Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

COVID-19 caused by SARS-CoV-2 is an ongoing global pandemic that causes catastrophic devastation to humankind. COVID-19 virus mainly affects the human respiratory and gastrointestinal systems. Currently, vaccines are available globally and are a game-changer in the fight against COVID-19. However, it has a long way to go to achieve the war against COVID-19 as it will take some more years to completely vaccinate the people, and there are threats and concerns of COVID-19 due to the high mutagenicity rate of the virus. The current methods of treatment involve the use of antiviral drugs and anti-inflammatory drugs but without much success. To date, there is no established prevention or treatment method for this novel virus. The best preventive strategy to combat this disease is to keep the immune system strong. Evidence showed a correlation between gut dysbiosis, COVID-19, and immunomodulation. Since time immemorial, probiotics have improved general health and immunity to various diseases. Probiotics are beneficial bacteria when administered in the right doses conferring a health benefit to the host. Various scientific evidence has proved the therapeutic and protective effects of probiotics against respiratory and gastrointestinal diseases. This review aims to outline the potential role of probiotics in fighting COVID-19 by highlighting the recent evidence on the association between dysbiosis, COVID-19, and probiotics and outlining the antiviral and anti-inflammatory effects of probiotics. This review highlight the association between gut and lung in the gut-lung axis. Furthermore, this review also provides an insight into the indirect evidence of the potential protective role of probiotics in combating COVID-19 or its associated symptoms.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978604666230217144343
2023-04-04
2025-09-02
Loading full text...

Full text loading...

References

  1. World Health OrganizationWHO Coronavirus (COVID-19) Dashboard.2021Available from: https://covid19.who.int/ (Accessed on September 15, 2021)
  2. LiuC. ZhouQ. LiY. research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases.ACS Cent. Sci.20206331533110.1021/acscentsci.0c0027232226821
    [Google Scholar]
  3. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  4. BhaskarS. SinhaA. BanachM. Cytokine storm in COVID-19-Iimmunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper.Front. Immunol.202011164810.3389/fimmu.2020.0164832754159
    [Google Scholar]
  5. BeigelJ.H. TomashekK.M. DoddL.E. Remdesivir for the treatment of COVID-19 - Final report.N. Engl. J. Med.2020383191813182610.1056/NEJMoa200776432445440
    [Google Scholar]
  6. CaoB. WangY. WenD. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa200128232187464
    [Google Scholar]
  7. MohtadiN. GhaysouriA. ShiraziS. Recovery of severely ill COVID-19 patients by intravenous immunoglobulin (IVIG) treatment: A case series.Virology20205481510.1016/j.virol.2020.05.00632530808
    [Google Scholar]
  8. Antwi-AmoabengD. KanjiZ. FordB. BeutlerB.D. RiddleM.S. SiddiquiF. Clinical outcomes in COVID-19 patients treated with tocilizumab: An individual patient data systematic review.J. Med. Virol.202092112516252210.1002/jmv.2603832436994
    [Google Scholar]
  9. ChenC ZhangY HuangJ Favipiravir versus Arbidol for COVID-19: A randomized clinical trial.med Rxiv202015
    [Google Scholar]
  10. ArshadS. KilgoreP. ChaudhryZ.S. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19.Iran. J. Clin. Infect. Dis.20209739640310.1016/j.ijid.2020.06.09932623082
    [Google Scholar]
  11. LiuZ. LiX. FanG. Low-to-moderate dose corticosteroids treatment in hospitalized adults with COVID-19.Clin. Microbiol. Infect.202127111211710.1016/j.cmi.2020.09.04533007478
    [Google Scholar]
  12. JoynerM.J. WrightR.S. FairweatherD. Early safety indicators of COVID-19 convalescent plasma in 5000 patients.J. Clin. Invest.202013094791479710.1172/JCI14020032525844
    [Google Scholar]
  13. LeyR.E. PetersonD.A. GordonJ.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine.Cell2006124483784810.1016/j.cell.2006.02.01716497592
    [Google Scholar]
  14. SavageD.C. Associations of indigenous microorganisms with gastrointestinal mucosal epithelia.Am. J. Clin. Nutr.197023111495150110.1093/ajcn/23.11.14955475367
    [Google Scholar]
  15. IllianoP. BrambillaR. ParoliniC. The mutual interplay of gut microbiota, diet and human disease.FEBS J.2020287583385510.1111/febs.1521731955527
    [Google Scholar]
  16. HakimH. DallasR. WolfJ. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia.Clin. Infect. Dis.201867454154810.1093/cid/ciy15329518185
    [Google Scholar]
  17. ChenC.J. WuG.H. KuoR.L. ShihS.R. Role of the intestinal microbiota in the immunomodulation of influenza virus infection.Inf2017191257057910.1016/j.micinf.2017.09.00228939355
    [Google Scholar]
  18. GuptaA. MadhavanM.V. SehgalK. Extrapulmonary manifestations of COVID-19.Nat. Med.20202671017103210.1038/s41591‑020‑0968‑332651579
    [Google Scholar]
  19. XuK. CaiH. ShenY. Management of coronavirus disease-19 (COVID-19): The Zhejiang experience.J Zhejiang Univ2020
    [Google Scholar]
  20. GuS. ChenY. WuZ. Alterations of the gut microbiota in patients with Coronavirus disease 2019 or H1N1 influenza.Clin. Infect. Dis.202071102669267810.1093/cid/ciaa70932497191
    [Google Scholar]
  21. ZuoT. ZhangF. LuiG.C.Y. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization.Gastroenterology20201593944955.e810.1053/j.gastro.2020.05.04832442562
    [Google Scholar]
  22. YuL. TongY. ShenG. Immunodepletion with hypoxemia: A potential high risk subtype of coronavirus disease 2019.medRxiv2020Available from: https://www.medrxiv.org/content/10.1101/2020.03.03.20030650v1
    [Google Scholar]
  23. HanM.K. McLaughlinV.V. CrinerG.J. MartinezF.J. Pulmonary diseases and the heart.Circulation2007116252992300510.1161/CIRCULATIONAHA.106.68520618086941
    [Google Scholar]
  24. DharD. MohantyA. Gut microbiota and COVID-19- possible link and implications.Virus Res.202028519801810.1016/j.virusres.2020.19801832430279
    [Google Scholar]
  25. MakJ.W.Y. ChanF.K.L. NgS.C. Probiotics and COVID-19: one size does not fit all.Lancet Gastroenterol. Hepatol.20205764464510.1016/S2468‑1253(20)30122‑932339473
    [Google Scholar]
  26. BuddenK.F. GellatlyS.L. WoodD.L. Emerging pathogenic links between microbiota and the gut-lung axis.Nat. Rev. Microbiol.2017151556310.1038/nrmicro.2016.14227694885
    [Google Scholar]
  27. DangA.T. MarslandB.J. Microbes, metabolites, and the gut-lung axis.Mucosal Immunol.201912484385010.1038/s41385‑019‑0160‑630976087
    [Google Scholar]
  28. ZhangD. LiS. WangN. TanH-Y. ZhangZ. FengY. the cross-talk between gut microbiota and lungs in common lung diseases.Front. Microbiol.20201130110.3389/fmicb.2020.0030132158441
    [Google Scholar]
  29. BuddenK.F. GellatlyS.L. WoodD.L. Emerging pathogenic links between microbiota and the gut-lung axis.Nat. Re. Microbiology.2017151556310.1038/nrmicro.2016.14227694885
    [Google Scholar]
  30. LiX. GengM. PengY. MengL. LuS. Molecular immune pathogenesis and diagnosis of COVID-19.J. Pharm. Anal.202010210210810.1016/j.jpha.2020.03.00132282863
    [Google Scholar]
  31. JinX. LianJ-S. HuJ-H. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms.Gut20206961002100910.1136/gutjnl‑2020‑32092632213556
    [Google Scholar]
  32. FanJ. LiX. GaoY. The lung tissue microbiota features of 20 deceased patients with COVID-19.J. Infect.2020813e64e6710.1016/j.jinf.2020.06.04732579991
    [Google Scholar]
  33. BondyG.S. PestkaJ.J. Immunomodulation by fungal toxins.J. Toxicol. Environ. Health Part B Crit. Rev.20003109143
    [Google Scholar]
  34. HubbellJ.A. ThomasS.N. SwartzM.A. Materials engineering for immunomodulation.Nature2009462727244946010.1038/nature0860419940915
    [Google Scholar]
  35. KhaneghahA.M. AbhariK. EşI. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review.Trends Food Sci. Technol.20209520521810.1016/j.tifs.2019.11.022
    [Google Scholar]
  36. HillC. GuarnerF. ReidG. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.6624912386
    [Google Scholar]
  37. StavropoulouE. BezirtzoglouE. Probiotics in medicine: A long debate.Front. Immunol.202011219210.3389/fimmu.2020.0219233072084
    [Google Scholar]
  38. MaldonadoG.C. CazorlaS.I. LemmeD.J.M. VélezE. PerdigónG. Beneficial effects of probiotic consumption on the immune system.Ann. Nutr. Metab.201974211512410.1159/00049642630673668
    [Google Scholar]
  39. YanF. PolkD.B. Probiotics and immune health.Curr. Opin. Gastroenterol.201127649650110.1097/MOG.0b013e32834baa4d21897224
    [Google Scholar]
  40. ChaiW. BurwinkelM. WangZ. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus.Arch. Virol.2013158479980710.1007/s00705‑012‑1543‑023188495
    [Google Scholar]
  41. StarosilaD. RybalkoS. VarbanetzL. IvanskayaN. SorokulovaI. Anti-influenza activity of a Bacillus subtilis probiotic strain.Antimicrob. Agents Chemother.2017617e00539e1710.1128/AAC.00539‑1728416546
    [Google Scholar]
  42. EguchiK. FujitaniN. NakagawaH. MiyazakiT. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055.Sci. Rep.201991481210.1038/s41598‑019‑39602‑730886158
    [Google Scholar]
  43. LuotoR. RuuskanenO. WarisM. KalliomäkiM. SalminenS. IsolauriE. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial.J. Allergy Clin. Immunol.2014133240541310.1016/j.jaci.2013.08.02024131826
    [Google Scholar]
  44. de VreseM. WinklerP. RautenbergP. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial.Clin. Nutr.200524448149110.1016/j.clnu.2005.02.00616054520
    [Google Scholar]
  45. YuH.S. LeeN.K. ChoiA.J. ChoeJ.S. BaeC.H. PaikH.D. Anti-inflammatory potential of probiotic strain weissella cibaria JW15 isolated from kimchi through regulation of NF-κB and MAPKs pathways in LPS-induced RAW 264.7 cells.J. Microbiol. Biotechnol.20192971022103210.4014/jmb.1903.0301431216608
    [Google Scholar]
  46. KimS.O. SheikhH.I. HaS.D. MartinsA. ReidG. G-CSF-mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus-induced suppression of TNF production in macrophages.Cell. Microbiol.20068121958197110.1111/j.1462‑5822.2006.00763.x16889627
    [Google Scholar]
  47. AnguranaS.K. BansalA. SinghiS. Evaluation of effect of probiotics on cytokine levels in critically Ill children with severe sepsis: A double-blind, placebo-controlled trial.Crit. Care Med.201846101656166410.1097/CCM.000000000000327929957709
    [Google Scholar]
  48. XuX.W. WuX.X. JiangX.G. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series.BMJ2020368m60610.1136/bmj.m60632075786
    [Google Scholar]
  49. d’EttorreG. CeccarelliG. MarazzatoM. Challenges in the management of SARS-CoV-2 infection: The role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19.Front. Med. (Lausanne)2020738910.3389/fmed.2020.0038932733907
    [Google Scholar]
/content/journals/cnt/10.2174/2665978604666230217144343
Loading

  • Article Type:
    Review Article
Keyword(s): COVID-19; dysbiosis; immunomodulation; pandemic; probiotic; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test