano.2009.07.00219616126
    [Google Scholar]
  187. RauwelP. KüünalS. FerdovS. RauwelE. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM.Adv. Mater. Sci. Eng.201520151910.1155/2015/682749
    [Google Scholar]
  188. KanchiS. AhmedS. Green Metal Nanoparticles: Synthesis, Characterization and their Applications.John Wiley & Sons201810.1002/9781119418900
    [Google Scholar]
  189. NamasivayamS. JayakumarD. KumarV.R. BharaniR. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold tolerant strain of Spirulina platensis.Res. J. Pharm. Technol.201471214041412
    [Google Scholar]
  190. DarM.A. IngleA. RaiM. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics.Nanomedicine20139110511010.1016/j.nano.2012.04.00722633901
    [Google Scholar]
  191. MerinD.D. PrakashS. BhimbaB.V. Antibacterial screening of silver nanoparticles synthesized by marine micro algae.Asian Pac. J. Trop. Med.201031079779910.1016/S1995‑7645(10)60191‑5
    [Google Scholar]
  192. JayaseelanC. RamkumarR. RahumanA.A. PerumalP. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity.Ind. Crops Prod.20134542342910.1016/j.indcrop.2012.12.019
    [Google Scholar]
  193. MieR. SamsudinM.W. DinL. AhmadA. IbrahimN. AdnanN.A. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum.Int. J. Nanomedicine2013912112710.2147/IJN.S5230624379670
    [Google Scholar]
  194. AbboudY. SaffajT. ChagraouiA. El BouariA. BrouziK. TananeO. IhssaneB. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata).Appl. Nanosci.20144557157610.1007/s13204‑013‑0233‑x
    [Google Scholar]
  195. VivekM. KumarP.S. SteffiS. SudhaS. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects.Avicenna J. Med. Biotechnol.20113314314823408653
    [Google Scholar]
  196. El-SheekhM.M. El-KassasH.Y. Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review.J. Genet. Eng. Biotechnol.201614229931010.1016/j.jgeb.2016.09.00830647628
    [Google Scholar]
  197. SangiliyandiG. KanthS.B.M. KalishwaralalK. GurunathanS. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model.Int. J. Nanomedicine2010575376210.2147/IJN.S1172721042421
    [Google Scholar]
  198. GovindarajuK. KrishnamoorthyK. AlsagabyS.A. SingaraveluG. PremanathanM. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells.IET Nanobiotechnol.20159632533010.1049/iet‑nbt.2015.000126647807
    [Google Scholar]
  199. GeethaS. SathakkathulZ. AarthiR. HeizlineB. Green synthesis of gold nanoparticle using marine cyanobacteria Gloeocapsa spp. and the antitumor potential.J. Chem. Pharm.20144172174
    [Google Scholar]
  200. GellenbeckK.W. Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know?J. Appl. Phycol.201224330931310.1007/s10811‑011‑9722‑z
    [Google Scholar]
  201. FernandesB.D. MotaA. TeixeiraJ.A. VicenteA.A. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.Biotechnol. Adv.20153361228124510.1016/j.biotechadv.2015.03.00425777495
    [Google Scholar]
  202. Cerón GarcíaM.C. Sánchez MirónA. Fernández SevillaJ.M. Molina GrimaE. García CamachoF. Mixotrophic growth of the microalga Phaeodactylum tricornutum.Process Biochem.200540129730510.1016/j.procbio.2004.01.016
    [Google Scholar]
  203. JhaD. JainV. SharmaB. KantA. GarlapatiV.K. Microalgae based pharmaceuticals and nutraceuticals: An emerging field with immense market potential.Chem. Bio. Eng. Rev.20174425727210.1002/cben.201600023
    [Google Scholar]
  204. TangD.Y.Y. KhooK.S. ChewK.W. TaoY. HoS.H. ShowP.L. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products.Bioresour. Technol.202030412299710.1016/j.biortech.2020.12299732094007
    [Google Scholar]
  205. SankaranJ.K. MoulyV.S. Managing innovation in an emerging sector: The case of marine-based nutraceuticals.R & D Manag.200737432934410.1111/j.1467‑9310.2007.00479.x
    [Google Scholar]
  206. ZakariaS.M. KamalS.M.M. Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients.Food Eng. Rev.201681233410.1007/s12393‑015‑9119‑x
    [Google Scholar]
  207. ChatterjeeD. BhattacharjeeP. Supercritical carbon dioxide extraction of antioxidant rich fraction from Phormidium valderianum: Optimization of experimental process parameters.Algal Res.20143495410.1016/j.algal.2013.11.014
    [Google Scholar]
/content/journals/cnt/10.2174/2665978604666230518150209
Loading
/content/journals/cnt/10.2174/2665978604666230518150209
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Algae; bioresource; marine; nutraceutical; nutritive and ceutic; pharmaceutical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test