Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

The present article offers a thorough critical assessment of the intricacies of nutrition and prostatic diseases, including prostatitis, benign prostatic hyperplasia, and prostate cancer. The literature review begins with an overview of the embryology, anatomy, and physiology of the prostate gland before proceeding to examine the aetiology, pathophysiology, and risk factors surrounding these prostate diseases. This work aims to provide a broad systematic analysis of nutrient composition and possible effects on the prostate state, including beneficial and harmful nutrients. The review of the findings consolidates the contemporary data regarding the beneficial effects of certain micronutrients, phytochemicals, and diet patterns, as well as the detrimental effects of high intake of saturated fats, processed meats, and refined carbohydrates. In addition, the paper looks into the synergistic and additive impact of multiple dietary constituents to give an understanding of the possible mode of action in prostate disease prevention and control. Therefore, the purpose of this critical analysis is to provide nutritional advice based on scientific evidence that is helpful in enhancing prostate health and reducing the severity of pathologies connected with it.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786355868250207115319
2025-03-05
2025-10-21
Loading full text...

Full text loading...

References

  1. FrancoJ.V.A. TesolinP. JungJ.H. Update on the management of benign prostatic hyperplasia and the role of minimally invasive procedures.Prostate Int.20231111710.1016/j.prnil.2023.01.00236910900
    [Google Scholar]
  2. VuichoudC LoughlinKR Benign Prostatic hyperplasia: Epidemiology, economics and evaluation.Can. J. Urol.20152211626497338
    [Google Scholar]
  3. WasimS. LeeS.Y. KimJ. Complexities of prostate cancer.Int. J. Mol. Sci.202223221425710.3390/ijms23221425736430730
    [Google Scholar]
  4. LorenzoG. HughesT.J.R. Dominguez-FrojanP. RealiA. GomezH. Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth.Proc. Natl. Acad. Sci. USA201911641152116110.1073/pnas.181573511630617074
    [Google Scholar]
  5. CunhaG.R. VezinaC.M. IsaacsonD. RickeW.A. TimmsB.G. CaoM. FrancoO. BaskinL.S. Development of the human prostate.Differentiation2018103244510.1016/j.diff.2018.08.00530224091
    [Google Scholar]
  6. Singh O. Bolla S.R. Anatomy, Abdomen and Pelvis, Prostate.StatPearlsTreasure Island2024
    [Google Scholar]
  7. ToivanenR. ShenM.M. Prostate organogenesis: Tissue induction, hormonal regulation and cell type specification.Development201714481382139810.1242/dev.14827028400434
    [Google Scholar]
  8. ZirkinB.R. PapadopoulosV. Leydig cells: Formation, function, and regulation.Biol. Reprod.201899110111110.1093/biolre/ioy05929566165
    [Google Scholar]
  9. LibrettiS. AeddulaN.R. Embryology, GenitourinaryStatPearlsTreasure Island202432644735
    [Google Scholar]
  10. AaronL. FrancoO.E. HaywardS.W. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia.Urol. Clin. North Am.201643327928810.1016/j.ucl.2016.04.01227476121
    [Google Scholar]
  11. ThomsonA.A. MarkerP.C. Branching morphogenesis in the prostate gland and seminal vesicles.Differentiation200674738239210.1111/j.1432‑0436.2006.00101.x16916376
    [Google Scholar]
  12. YuY. JiangW. Pluripotent stem cell differentiation as an emerging model to study human prostate development.Stem Cell Res. Ther.202011128510.1186/s13287‑020‑01801‑932678004
    [Google Scholar]
  13. KahataK. MaturiV. MoustakasA. TGF-β family signaling in ductal differentiation and branching morphogenesis.Cold Spring Harb. Perspect. Biol.2018103a031997a03199710.1101/cshperspect.a03199728289061
    [Google Scholar]
  14. VickmanR.E. FrancoO.E. MolineD.C. Vander GriendD.J. ThumbikatP. HaywardS.W. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review.Asian J. Urol.20207319120210.1016/j.ajur.2019.10.00332742923
    [Google Scholar]
  15. La VigneraS. CondorelliR.A. RussoG.I. MorgiaG. CalogeroA.E. Endocrine control of benign prostatic hyperplasia.Andrology20164340441110.1111/andr.1218627089546
    [Google Scholar]
  16. JingJ. WuZ. WangJ. LuoG. LinH. FanY. ZhouC. Hedgehog signaling in tissue homeostasis, cancers and targeted therapies.Signal Transduct. Target. Ther.20238131510.1038/s41392‑023‑01559‑537596267
    [Google Scholar]
  17. RheeJ.W. AdzavonY.M. SunZ. Stromal androgen signaling governs essential niches in supporting prostate development and tumorigenesis.Oncogene202443473419342510.1038/s41388‑024‑03175‑139369165
    [Google Scholar]
  18. YuX. LiuR. SongL. GaoW. WangX. ZhangY. Differences in the pathogenetic characteristics of prostate cancer in the transitional and peripheral zones and the possible molecular biological mechanisms.Front. Oncol.202313116573210.3389/fonc.2023.116573237456243
    [Google Scholar]
  19. ChenC. ZhangZ. GuX. ShengX. XiaoL. WangX. Exosomes: New regulators of reproductive development.Mater. Today Bio20231910060810060810.1016/j.mtbio.2023.10060836969697
    [Google Scholar]
  20. LawrentschukN. Benign Prostate Disorders.EndotextMDText.comSouth Dartmouth (MA)
    [Google Scholar]
  21. MohlerJ.L. ArmstrongA.J. BahnsonR.R. D’AmicoA.V. DavisB.J. EasthamJ.A. EnkeC.A. FarringtonT.A. HiganoC.S. HorwitzE.M. HurwitzM. KaneC.J. KawachiM.H. KuettelM. LeeR.J. MeeksJ.J. PensonD.F. PlimackE.R. Pow-SangJ.M. RabenD. RicheyS. RoachM.III RosenfeldS. SchaefferE. SkolarusT.A. SmallE.J. SonpavdeG. SrinivasS. StropeS.A. TwardJ. SheadD.A. Freedman-CassD.A. Prostate cancer, version 1.J. Natl. Compr. Canc. Netw.2016141193010.6004/jnccn.2016.000426733552
    [Google Scholar]
  22. NicholsonT.M. RickeW.A. Androgens and estrogens in benign prostatic hyperplasia: Past, present and future.Differentiation2011824-518419910.1016/j.diff.2011.04.00621620560
    [Google Scholar]
  23. ApreaI. Nöthe-MenchenT. DoughertyG.W. RaidtJ. LogesN.T. KaiserT. WallmeierJ. OlbrichH. StrünkerT. KlieschS. PennekampP. OmranH. Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system.Mol. Hum. Reprod.2021273gaab00910.1093/molehr/gaab00933561200
    [Google Scholar]
  24. YohamA.L. BordoniB. Anatomy, Abdomen and Pelvis: Inferior Hypogastric Plexus.StatPearlsTreasure Island202433620788
    [Google Scholar]
  25. AnamthathmakulaP. WinuthayanonW. Mechanism of semen liquefaction and its potential for a novel non-hormonal contraception†.Biol. Reprod.2020103241142610.1093/biolre/ioaa07532529252
    [Google Scholar]
  26. AnamthathmakulaP. EricksonJ.A. Blocking serine protease activity prevents semenogelin degradation leading to hyperviscous semen in humans.Biol. Reprod.2022106587988710.1093/biolre/ioac02335098308
    [Google Scholar]
  27. BardhiE. DrakopoulosP. Update on male infertility.J. Clin. Med.202110204771477110.3390/jcm1020477134682892
    [Google Scholar]
  28. O’DonnellL. StantonP. Endocrinology of the male reproductive system and spermatogenesis.EndotextMDText.com, Inc.201725905260
    [Google Scholar]
  29. BuțM.G. Tero-VescanA. PușcașA. JîtcăG. MarcG. Exploring the inhibitory potential of phytosterols β-Sitosterol, stigmasterol, and campesterol on 5-Alpha reductase activity in the human prostate: An in vitro and in silico approach.Plants202413223146314610.3390/plants1322314639599355
    [Google Scholar]
  30. AzzouniF. GodoyA. LiY. MohlerJ. The 5 alpha-reductase isozyme family: A review of basic biology and their role in human diseases.Adv. Urol.2012201211810.1155/2012/53012122235201
    [Google Scholar]
  31. McKay A.C. Odeluga N. Anatomy, Abdomen and Pelvis, Seminal Vesicle.StatPearls Treasure Island2024
    [Google Scholar]
  32. WangF. YangW. OuyangS. YuanS. The vehicle determines the destination: The significance of seminal plasma factors for male fertility.Int. J. Mol. Sci.202021228499849910.3390/ijms2122849933198061
    [Google Scholar]
  33. NamekawaT. ImamotoT. KatoM. KomiyaA. IchikawaT. Vasovasostomy and vasoepididymostomy: Review of the procedures, outcomes, and predictors of patency and pregnancy over the last decade.Reprod. Med. Biol.201817434335510.1002/rmb2.1220730377390
    [Google Scholar]
  34. SamantaL. ParidaR. DiasT.R. AgarwalA. The enigmatic seminal plasma: A proteomics insight from ejaculation to fertilization.Reprod. Biol. Endocrinol.20181614110.1186/s12958‑018‑0358‑629704899
    [Google Scholar]
  35. LebovitchS. PontariM.A. Prostatitis and lower urinary tract infections in men.Penn Clinical Manual of UrologyElsevier200717718810.1016/B978‑141603848‑1.10005‑1
    [Google Scholar]
  36. PendegastH.J. LeslieS.W. RosarioD.J. Chronic Prostatitis and Chronic Pelvic Pain Syndrome in Men.StatPearlsTreasure Island2024
    [Google Scholar]
  37. BelangerG.V. VerLeeG.T. Diagnosis and surgical management of male pelvic, inguinal, and testicular pain.Surg. Clin. North Am.201696359361310.1016/j.suc.2016.02.01427261797
    [Google Scholar]
  38. Europe PMCDysuriaStatPearlsTreasure Island2024
    [Google Scholar]
  39. DavisN.G. SilbermanM. Acute Bacterial Prostatitis.StatPearlsTreasure Island2024
    [Google Scholar]
  40. ŠutulovićN. VeskovićM. PuškašN. ZubelićA. JerotićD. ŠuvakovS. DespotovićS. GrubačŽ. MladenovićD. MacutD. Rašić-MarkovićA. SimićT. StanojlovićO. HrnčićD. Chronic prostatitis/chronic pelvic pain syndrome induces depression-like behavior and learning-memory impairment: A Possible link with decreased hippocampal neurogenesis and astrocyte activation.Oxid. Med. Cell. Longev.2023202311410.1155/2023/319998837064799
    [Google Scholar]
  41. YangY. ShigemuraK. MaedaK. MoriwakiM. ChenK.C. NakanoY. FujisawaM. The harmful effects of overlooking acute bacterial prostatitis.Int. J. Urol.202431545946310.1111/iju.1539038239011
    [Google Scholar]
  42. Bowen D.K. Dielubanza E. Schaeffer A.J. Chronic bacterial prostatitis and chronic pelvic pain syndromeBMJ Clin Evid.2015201518024551133
    [Google Scholar]
  43. MagriV. BoltriM. CaiT. ColomboR. CuzzocreaS. De VisschereP. GiubertiR. GranatieriC.M. LatinoM.A. LarganàG. LeliC. MaiernaG. MarcheseV. MassaE. MatteelliA. MontanariE. MorgiaG. NaberK.G. PapadouliV. PerlettiG. RekleitiN. RussoG.I. SensiniA. StamatiouK. TrinchieriA. WagenlehnerF.M.E. Multidisciplinary approach to prostatitis.Arch. Ital. Urol. Androl.201990422724810.4081/aiua.2018.4.22730655633
    [Google Scholar]
  44. AdamianL. UritsI. OrhurhuV. HoytD. DriessenR. FreemanJ.A. KayeA.D. KayeR.J. GarciaA.J. CornettE.M. ViswanathO. A Comprehensive review of the diagnosis, treatment, and management of urologic chronic pelvic pain syndrome.Curr. Pain Headache Rep.20202462710.1007/s11916‑020‑00857‑932378039
    [Google Scholar]
  45. SundiD. KryvenkoO.N. CarterH.B. RossA.E. EpsteinJ.I. SchaefferE.M. Pathological examination of radical prostatectomy specimens in men with very low risk disease at biopsy reveals distinct zonal distribution of cancer in black American men.J. Urol.20141911606710.1016/j.juro.2013.06.02123770146
    [Google Scholar]
  46. BhatS.A. RatherS.A. IslamN. An overview of benign prostatic hyperplasia and its appreciation in Greco-Arab (Unani) system of medicine.Asian J. Urol.20229210911810.1016/j.ajur.2021.05.00835509487
    [Google Scholar]
  47. LeporH. Pathophysiology of benign prostatic hyperplasia in the aging male population.Rev Urol.201774S316986052
    [Google Scholar]
  48. DmochowskiRR Bladder outlet obstruction: Etiology and evaluation. Rev Urol. 202066S3S1316986027
    [Google Scholar]
  49. CannarellaR. CondorelliR.A. BarbagalloF. La VigneraS. CalogeroA.E. Endocrinology of the aging prostate: Current concepts.Front. Endocrinol. (Lausanne)20211255407810.3389/fendo.2021.55407833692752
    [Google Scholar]
  50. OmranA. LecaB.M. OštarijašE. GrahamN. Da SilvaA.S. ZaïrZ.M. MirasA.D. le RouxC.W. VincentR.P. CardozoL. DimitriadisG.K. Metabolic syndrome is associated with prostate enlargement: A systematic review, meta-analysis, and meta-regression on patients with lower urinary tract symptom factors.Ther. Adv. Endocrinol. Metab.2021122042018821106621010.1177/2042018821106621034900218
    [Google Scholar]
  51. TestaU. CastelliG. PelosiE. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications.Medicines201963828210.3390/medicines603008231366128
    [Google Scholar]
  52. PitzenS.P. DehmS.M. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression.Cell Cycle202322111303131810.1080/15384101.2023.220650237098827
    [Google Scholar]
  53. WibmerA.G. BurgerI.A. SalaE. HricakH. WeberW.A. VargasH.A. Molecular imaging of prostate cancer.Radiographics201636114215910.1148/rg.201615005926587888
    [Google Scholar]
  54. BerenguerC.V. PereiraF. CâmaraJ.S. PereiraJ.A.M. Underlying features of prostate cancer—statistics, risk factors, and emerging methods for its diagnosis.Curr. Oncol.20233022300232110.3390/curroncol3002017836826139
    [Google Scholar]
  55. SekhoachaM. RietK. MotloungP. GumenkuL. AdegokeA. MasheleS. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules202227175730573010.3390/molecules2717573036080493
    [Google Scholar]
  56. HeratiA.S. ShorterB. SrinivasanA.K. TaiJ. SeidemanC. LesserM. MoldwinR.M. Effects of foods and beverages on the symptoms of chronic prostatitis/chronic pelvic pain syndrome.Urology20138261376138010.1016/j.urology.2013.07.01523978369
    [Google Scholar]
  57. OczkowskiM. DziendzikowskaK. Pasternak-WiniarskaA. WłodarekD. Gromadzka-OstrowskaJ. Dietary factors and prostate cancer development, progression, and reduction.Nutrients202113249649610.3390/nu1302049633546190
    [Google Scholar]
  58. CameronA.P. HelmuthM.E. SmithA.R. LaiH.H. AmundsenC.L. KirkaliZ. GillespieB.W. YangC.C. ClemensJ.Q. LURN Study Group Total fluid intake, caffeine, and other bladder irritant avoidance among adults having urinary urgency with and without urgency incontinence: The symptoms of Lower Urinary Tract Dysfunction Research Network (LURN).Neurourol. Urodyn.202342121322010.1002/nau.2507036579975
    [Google Scholar]
  59. SargsyanA. DubasiH.B. Milk consumption and prostate cancer: A systematic review.World J. Mens Health202139341942810.5534/wjmh.20005132777868
    [Google Scholar]
  60. ZhangL.G. ChenJ. MengJ.L. ZhangY. LiuY. ZhanC.S. ChenX.G. ZhangL. LiangC.Z. Effect of alcohol on chronic pelvic pain and prostatic inflammation in a mouse model of experimental autoimmune prostatitis.Prostate201979121466147610.1002/pros.2386631233226
    [Google Scholar]
  61. MitsunariK. Miyatay. MatsuoT. MukaeY. SakaiH. OtsuboA. Pharmacological effects and potential clinical usefulness of polyphenols in benign prostatic hyperplasia.Molecules202126245045010.3390/molecules2602045033467066
    [Google Scholar]
  62. ParikesitD. MochtarC.A. UmbasR. HamidA.R.A.H. The impact of obesity towards prostate diseases.Prostate Int.2016411610.1016/j.prnil.2015.08.00127014656
    [Google Scholar]
  63. Di SebastianoK. MourtzakisM. The role of dietary fat throughout the prostate cancer trajectory.Nutrients20146126095610910.3390/nu612609525533015
    [Google Scholar]
  64. AucoinM. CooleyK. KneeC. FritzH. BalneavesL.G. BreauR. FergussonD. SkidmoreB. WongR. SeelyD. Fish-derived omega-3 fatty acids and prostate cancer: A systematic review.Integr. Cancer Ther.2017161326210.1177/153473541665605227365385
    [Google Scholar]
  65. KhanU.M. SevindikM. ZarrabiA. NamiM. OzdemirB. KaplanD.N. SelamogluZ. HasanM. KumarM. AlshehriM.M. Sharifi-RadJ. Lycopene: Food sources, biological activities, and human health benefits.Oxid. Med. Cell. Longev.202120211271351110.1155/2021/271351134840666
    [Google Scholar]
  66. QiW.J. ShengW.S. PengC. XiaodongM. YaoT.Z. Investigating into anti-cancer potential of lycopene: Molecular targets.Biomed. Pharmacother.202113811154610.1016/j.biopha.2021.11154634311540
    [Google Scholar]
  67. KapałaA. SzlendakM. MotackaE. The anti-cancer activity of lycopene: A systematic review of human and animal studies.Nutrients202214235152515210.3390/nu1423515236501182
    [Google Scholar]
  68. Neslund-DudasC. BockC.H. MonaghanK. NockN.L. YangJ.J. RundleA. TangD. RybickiB.A. SRD5A2 and HSD3B2 polymorphisms are associated with prostate cancer risk and aggressiveness.Prostate200767151654166310.1002/pros.2062517823934
    [Google Scholar]
  69. KaiserA.E. BaniasadiM. GiansiracusaD. GiansiracusaM. GarciaM. FrydaZ. WongT.L. BishayeeA. Sulforaphane: A broccoli bioactive phytocompound with cancer preventive potential.Cancers20211319479610.3390/cancers1319479634638282
    [Google Scholar]
  70. HoE. ClarkeJ.D. DashwoodR.H. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention.J. Nutr.2009139122393239610.3945/jn.109.11333219812222
    [Google Scholar]
  71. AğagündüzD. ŞahinT.Ö. YılmazB. EkenciK.D. Duyar ÖzerŞ. CapassoR. Cruciferous vegetables and their bioactive metabolites: From prevention to novel therapies of colorectal cancer.Evid. Based Complement. Alternat. Med.2022202212010.1155/2022/153408335449807
    [Google Scholar]
  72. ChengZ. ZhangZ. HanY. WangJ. WangY. ChenX. ShaoY. ChengY. ZhouW. LuX. WuZ. A review on anti-cancer effect of green tea catechins.J. Funct. Foods20207410417210417210.1016/j.jff.2020.104172
    [Google Scholar]
  73. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.09321827739
    [Google Scholar]
  74. FanF.S. Iron deficiency anemia due to excessive green tea drinking.Clin. Case Rep.20164111053105610.1002/ccr3.70727830072
    [Google Scholar]
  75. DostalA.M. ArikawaA. EspejoL. KurzerM.S. Long-term supplementation of green tea extract does not modify adiposity or bone mineral density in a randomized trial of overweight and obese postmenopausal women.J. Nutr.2016146225626410.3945/jn.115.21923826701796
    [Google Scholar]
  76. CsikósE. HorváthA. ÁcsK. PappN. BalázsV.L. DolencM.S. KendaM. Kočevar GlavačN. NagyM. ProttiM. MercoliniL. HorváthG. FarkasÁ. On Behalf Of The Oemonom Treatment of benign prostatic hyperplasia by natural drugs.Molecules202126237141714110.3390/molecules2623714134885733
    [Google Scholar]
  77. KarunasingheN. Zinc in prostate health and disease: A mini review.Biomedicines202210123206320610.3390/biomedicines1012320636551962
    [Google Scholar]
  78. MocchegianiE. RomeoJ. MalavoltaM. CostarelliL. GiacconiR. DiazL.E. MarcosA. Zinc: Dietary intake and impact of supplementation on immune function in elderly.Age (Omaha)201335383986010.1007/s11357‑011‑9377‑322222917
    [Google Scholar]
  79. ChenB. ZhangD. ZhouL. ZhaoJ. ChenB. Association between SLC30A8 rs13266634 Polymorphism and Type 2 Diabetes Risk: A Meta-Analysis.Med. Sci. Monit.2015212178218910.12659/MSM.89405226214053
    [Google Scholar]
  80. SivoňovM. KaplanP. TatarkovZ. JurečekovJ. DušenkaR. Androgen receptor and soy isoflavones in prostate cancer.Mol. Clin. Oncol.201810219110.3892/mco.2018.1792
    [Google Scholar]
  81. FarhanM. El OirdiM. AatifM. NahviI. MuteebG. AlamM.W. Soy isoflavones induce cell death by copper-mediated mechanism: Understanding its anticancer properties.Molecules2023287292510.3390/molecules2807292537049690
    [Google Scholar]
  82. MessinaM. DuncanA. MessinaV. LynchH. KielJ. ErdmanJ.W.Jr The health effects of soy: A reference guide for health professionals.Front. Nutr.2022997036410.3389/fnut.2022.97036436034914
    [Google Scholar]
  83. BellutiS. ImbrianoC. CasariniL. Nuclear estrogen receptors in prostate cancer: From genes to function.Cancers202315184653465310.3390/cancers1518465337760622
    [Google Scholar]
  84. BlondeauN. LipskyR.H. BourourouM. DuncanM.W. GorelickP.B. MariniA.M. Alpha-linolenic acid: An omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic?BioMed Res. Int.201520151810.1155/2015/51983025789320
    [Google Scholar]
  85. AbdelhamidA.S. BrownT.J. BrainardJ.S. BiswasP. ThorpeG.C. MooreH.J. DeaneK.H.O. AlAbdulghafoorF.K. SummerbellC.D. WorthingtonH.V. SongF. HooperL. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease.Cochrane Libr.20181111CD00317710.1002/14651858.CD003177.pub430521670
    [Google Scholar]
  86. SantanaJ.M. PereiraM. CarvalhoG.Q. Gouveia PeluzioM.C. Drumond LouroI. SantosD.B. OliveiraA.M. FADS1 and FADS2 gene polymorphisms modulate the relationship of Omega-3 and Omega-6 fatty acid plasma concentrations in gestational weight gain: A NISAMI cohort study.Nutrients20221451056105610.3390/nu1405105635268031
    [Google Scholar]
  87. El-SaadonyM.T. YangT. KormaS.A. SitohyM. Abd El-MageedT.A. SelimS. Al JaouniS.K. SalemH.M. MahmmodY. SolimanS.M. Mo’menS.A.A. MosaW.F.A. El-WafaiN.A. Abou-AlyH.E. SitohyB. Abd El-HackM.E. El-TarabilyK.A. SaadA.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review.Front. Nutr.20239104025910.3389/fnut.2022.104025936712505
    [Google Scholar]
  88. GiordanoA. TommonaroG. Curcumin and Cancer.Nutrients201911102376237610.3390/nu1110237631590362
    [Google Scholar]
  89. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  90. KunnumakkaraA.B. HegdeM. ParamaD. GirisaS. KumarA. DaimaryU.D. GarodiaP. YenisettiS.C. OommenO.V. AggarwalB.B. Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials.ACS Pharmacol. Transl. Sci.20236444751810.1021/acsptsci.2c0001237082752
    [Google Scholar]
  91. IversenK.N. DicksvedJ. ZokiC. FristedtR. PelveE.A. LangtonM. LandbergR. The effects of high fiber rye, compared to refined wheat, on gut microbiota composition, plasma short chain fatty acids, and implications for weight loss and metabolic risk factors (the RyeWeight Study).Nutrients20221481669166910.3390/nu1408166935458231
    [Google Scholar]
  92. MazzaE. TroianoE. FerroY. LissoF. TosiM. TurcoE. PujiaR. MontalciniT. Obesity, dietary patterns, and hormonal balance modulation: Gender-specific impacts.Nutrients20241611162910.3390/nu1611162938892561
    [Google Scholar]
  93. MentellaM.C. ScaldaferriF. RicciC. GasbarriniA. MiggianoG.A.D. Cancer and mediterranean diet: A review.Nutrients2019119205910.3390/nu1109205931480794
    [Google Scholar]
  94. BauerW. Adamska-PatrunoE. KrasowskaU. MorozM. FiedorczukJ. CzajkowskiP. BielskaD. GorskaM. KretowskiA. Dietary macronutrient intake may influence the effects of TCF7L2 rs7901695 genetic variants on glucose homeostasis and obesity-related parameters: A cross-sectional population-based study.Nutrients20211361936193610.3390/nu1306193634200102
    [Google Scholar]
  95. RahmanM.M. IslamM.R. AkashS. HossainM.E. TumpaA.A. Abrar IshtiaqueG.M. AhmedL. RaufA. KhalilA.A. Al AbdulmonemW. Simal-GandaraJ. Pomegranate-specific natural compounds as onco-preventive and onco-therapeutic compounds: Comparison with conventional drugs acting on the same molecular mechanisms.Heliyon202397e1809010.1016/j.heliyon.2023.e1809037519687
    [Google Scholar]
  96. CarusoA. BarbarossaA. TassoneA. CeramellaJ. CarocciA. CatalanoA. BasileG. FazioA. IacopettaD. FranchiniC. SinicropiM.S. Pomegranate: Nutraceutical with promising benefits on human health.Appl. Sci. 202010196915691510.3390/app10196915
    [Google Scholar]
  97. MehdiA. LamiaeB. SamiraB. RamchounM. AbdelouahedK. TamasF. HichamB. Pomegranate (Punica granatum L.) Attenuates neuroinflammation involved in neurodegenerative diseases.Foods202211172570257010.3390/foods1117257036076756
    [Google Scholar]
  98. MarraA. ManousakisV. ZervasG.P. KoutisN. FinosM.A. AdamantidiT. PanoutsopoulouE. OfrydopoulouA. TsouprasA. Avocado and its by-products as natural sources of valuable anti-inflammatory and antioxidant bioactives for functional foods and cosmetics with health-promoting properties.Appl. Sci.202414145978597810.3390/app14145978
    [Google Scholar]
  99. RasmusP. KozłowskaE. Antioxidant and anti-inflammatory effects of carotenoids in mood disorders: An overview.Antioxidants202312367667610.3390/antiox1203067636978923
    [Google Scholar]
  100. Feingold K.R. The effect of diet on cardiovascular disease and lipid and lipoprotein levels.EndotextMDText.com, Inc.South Dartmouth (MA)2024
    [Google Scholar]
  101. de Luis RomanD. PrimoD. IzaolaO. AllerR. Association of the APOA-5 genetic variant rs662799 with metabolic changes after an intervention for 9 months with a low-calorie diet with a mediterranean profile.Nutrients202214122427242710.3390/nu1412242735745158
    [Google Scholar]
  102. Van der EeckenH. JoniauS. BerghenC. RansK. De MeerleerG. The use of soy isoflavones in the treatment of prostate cancer: A focus on the cellular effects.Nutrients202315234856485610.3390/nu1523485638068715
    [Google Scholar]
  103. KimH. YokoyamaW. DavisP.A. TRAMP prostate tumor growth is slowed by walnut diets through altered IGF-1 levels, energy pathways, and cholesterol metabolism.J. Med. Food201417121281128610.1089/jmf.2014.006125354213
    [Google Scholar]
  104. LandbergR. AnderssonS.O. ZhangJ.X. JohanssonJ.E. StenmanU.H.Å. AdlercreutzH. Kamal-EldinA. ÅmanP. HallmansG. Rye whole grain and bran intake compared with refined wheat decreases urinary C-peptide, plasma insulin, and prostate specific antigen in men with prostate cancer.J. Nutr.2010140122180218610.3945/jn.110.12768820980650
    [Google Scholar]
  105. TurriniE. FerruzziL. FimognariC. Potential effects of pomegranate polyphenols in cancer prevention and therapy.Oxid. Med. Cell. Longev.2015201511910.1155/2015/93847526180600
    [Google Scholar]
  106. EricssonC.I. PachecoL.S. Romanos-NanclaresA. EcsedyE. GiovannucciE.L. EliassenA.H. MucciL.A. FuB.C. Prospective study of avocado consumption and cancer risk in U.S. men and women.Cancer Prev. Res. (Phila.)202316421121810.1158/1940‑6207.CAPR‑22‑029836490225
    [Google Scholar]
  107. DevrimE. DurakI. Is garlic a promising food for benign prostatic hyperplasia and prostate cancer?Mol. Nutr. Food Res.200751111319132310.1002/mnfr.20060030217918170
    [Google Scholar]
  108. SinghS. MauryaA.K. MeenaA. MishraN. LuqmanS. Narirutin. A flavonoid found in citrus fruits modulates cell cycle phases and inhibits the proliferation of hormone-refractory prostate cancer cells by targeting hyaluronidase.Food Chem. Toxicol.202317411363811363810.1016/j.fct.2023.11363836708865
    [Google Scholar]
  109. ChoiE. BuieJ.D. CamachoJ. SharmaP. de RieseW.T.W. Evolution of Androgen Deprivation Therapy (ADT) and its new emerging modalities in prostate cancer: An update for practicing urologists, clinicians and medical providers.Res. Rep. Urol.2022148710810.2147/RRU.S30321535386270
    [Google Scholar]
  110. LiuA.G. FordN.A. HuF.B. ZelmanK.M. MozaffarianD. Kris-EthertonP.M. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion.Nutr. J.20171615310.1186/s12937‑017‑0271‑428854932
    [Google Scholar]
  111. CapursoC. Whole-grain intake in the mediterranean diet and a low protein to carbohydrates ratio can help to reduce mortality from cardiovascular disease, slow down the progression of aging, and to improve lifespan: A review.Nutrients20211382540254010.3390/nu1308254034444699
    [Google Scholar]
  112. IslamS.U. AhmedM.B. AhsanH. LeeY.S. Recent molecular mechanisms and beneficial effects of phytochemicals and plant-based whole foods in reducing LDL-C and preventing cardiovascular disease.Antioxidants202110578478410.3390/antiox1005078434063371
    [Google Scholar]
  113. DivellaR. DanieleA. SavinoE. ParadisoA. Anticancer effects of nutraceuticals in the mediterranean diet: An epigenetic diet model.Cancer. Genom. Proteom.202017433535010.21873/cgp.2019332576579
    [Google Scholar]
  114. JiangH. ZuoJ. LiB. ChenR. LuoK. XiangX. LuS. HuangC. LiuL. TangJ. GaoF. Drug-induced oxidative stress in cancer treatments: Angel or devil?Redox Biol.20236310275410275410.1016/j.redox.2023.10275437224697
    [Google Scholar]
  115. ShafeM.O. GumedeN.M. NyakudyaT.T. ChivandiE. Lycopene: A potent antioxidant with multiple health benefits.J. Nutr. Metab.202420241625242610.1155/2024/625242638883868
    [Google Scholar]
  116. KarimiM. SadeghiR. KokiniJ. Pomegranate as a promising opportunity in medicine and nanotechnology.Trends Food Sci. Technol.201769597310.1016/j.tifs.2017.08.019
    [Google Scholar]
  117. PantioraP.D. BalaourasA.I. MinaI.K. FrerisC.I. PappasA.C. DanezisG.P. ZoidisE. GeorgiouC.A. The therapeutic alliance between pomegranate and health emphasizing on anticancer properties.Antioxidants202312118710.3390/antiox1201018736671048
    [Google Scholar]
  118. NumakuraK. KobayashiM. MutoY. SatoH. SekineY. SobuR. AoyamaY. TakahashiY. OkadaS. SasagawaH. NaritaS. KumagaiS. WadaY. MoriN. HabuchiT. The current trend of radiation therapy for patients with localized prostate cancer.Curr. Oncol.20233098092811010.3390/curroncol3009058737754502
    [Google Scholar]
  119. Sala-ClimentM. López de CocaT. GuerreroM.D. MuñozF.J. López-RuízM.A. MorenoL. AlacreuM. Dea-AyuelaM.A. The effect of an anti-inflammatory diet on chronic pain: A pilot study.Front. Nutr.202310120552610.3389/fnut.2023.120552637521415
    [Google Scholar]
  120. KarageorgouD. RovaU. ChristakopoulosP. KatapodisP. MatsakasL. PatelA. Benefits of supplementation with microbial omega-3 fatty acids on human health and the current market scenario for fish-free omega-3 fatty acid.Trends Food Sci. Technol.202313616918010.1016/j.tifs.2023.04.018
    [Google Scholar]
  121. SohnS.I. PriyaA. BalasubramaniamB. MuthuramalingamP. SivasankarC. SelvarajA. ValliammaiA. JothiR. PandianS. Biomedical applications and bioavailability of curcumin: An updated overview.Pharmaceutics20211312210210.3390/pharmaceutics1312210234959384
    [Google Scholar]
  122. IslamM.R. RaufA. AkashS. TrishaS.I. NasimA.H. AkterM. DharP.S. OgalyH.A. HemegH.A. WilairatanaP. ThiruvengadamM. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives.Biomed. Pharmacother.202417011603411603410.1016/j.biopha.2023.11603438141282
    [Google Scholar]
  123. ReissA.B. GulkarovS. PinkhasovA. SheehanK.M. SrivastavaA. De LeonJ. KatzA.E. Androgen deprivation therapy for prostate cancer: Focus on cognitive function and mood.Medicina (Kaunas)2023601777710.3390/medicina6001007738256338
    [Google Scholar]
  124. MessinaM. Soy and health update: Evaluation of the clinical and epidemiologic literature.Nutrients201681275410.3390/nu812075427886135
    [Google Scholar]
  125. BensaadaS. PeruzziG. CubizollesL. DenayrollesM. Bennetau-PelisseroC. Traditional and domestic cooking dramatically reduce estrogenic isoflavones in soy foods.Foods202413799999910.3390/foods1307099938611305
    [Google Scholar]
  126. Canivenc-LavierM.C. Bennetau-PelisseroC. Phytoestrogens and health effects.Nutrients202315231731710.3390/nu1502031736678189
    [Google Scholar]
  127. ZughaibiT.A. SuhailM. TariqueM. TabrezS. Targeting PI3K/Akt/mTOR pathway by different flavonoids: A cancer chemopreventive approach.Int. J. Mol. Sci.20212222124551245510.3390/ijms22221245534830339
    [Google Scholar]
  128. SuX. JiangX. MengL. DongX. ShenY. XinY. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway.Oxid. Med. Cell. Longev.201820181543817910.1155/2018/543817929977456
    [Google Scholar]
  129. MordecaiJ. UllahS. AhmadI. Sulforaphane and its protective role in prostate cancer: A mechanistic approach.Int. J. Mol. Sci.20232486979697910.3390/ijms2408697937108142
    [Google Scholar]
  130. TanB.L. NorhaizanM.E. Oxidative stress, diet and prostate cancer.World J. Mens Health202139219520710.5534/wjmh.20001432648373
    [Google Scholar]
  131. GalvánG.C. MaciasE. SandersS. Ramirez-TorresA. StockS. YouS. RieraC.E. TamukongP. Smith-WarnerS.A. GenkingerJ.M. LuthringerD.J. FreemanM.R. FreedlandS.J. The effects of glycemic index on prostate cancer progression in a xenograft mouse model.Prostate Cancer Prostatic Dis.202427234835410.1038/s41391‑023‑00769‑w38082056
    [Google Scholar]
  132. OkeO.E. AkosileO.A. OniA.I. OpowoyeI.O. IsholaC.A. AdebiyiJ.O. OdeyemiA.J. Adjei-MensahB. UyangaV.A. AbiojaM.O. Oxidative stress in poultry production.Poult. Sci.2024103910400310400310.1016/j.psj.2024.10400339084145
    [Google Scholar]
  133. BulandaS. JanoszkaB. Consumption of thermally processed meat containing carcinogenic compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a risk of some cancers in humans and the possibility of reducing their formation by natural food additives: A literature review.Int. J. Environ. Res. Public Health20221984781478110.3390/ijerph1908478135457645
    [Google Scholar]
  134. TanB.L. NorhaizanM.E. LiewW.P.P. Nutrients and oxidative stress: Friend or foe?Oxid. Med. Cell. Longev.201820181971958410.1155/2018/971958429643982
    [Google Scholar]
  135. AhmedB. SultanaR. GreeneM.W. Adipose tissue and insulin resistance in obese.Biomed. Pharmacother.202113711131511131510.1016/j.biopha.2021.11131533561645
    [Google Scholar]
  136. BojkováB. WinklewskiP.J. Wszedybyl-WinklewskaM. Dietary fat and cancer: Which is good, which is bad, and the body of evidence.Int. J. Mol. Sci.20202111411410.3390/ijms2111411432526973
    [Google Scholar]
  137. BrancaccioM. MennittiC. CesaroA. FimianiF. VanoM. GargiuloB. CaiazzaM. AmodioF. CotoI. D’AlicandroG. MazzaccaraC. LombardoB. PeroR. TerraccianoD. LimongelliG. CalabròP. D’ArgenioV. FrissoG. ScudieroO. The biological role of vitamins in athletes’ muscle, heart and microbiota.Int. J. Environ. Res. Public Health20221931249124910.3390/ijerph1903124935162272
    [Google Scholar]
  138. BoccardiV. BaroniM. MangialascheF. MecocciP. Vitamin E family: Role in the pathogenesis and treatment of Alzheimer’s disease.Alzheimers Dement.20162318219110.1016/j.trci.2016.08.00229067305
    [Google Scholar]
  139. KeyT.J. ApplebyP.N. TravisR.C. AlbanesD. AlbergA.J. BarricarteA. BlackA. BoeingH. Bueno-de-MesquitaH.B. ChanJ.M. ChenC. CookM.B. DonovanJ.L. GalanP. GilbertR. GilesG.G. GiovannucciE. GoodmanG.E. GoodmanP.J. GunterM.J. HamdyF.C. HeliövaaraM. HelzlsouerK.J. HendersonB.E. HercbergS. Hoffman-BoltonJ. HooverR.N. JohanssonM. KhawK.T. KingI.B. KnektP. KolonelL.N. Le MarchandL. MännistöS. MartinR.M. MeyerH.E. MondulA.M. MoyK.A. NealD.E. NeuhouserM.L. PalliD. PlatzE.A. PouchieuC. RissanenH. SchenkJ.M. SeveriG. StampferM.J. TjønnelandA. TouvierM. TrichopoulouA. WeinsteinS.J. ZieglerR.G. ZhouC.K. AllenN.E. Endogenous Hormones Nutritional Biomarkers Prostate Cancer Collaborative Group Carotenoids, retinol, tocopherols, and prostate cancer risk: Pooled analysis of 15 studies.Am. J. Clin. Nutr.201510251142115710.3945/ajcn.115.11430626447150
    [Google Scholar]
  140. DidierA.J. StieneJ. FangL. WatkinsD. DworkinL.D. CreedenJ.F. Antioxidant and anti-tumor effects of dietary vitamins A, C, and E.Antioxidants202312363263210.3390/antiox1203063236978880
    [Google Scholar]
  141. KoklesovaL. LiskovaA. SamecM. BuhrmannC. SamuelS.M. VargheseE. AshrafizadehM. NajafiM. ShakibaeiM. BüsselbergD. GiordanoF.A. GolubnitschajaO. KubatkaP. Carotenoids in cancer apoptosis: The road from bench to bedside and back.Cancers2020129242510.3390/cancers1209242532859058
    [Google Scholar]
  142. CraveiroV. AraújoJ. SantosA. RamosE. Vitamin D: From the pro-hormone to the biological actions.Portuguese Nutrition Act201919505410.21011/apn.2019.1909
    [Google Scholar]
  143. BataiK. MurphyA.B. NonnL. KittlesR.A. Vitamin D and immune response: Implications for prostate cancer in African Americans.Front. Immunol.201675310.3389/fimmu.2016.0005326941739
    [Google Scholar]
  144. VenturelliS. LeischnerC. HellingT. BurkardM. MarongiuL. Vitamins as possible cancer biomarkers: Significance and limitations.Nutrients202113113914391410.3390/nu1311391434836171
    [Google Scholar]
  145. WeyhC. KrügerK. PeelingP. CastellL. The role of minerals in the optimal functioning of the immune system.Nutrients202214364464410.3390/nu1403064435277003
    [Google Scholar]
  146. AliA.A.H. Overview of the vital roles of macro minerals in the human body.J. Trace. Elem. Min.2023410007610007610.1016/j.jtemin.2023.100076
    [Google Scholar]
  147. PrasadA.S. BaoB. Molecular mechanisms of Zinc as a pro-antioxidant mediator: Clinical therapeutic implications.Antioxidants20198616410.3390/antiox806016431174269
    [Google Scholar]
  148. LiD. StovallD.B. WangW. SuiG. Advances of zinc signaling studies in prostate cancer.Int. J. Mol. Sci.202021266766710.3390/ijms2102066731963946
    [Google Scholar]
  149. ZhangF. LiX. WeiY. Selenium and selenoproteins in health.Biomolecules202313579979910.3390/biom1305079937238669
    [Google Scholar]
  150. CuiZ. LiuD. LiuC. LiuG. Serum selenium levels and prostate cancer risk.Medicine (Baltimore)2017965e594410.1097/MD.000000000000594428151881
    [Google Scholar]
  151. AllenN.E. TravisR.C. ApplebyP.N. AlbanesD. BarnettM.J. BlackA. Bueno-de-MesquitaH.B. DeschasauxM. GalanP. GoodmanG.E. GoodmanP.J. GunterM.J. HeliövaaraM. HelzlsouerK.J. HendersonB.E. HercbergS. KnektP. KolonelL.N. LasherasC. LinseisenJ. MetterE.J. NeuhouserM.L. OlsenA. PalaV. PlatzE.A. RissanenH. ReidM.E. SchenkJ.M. StampferM.J. StattinP. TangenC.M. TouvierM. TrichopoulouA. van den BrandtP.A. KeyT.J. Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group Selenium and prostate cancer: Analysis of individual participant data from fifteen prospective studies.J. Natl. Cancer Inst.201610811djw153djw15310.1093/jnci/djw15327385803
    [Google Scholar]
  152. KumarA. PN. KumarM. JoseA. TomerV. OzE. ProestosC. ZengM. ElobeidT. KS. OzF. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules2802088736677944
    [Google Scholar]
  153. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  154. JeongS.H. KimH.H. HaS.E. ParkM.Y. BhosaleP.B. AbusaliyaA. ParkK.I. HeoJ.D. KimH.W. KimG.S. Flavones: Six selected flavones and their related signaling pathways that induce apoptosis in cancer.Int. J. Mol. Sci.20222318109651096510.3390/ijms23181096536142874
    [Google Scholar]
  155. PraudD. ParpinelM. GuercioV. BosettiC. SerrainoD. FacchiniG. MontellaM. La VecchiaC. RossiM. Proanthocyanidins and the risk of prostate cancer in Italy.Cancer Causes Cont.201829226126810.1007/s10552‑018‑1002‑729350310
    [Google Scholar]
  156. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.201718122589258910.3390/ijms1812258929194365
    [Google Scholar]
  157. MirzaeiR. AfaghiA. BabakhaniS. SohrabiM.R. Hosseini-FardS.R. BabolhavaejiK. Khani Ali AkbariS. YousefimashoufR. KarampoorS. Role of microbiota-derived short-chain fatty acids in cancer development and prevention.Biomed. Pharmacother.202113911161911161910.1016/j.biopha.2021.11161933906079
    [Google Scholar]
  158. ShenY. YuanQ. ShiM. LuoB. Higher insoluble fiber intake is associated with a lower risk of prostate cancer: Results from the PLCO cohort.BMC Public. Health.202424123410.1186/s12889‑024‑17768‑838243202
    [Google Scholar]
  159. TabungF. SteckS.E. SuL.J. MohlerJ.L. FonthamE.T.H. BensenJ.T. HebertJ.R. ZhangH. ArabL. Intake of grains and dietary fiber and prostate cancer aggressiveness by race.Prostate Cancer2012201211010.1155/2012/32329623213538
    [Google Scholar]
  160. ShengT. ShenR. ShaoH. MaT. No association between fiber intake and prostate cancer risk: A meta-analysis of epidemiological studies.World J. Surg. Oncol.201513126410.1186/s12957‑015‑0681‑826315558
    [Google Scholar]
  161. HuJ. WangJ. LiY. XueK. KanJ. Use of dietary fibers in reducing the risk of several cancer types: An umbrella review.Nutrients202315112545254510.3390/nu1511254537299507
    [Google Scholar]
  162. GrabowskaM. WawrzyniakD. RolleK. ChomczyńskiP. OziewiczS. JurgaS. BarciszewskiJ. Let food be your medicine: Nutraceutical properties of lycopene.Food Funct.20191063090310210.1039/C9FO00580C31120074
    [Google Scholar]
  163. ImranM. GhoratF. Ul-HaqI. Ur-RehmanH. AslamF. HeydariM. ShariatiM.A. OkuskhanovaE. YessimbekovZ. ThiruvengadamM. HashempurM.H. RebezovM. Lycopene as a natural antioxidant used to prevent human health disorders.Antioxidants20209870670610.3390/antiox908070632759751
    [Google Scholar]
  164. YagishitaY. FaheyJ.W. Dinkova-KostovaA.T. KenslerT.W. Broccoli or Sulforaphane: Is it the source or dose that matters?Molecules201924193593359310.3390/molecules2419359331590459
    [Google Scholar]
  165. YounesM. AggettP. AguilarF. CrebelliR. DusemundB. FilipičM. FrutosM.J. GaltierP. GottD. Gundert-RemyU. LambréC. LeblancJ.C. LillegaardI.T. MoldeusP. MortensenA. OskarssonA. StankovicI. Waalkens-BerendsenI. WoutersenR.A. AndradeR.J. FortesC. MosessoP. RestaniP. ArcellaD. PizzoF. SmeraldiC. WrightM. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific opinion on the safety of green tea catechins.EFSA J.2018164e0523910.2903/j.efsa.2018.523932625874
    [Google Scholar]
  166. HüserS. GuthS. JoostH.G. SoukupS.T. KöhrleJ. KreienbrockL. DielP. LachenmeierD.W. EisenbrandG. VollmerG. NöthlingsU. MarkoD. MallyA. GruneT. LehmannL. SteinbergP. KullingS.E. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: A comprehensive safety evaluation.Arch. Toxicol.20189292703274810.1007/s00204‑018‑2279‑830132047
    [Google Scholar]
  167. BushitaH. ItoY. SaitoT. NukadaY. IkedaN. NakagiriH. SaitoK. MoritaO. A 90-day repeated-dose toxicity study of dietary alpha linolenic acid-enriched diacylglycerol oil in rats.Regul. Toxicol. Pharmacol.201897334710.1016/j.yrtph.2018.05.01729859764
    [Google Scholar]
  168. Hurtado-NuñezG-E. Cortés-RojoC. Sánchez-CejaS-G. Martínez-FloresH-E. Salgado-GarcigliaR. Bartolomé-CamachoM-C. García-PérezM-E. Gallic, ellagic acids and their oral combined administration induce kidney, lung, and heart injury after acute exposure in Wistar rats.Food Chem. Toxicol.202217011349211349210.1016/j.fct.2022.113492
    [Google Scholar]
  169. JiaY.P. SunL. YuH.S. LiangL.P. LiW. DingH. SongX.B. ZhangL.J. The pharmacological effects of Lutein and Zeaxanthin on visual disorders and cognition diseases.Molecules201722461061010.3390/molecules2204061028425969
    [Google Scholar]
  170. PandeyP. KhanF. RamniwasS. SaeedM. AhmadI. A mechanistic review of the pharmacological potential of narirutin: A dietary flavonoid.Naunyn Schmiedebergs Arch. Pharmacol.202439785449546110.1007/s00210‑024‑03022‑w38457040
    [Google Scholar]
  171. NogoyK.M.C. KimH.J. LeeY. ZhangY. YuJ. LeeD.H. LiX.Z. SmithS.B. SeongH.A. ChoiS.H. High dietary oleic acid in olive oil‐supplemented diet enhanced omega‐3 fatty acid in blood plasma of rats.Food Sci. Nutr.2020873617362510.1002/fsn3.164432724624
    [Google Scholar]
  172. MrowickaM. MrowickiJ. KucharskaE. MajsterekI. Lutein and Zeaxanthin and their roles in age-related macular degeneration—neurodegenerative disease.Nutrients202214482710.3390/nu1404082735215476
    [Google Scholar]
  173. AlshehriM.M. Sharifi-RadJ. Herrera-BravoJ. JaraE.L. SalazarL.A. KregielD. UpretyY. AkramM. IqbalM. MartorellM. Torrens-MasM. PonsD.G. DaştanS.D. Cruz-MartinsN. OzdemirF.A. KumarM. ChoW.C. Therapeutic potential of isoflavones with an emphasis on daidzein.Oxid. Med. Cell. Longev.202120211633163010.1155/2021/633163034539970
    [Google Scholar]
  174. SzukiewiczD. Insight into the potential mechanisms of endocrine disruption by dietary phytoestrogens in the context of the etiopathogenesis of endometriosis.Int. J. Mol. Sci.20232415121951219510.3390/ijms24151219537569571
    [Google Scholar]
  175. MirahmadiM. Azimi-HashemiS. SaburiE. KamaliH. PishbinM. HadizadehF. Potential inhibitory effect of lycopene on prostate cancer.Biomed. Pharmacother.202012911045911045910.1016/j.biopha.2020.11045932768949
    [Google Scholar]
  176. HoughtonC.A. Sulforaphane: Its “Coming of Age” as a clinically relevant nutraceutical in the prevention and treatment of chronic disease.Oxid. Med. Cell. Longev.2019201912710.1155/2019/271687031737167
    [Google Scholar]
  177. MamagkakiA. BourisI. ParsonidisP. VlachouI. GougousiM. PapasotiriouI. Genistein as a dietary supplement; formulation, analysis and pharmacokinetics study.PLoS One2021164e0250599e025059910.1371/journal.pone.025059933905453
    [Google Scholar]
  178. BrouwerI.A. GeleijnseJ.M. KlaasenV.M. SmitL.A. GiltayE.J. de GoedeJ. HeijboerA.C. KromhoutD. KatanM.B. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): Results from the alpha omega trial.PLoS One2013812e8151910.1371/journal.pone.008151924349086
    [Google Scholar]
  179. TerminiD. Den HartoghD.J. JaglanianA. TsianiE. Curcumin against prostate cancer: Current evidence.Biomolecules202010111536153610.3390/biom1011153633182828
    [Google Scholar]
  180. Emami KazemabadM.J. Asgari ToniS. TizroN. DadkhahP.A. AmaniH. Akhavan RezayatS. SheikhZ. MohammadiM. AlijanzadehD. AlimohammadiF. ShahrokhiM. ErabiG. NorooziM. KarimiM.A. HonariS. DeraviN. Pharmacotherapeutic potential of pomegranate in age-related neurological disorders.Front. Aging Neurosci.20221495573510.3389/fnagi.2022.955735
    [Google Scholar]
  181. RanardK.M. JeonS. MohnE.S. GriffithsJ.C. JohnsonE.J. ErdmanJ.W.Jr Dietary guidance for lutein: Consideration for intake recommendations is scientifically supported.Eur. J. Nutr.201756S3Suppl. 3374210.1007/s00394‑017‑1580‑229149368
    [Google Scholar]
  182. AnsaryJ. Forbes-HernándezT.Y. GilE. CianciosiD. ZhangJ. Elexpuru-ZabaletaM. Simal-GandaraJ. GiampieriF. BattinoM. Potential health benefit of garlic based on human intervention studies: A brief overview.Antioxidants20209761961910.3390/antiox907061932679751
    [Google Scholar]
  183. PiccininE. CarielloM. De SantisS. DucheixS. SabbàC. NtambiJ.M. MoschettaA. Role of oleic acid in the gut-liver axis: From diet to the regulation of its synthesis via Stearoyl-CoA Desaturase 1 (SCD1).Nutrients201911102283228310.3390/nu1110228331554181
    [Google Scholar]
  184. JuturuV. BowmanJ. DeshpandeJ. Overall skin tone and skin-lightening-improving effects with oral supplementation of lutein and zeaxanthin isomers: A double-blind, placebo-controlled clinical trial.Clin. Cosmet. Investig. Dermatol.2016932533210.2147/CCID.S11551927785083
    [Google Scholar]
  185. RamM. VijayalakshmiC RamanathanM. Isoflavones as nutraceuticals in stroke: Therapeutic targets and signaling pathways.Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological DisordersAcademic Press202395995810.1016/B978‑0‑323‑90052‑2.00037‑8
    [Google Scholar]
  186. KimI.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans.Antioxidants20211071064106410.3390/antiox1007106434209224
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786355868250207115319
Loading
/content/journals/cnt/10.2174/0126659786355868250207115319
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test