Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

This article provides a thorough analysis of the complex roles played by tissue inhibitors of metalloproteinases (TIMPs) and matrix metalloproteinase-9 (MMP-9) in the development and progression of diabetic nephropathy (DN). Diabetic nephropathy, a notable complication of diabetes, is characterized by a progressive decline in kidney function, prompting a thorough examination of its fundamental molecular pathways. This article presents a comprehensive overview of the function played by MMP-9, a key enzyme in the remodeling of extracellular matrix, in developing tubulointerstitial and glomerular fibrosis, which are critical aspects of renal dysfunction in DN. Simultaneously, the review delves into the regulatory functions of TIMPs, emphasizing their crucial role in maintaining the delicate balance between matrix degradation and repair. The abnormal regulation of the MMP-9/TIMP axis is explored as a pivotal factor contributing to increased vascular permeability, inflammation, and structural alterations within the renal microenvironment. By synthesizing current research findings, the purpose of this review was to unravel the complex molecular interplay between MMP-9 and TIMPs in diabetic nephropathy. The insights derived from this comprehensive analysis hold promise for identifying potential therapeutic targets that could mitigate renal damage, arrest disease progression, and enhance clinical outcomes for individuals grappling with diabetic nephropathy. Finally, it concludes by emphasizing the necessity for additional research to validate these findings and facilitate the translation of this knowledge into targeted therapeutic interventions for improved management of diabetic nephropathy.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786333625250114080734
2025-02-03
2025-09-29
Loading full text...

Full text loading...

References

  1. AhmadJ. Management of diabetic nephropathy: Recent progress and future perspective.Diabetes Metab. Syndr.20159434335810.1016/j.dsx.2015.02.00825845297
    [Google Scholar]
  2. CooperM.E. Treating diabetic nephropathy—Still an unresolved issue.Nat. Rev. Endocrinol.20128951551610.1038/nrendo.2012.12522825399
    [Google Scholar]
  3. ShamsadA. KushwahA.S. SinghR. BanerjeeM. Pharmaco-epi-genetic and patho-physiology of gestational diabetes mellitus (GDM): An overview.Health Sci. Rep.2023710008610.1016/j.hsr.2023.100086
    [Google Scholar]
  4. AtkinsR.C. ZimmetP. Diabetic kidney disease: Act now or pay later.Kidney Blood Press. Res.2010331485110.1159/00028584920185931
    [Google Scholar]
  5. Rao, V Diabetic nephropathy: An update on pathogenesis and drug development.Diabetes Metab. Syndr.201913175476210.1016/j.dsx.2018.11.05430641802
    [Google Scholar]
  6. GheithO. OthmanN. NampooryN. HalimbM. Al-OtaibiT. Diabetic kidney disease: Difference in the prevalence and risk factors worldwide.J. Egyptian Soc. Nephrol Transpl20161636510.4103/1110‑9165.197379
    [Google Scholar]
  7. SamsuN. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment.BioMed Res. Int.202120211149744910.1155/2021/149744934307650
    [Google Scholar]
  8. LiS. XieH. ShiY. LiuH. Prevalence of diabetic nephropathy in the diabetes mellitus population: A protocol for systematic review and meta-analysis.Medicine (Baltimore)2022101423123210.1097/MD.000000000003123236281143
    [Google Scholar]
  9. VargheseR.T. JialalI. Diabetic nephropathy (nursing).StatPearls2023
    [Google Scholar]
  10. de BoerI.H. CaramoriM.L. ChanJ.C.N. HeerspinkH.J.L. HurstC. KhuntiK. LiewA. MichosE.D. NavaneethanS.D. OlowuW.A. SaduskyT. TandonN. TuttleK.R. WannerC. WilkensK.G. ZoungasS. LytvynL. CraigJ.C. TunnicliffeD.J. HowellM. TonelliM. CheungM. EarleyA. RossingP. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-based advances in monitoring and treatment.Kidney Int.202098483984810.1016/j.kint.2020.06.02432653403
    [Google Scholar]
  11. ChenY. LeeK. NiZ. HeJ.C. Diabetic kidney disease: Challenges, advances, and opportunities.Kidney Dis.20206421522510.1159/00050663432903946
    [Google Scholar]
  12. de BoerI.H. KhuntiK. SaduskyT. TuttleK.R. NeumillerJ.J. RheeC.M. RosasS.E. RossingP. BakrisG. Diabetes management in chronic kidney disease: A consensus report by the american diabetes association (ADA) and kidney disease: Improving global outcomes (KDIGO).Diabetes Care202245123075309010.2337/dci22‑002736189689
    [Google Scholar]
  13. HashmiM.F. BenjaminO. LappinS.L. End-stage renal disease.StatPearls2023
    [Google Scholar]
  14. KopelJ. Pena-HernandezC. NugentK. Evolving spectrum of diabetic nephropathy.World J. Diabetes201910526927910.4239/wjd.v10.i5.26931139314
    [Google Scholar]
  15. Donate-CorreaJ. Luis-RodríguezD. Martín-NúñezE. TaguaV.G. Hernández-CarballoC. FerriC. Rodríguez-RodríguezA.E. Mora-FernándezC. Navarro-GonzálezJ.F. Inflammatory targets in diabetic nephropathy.J. Clin. Med.20209245810.3390/jcm902045832046074
    [Google Scholar]
  16. AmeerO.Z. Hypertension in chronic kidney disease: What lies behind the scene.Front. Pharmacol.20221394926010.3389/fphar.2022.94926036304157
    [Google Scholar]
  17. DandonaL. DandonaR. KumarG.A. ShuklaD.K. PaulV.K. BalakrishnanK. PrabhakaranD. TandonN. SalviS. DashA.P. NandakumarA. PatelV. AgarwalS.K. GuptaP.C. DhaliwalR.S. MathurP. LaxmaiahA. DhillonP.K. DeyS. MathurM.R. AfshinA. FitzmauriceC. GakidouE. GethingP. HayS.I. KassebaumN.J. KyuH. LimS.S. NaghaviM. RothG.A. StanawayJ.D. WhitefordH. ChadhaV.K. KhapardeS.D. RaoR. RadeK. DewanP. FurtadoM. DuttaE. VargheseC.M. MehrotraR. JambulingamP. KaurT. SharmaM. SinghS. AroraR. RasailyR. AnjanaR.M. MohanV. AgrawalA. ChopraA. MathewA.J. BhardwajD. MuraleedharanP. MutrejaP. BienhoffK. GlennS. AbdulkaderR.S. AggarwalA.N. AggarwalR. AlbertS. AmbekarA. AroraM. BachaniD. BavdekarA. BeigG. BhansaliA. BhargavaA. BhatiaE. CamaraB. ChristopherD.J. DasS.K. DaveP.V. DeyS. GhoshalA.G. GopalakrishnanN. GuleriaR. GuptaR. GuptaS.S. GuptaT. GupteM.D. GururajG. HarikrishnanS. IyerV. JainS.K. JeemonP. JoshuaV. KantR. KarA. KatakiA.C. KatochK. KhannaT. KheraA. KinraS. KoulP.A. KrishnanA. KumarA. KumarR.K. KumarR. KurpadA. LadusinghL. LodhaR. MaheshP.A. MalhotraR. MathaiM. MavalankarD. Nations within a nation: Variations in epidemiological transition across the states of India, 1990–2016 in the global burden of disease study.Lancet2017390101112437246010.1016/S0140‑6736(17)32804‑029150201
    [Google Scholar]
  18. DuniA. LiakopoulosV. RoumeliotisS. PeschosD. DounousiE. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: Untangling Ariadne’s thread.Int. J. Mol. Sci.20192015371110.3390/ijms2015371131362427
    [Google Scholar]
  19. KhalidM. PetroianuG. AdemA. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives.Biomolecules202212454210.3390/biom1204054235454131
    [Google Scholar]
  20. WennmannD.O. HsuH.H. PavenstädtH. The renin-angiotensin-aldosterone system in podocytes.Semin. Nephrol.201232437738410.1016/j.semnephrol.2012.06.00922958492
    [Google Scholar]
  21. SinhaS.K. NicholasS.B. Pathomechanisms of diabetic kidney disease.J. Clin. Med.20231223734910.3390/jcm1223734938068400
    [Google Scholar]
  22. LinY.C. ChangY.H. YangS.Y. WuK.D. ChuT.S. Update of pathophysiology and management of diabetic kidney disease.J. Formos. Med. Assoc.2018117866267510.1016/j.jfma.2018.02.00729486908
    [Google Scholar]
  23. AryaA. AggarwalS. YadavH.N. Pathogenesis of diabetic nephropathy.Int. J. Pharm. Pharm. Sci.20212S42429
    [Google Scholar]
  24. WangN. ZhangC. Oxidative stress: A culprit in the progression of diabetic kidney disease.Antioxidants202413445510.3390/antiox1304045538671903
    [Google Scholar]
  25. Navarro-GonzálezJ.F. Mora-FernándezC. de FuentesM.M. García-PérezJ. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.Nat. Rev. Nephrol.20117632734010.1038/nrneph.2011.5121537349
    [Google Scholar]
  26. YangY. XuG. Update on pathogenesis of glomerular hyperfiltration in early diabetic kidney disease.Front. Endocrinol.20221387291810.3389/fendo.2022.87291835663316
    [Google Scholar]
  27. TonneijckL. MuskietM.H.A. SmitsM.M. van BommelE.J. HeerspinkH.J.L. van RaalteD.H. JolesJ.A. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment.J. Am. Soc. Nephrol.20172841023103910.1681/ASN.201606066628143897
    [Google Scholar]
  28. KoszegiS. MolnarA. LenartL. HodreaJ. BaloghD.B. LakatT. SzkibinszkijE. HosszuA. SpardingN. GenoveseF. WagnerL. VannayA. SzaboA.J. FeketeA. RAAS inhibitors directly reduce diabetes‐induced renal fibrosis via growth factor inhibition.J. Physiol.2019597119320910.1113/JP27700230324679
    [Google Scholar]
  29. RaufA. KhalilA.A. AwadallahS. KhanS.A. Abu-IzneidT. KamranM. HemegH.A. MubarakM.S. KhalidA. WilairatanaP. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review.Food Sci. Nutr.202412267569310.1002/fsn3.378438370049
    [Google Scholar]
  30. BhattacharjeeN. BarmaS. KonwarN. DewanjeeS. MannaP. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update.Eur. J. Pharmacol.201679182410.1016/j.ejphar.2016.08.02227568833
    [Google Scholar]
  31. ZojaC. XinarisC. MacconiD. Diabetic nephropathy: Novel molecular mechanisms and therapeutic targets.Front. Pharmacol.202011December58689210.3389/fphar.2020.58689233519447
    [Google Scholar]
  32. KhursheedR. SinghS.K. WadhwaS. KapoorB. GulatiM. KumarR. RamanunnyA.K. AwasthiA. DuaK. Treatment strategies against diabetes: Success so far and challenges ahead.Eur. J. Pharmacol.201986217262510.1016/j.ejphar.2019.17262531449807
    [Google Scholar]
  33. LiY. XuG. Clinical efficacy and safety of Jinshuibao combined with ACEI/ARB in the treatment of diabetic kidney disease: A meta-analysis of randomized controlled trials.J. Ren. Nutr.20203029210010.1053/j.jrn.2019.03.08331201013
    [Google Scholar]
  34. ThrailkillK.M. Clay BunnR. FowlkesJ.L. Matrix metalloproteinases: Their potential role in the pathogenesis of diabetic nephropathy.Endocrine200935111010.1007/s12020‑008‑9114‑618972226
    [Google Scholar]
  35. MixonA. SavageA. Bahar-MoniA.S. AdouniM. FaisalT. An in vitro investigation to understand the synergistic role of MMPs-1 and 9 on articular cartilage biomechanical properties.Sci. Rep.20211111440910.1038/s41598‑021‑93744‑134257325
    [Google Scholar]
  36. BarbolinaM. StackM. Membrane type 1-matrix metalloproteinase: Substrate diversity in pericellular proteolysis.Semin. Cell Dev. Biol.2008191243310.1016/j.semcdb.2007.06.00817702616
    [Google Scholar]
  37. AugoffK. Hryniewicz-JankowskaA. TabolaR. StachK. MMP9: A tough target for targeted therapy for cancer.Cancers (Basel)2022147184710.3390/cancers1407184735406619
    [Google Scholar]
  38. LuchianI. GoriucA. SanduD. CovasaM. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes.Int. J. Mol. Sci.2022233180610.3390/ijms2303180635163727
    [Google Scholar]
  39. LeeH. IbrahimiL. AzarD.T. HanK.Y. The role of membrane-type 1 matrix metalloproteinase–substrate interactions in pathogenesis.Int. J. Mol. Sci.2023243218310.3390/ijms2403218336768503
    [Google Scholar]
  40. BrewK. NagaseH. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity.Biochim. Biophys. Acta Mol. Cell Res.201018031557110.1016/j.bbamcr.2010.01.00320080133
    [Google Scholar]
  41. Freitas-RodríguezS. FolguerasA.R. López-OtínC. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond.Biochim. Biophys. Acta Mol. Cell Res.20171864112015202510.1016/j.bbamcr.2017.05.00728499917
    [Google Scholar]
  42. BasuR. LeeJ. MortonJ.S. TakawaleA. FanD. KandalamV. WangX. DavidgeS.T. KassiriZ. TIMP3 is the primary TIMP to regulate agonist-induced vascular remodelling and hypertension.Cardiovasc. Res.201398336037110.1093/cvr/cvt06723524300
    [Google Scholar]
  43. Garcia-FernandezN. Jacobs-CacháC. Mora-GutiérrezJ.M. VergaraA. OrbeJ. SolerM.J. Matrix metalloproteinases in diabetic kidney disease.J. Clin. Med.20209247210.3390/jcm902047232046355
    [Google Scholar]
  44. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. Ramirez-AcuñaJ.M. Perez-RomeroB.A. Guerrero-RodriguezJ.F. Martinez-AvilaN. Martinez-FierroM.L. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.20202124973910.3390/ijms2124973933419373
    [Google Scholar]
  45. HeymanS.N. RazI. DwyerJ.P. Weinberg SibonyR. LewisJ.B. AbassiZ. Diabetic proteinuria revisited: Updated physiologic perspectives.Cells20221118291710.3390/cells1118291736139492
    [Google Scholar]
  46. WangY. JiaoL. QiangC. ChenC. ShenZ. DingF. LvL. ZhuT. LuY. CuiX. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms.Biomed. Pharmacother.202417111611610.1016/j.biopha.2023.11611638181715
    [Google Scholar]
  47. GuC. StashkoM.A. Puhl-RubioA.C. ChakrabortyM. ChakrabortyA. FryeS.V. PearceK.H. WangX. ShearsS.B. WangH. Inhibition of inositol polyphosphate kinases by quercetin and related flavonoids: A structure–activity analysis.J. Med. Chem.20196231443145410.1021/acs.jmedchem.8b0159330624931
    [Google Scholar]
  48. CurrieG. McKayG. DellesC. Biomarkers in diabetic nephropathy: Present and future.World J. Diabetes20145676377610.4239/wjd.v5.i6.76325512779
    [Google Scholar]
  49. Papadopoulou-MarketouN. Kanaka-GantenbeinC. MarketosN. ChrousosG.P. PapassotiriouI. Biomarkers of diabetic nephropathy: A 2017 update.Crit. Rev. Clin. Lab. Sci.201754532634210.1080/10408363.2017.137768228956668
    [Google Scholar]
  50. ZhangJ. LiuJ. QinX. Advances in early biomarkers of diabetic nephropathy.Rev. Assoc. Med. Bras.2018641859210.1590/1806‑9282.64.01.8529561946
    [Google Scholar]
  51. JimB. SantosJ. SpathF. HeC. J. Biomarkers of diabetic nephropathy, the present and the future.Curr. Diabetes Rev.20128531732810.2174/15733991280208347822698077
    [Google Scholar]
  52. GluhovschiC. GluhovschiG. PetricaL. TimarR. VelciovS. IonitaI. KaycsaA. TimarB. Urinary biomarkers in the assessment of early diabetic nephropathy.J. Diabetes Res.2016201611310.1155/2016/462612527413755
    [Google Scholar]
  53. KhanN.U. LinJ. LiuX. LiH. LuW. ZhongZ. ZhangH. WaqasM. ShenL. Insights into predicting diabetic nephropathy using urinary biomarkers.Biochim. Biophys. Acta. Proteins Proteomics202018681014047510.1016/j.bbapap.2020.14047532574766
    [Google Scholar]
  54. SinhaN. KumarV. PuriV. NadaR. RastogiA. JhaV. PuriS. Urinary exosomes: Potential biomarkers for diabetic nephropathy.Nephrology (Carlton)2020251288188710.1111/nep.1372032323449
    [Google Scholar]
  55. GoychevaP. Petkova-ParlapanskaK. GeorgievaE. KaramalakovaY. NikolovaG. Biomarkers of oxidative stress in diabetes mellitus with diabetic nephropathy complications.Int. J. Mol. Sci.202324171354110.3390/ijms24171354137686346
    [Google Scholar]
  56. ThipsawatS. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature.Diab. Vasc. Dis. Res.20211861479164121105885610.1177/1479164121105885634791910
    [Google Scholar]
  57. KhonshaF. ValiloM. NejabatiH.R. Rahmati-YamchiM. MotaA. Biomarkers for diabetic nephropathy with a focus on kidney injury molecule-1 (KIM-1).Curr. Diabetes Rev.202420128032321507110.2174/157339981966623032815110836994981
    [Google Scholar]
  58. SalemN.A.B. El HelalyR.M. AliI.M. EbrahimH.A.A. AlayootiM.M. El DomiatyH.A. AboeleninH.M. Urinary Cyclophilin A and serum Cystatin C as biomarkers for diabetic nephropathy in children with type 1 diabetes.Pediatr. Diabetes202021584685510.1111/pedi.1301932304131
    [Google Scholar]
  59. VerhaveJ.C. BouchardJ. GoupilR. PichetteV. BrachemiS. MadoreF. TroyanovS. Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: A prospective study.Diabetes Res. Clin. Pract.2013101333334010.1016/j.diabres.2013.07.00623880038
    [Google Scholar]
  60. HuQ. QuC. XiaoX. ZhangW. JiangY. WuZ. SongD. PengX. MaX. ZhaoY. Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities.Chin. Med.20211617410.1186/s13020‑021‑00485‑434364389
    [Google Scholar]
  61. ChenJ. MangelinckxS. AdamsA. WangZ. LiW. KimpeD.N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications.Nat. Prod Commun20151011934578X150100014010.1177/1934578X150100014025920244
    [Google Scholar]
  62. GuptaA. JamalA. JamilD.A. Al-AubaidyH.A. A systematic review exploring the mechanisms by which citrus bioflavonoid supplementation benefits blood glucose levels and metabolic complications in type 2 diabetes mellitus.Diabetes Metab. Syndr.2023171110288410.1016/j.dsx.2023.10288437939436
    [Google Scholar]
  63. VinayagamR. XuB. Antidiabetic properties of dietary flavonoids: A cellular mechanism review.Nutr. Metab. (Lond.)20151216010.1186/s12986‑015‑0057‑726705405
    [Google Scholar]
  64. SatirapojB. Tubulointerstitial biomarkers for diabetic nephropathy.J. Diabetes Res.201820181610.1155/2018/285239829577044
    [Google Scholar]
  65. AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom909043031480505
    [Google Scholar]
  66. AnjaneyuluM. ChopraK. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats.Clin. Exp. Pharmacol. Physiol.200431424424810.1111/j.1440‑1681.2004.03982.x15053821
    [Google Scholar]
  67. XuD. HuM.J. WangY.Q. CuiY.L. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules2019246112310.3390/molecules2406112330901869
    [Google Scholar]
  68. IskenderH. DokumaciogluE. SenT.M. InceI. KanbayY. SaralS. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model.Biomed. Pharmacother.20179050050810.1016/j.biopha.2017.03.10228395272
    [Google Scholar]
  69. TangL. LiK. ZhangY. LiH. LiA. XuY. WeiB. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats.Sci. Rep.2020101244010.1038/s41598‑020‑59411‑732051470
    [Google Scholar]
  70. LaiP. ZhangL. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats.Taylor Fr2012341838710.3109/0886022X.2011.62356422011322
    [Google Scholar]
  71. AshrafizadehM. TavakolS. AhmadiZ. RoomianiS. MohammadinejadR. SamarghandianS. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress.Phytother. Res.202034591192310.1002/ptr.657731829475
    [Google Scholar]
  72. SharmaD. GondaliyaP. TiwariV. KaliaK. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling.Biomed. Pharmacother.20191091610161910.1016/j.biopha.2018.10.19530551415
    [Google Scholar]
  73. JanR. KhanM. AsafS. Lubna; Asif, S.; Kim, K.M. Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health.Plants20221119262310.3390/plants1119262336235488
    [Google Scholar]
  74. LuoW. ChenX. YeL. ChenX. JiaW. ZhaoY. SamorodovA.V. ZhangY. HuX. ZhuangF. QianJ. ZhengC. LiangG. WangY. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy.J. Ethnopharmacol.202126811355310.1016/j.jep.2020.11355333152432
    [Google Scholar]
  75. MuhammadT. IkramM. UllahR. RehmanS. KimM. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling.Nutrients201911364810.3390/nu1103064830884890
    [Google Scholar]
  76. LiC. SchluesenerH. Health-promoting effects of the citrus flavanone hesperidin.Crit. Rev. Food Sci. Nutr.201757361363110.1080/10408398.2014.90638225675136
    [Google Scholar]
  77. Mas-CapdevilaA. TeichenneJ. Domenech-CocaC. CaimariA. Del BasJ.M. EscotéX. CrescentiA. Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability.Nutrients2020125148810.3390/nu1205148832443766
    [Google Scholar]
  78. ChenY.J. KongL. TangZ.Z. ZhangY.M. LiuY. WangT.Y. LiuY.W. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway.Biomed. Pharmacother.20191111166117510.1016/j.biopha.2019.01.03030841430
    [Google Scholar]
  79. DokumaciogluE. IskenderH. MusmulA. Effect of hesperidin treatment on α-Klotho/FGF-23 pathway in rats with experimentally-induced diabetes.Biomed. Pharmacother.20191091206121010.1016/j.biopha.2018.10.19230551370
    [Google Scholar]
  80. ZhangY. WangB. GuoF. LiZ. QinG. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy.Biomed. Pharmacother.201810576677210.1016/j.biopha.2018.06.03629909344
    [Google Scholar]
  81. KamalakkannanN. PrinceP.S.M. The influence of rutin on the extracellular matrix in streptozotocin-induced diabetic rat kidney.J. Pharm. Pharmacol.20065881091109810.1211/jpp.58.8.001016872556
    [Google Scholar]
  82. WangX. ZhaoX. FengT. JinG. LiZ. Rutin prevents high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the ROS/Rhoa/ROCK signaling pathway.Planta Med.201682141252125710.1055/s‑0042‑11085927552253
    [Google Scholar]
  83. HanC.S. LiuK. ZhangN. LiS.W. GaoH.C. Rutin suppresses high glucose-induced ACTA2 and p38 protein expression in diabetic nephropathy.Exp. Ther. Med.201714118118610.3892/etm.2017.450928672912
    [Google Scholar]
  84. StewartA.J. BozonnetS. MullenW. JenkinsG.I. LeanM.E.J. CrozierA. Occurrence of flavonols in tomatoes and tomato-based products.J. Agric. Food Chem.20004872663266910.1021/jf000070p10898604
    [Google Scholar]
  85. GanaiA.A. FarooqiH. Bioactivity of genistein: A review of in vitro and in vivo studies.Biomed. Pharmacother.201576303810.1016/j.biopha.2015.10.02626653547
    [Google Scholar]
  86. StankovićA.K.J.S. MihailovićN. MihailovićV. Genistein: Advances on resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology.Handbook of Dietary Flavonoids.ChamSpringer202314010.1007/978‑3‑030‑94753‑8_45‑1
    [Google Scholar]
  87. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE.B. NovellinoE. AntolakH. AzziniE. SetzerW.N. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms2006130530875872
    [Google Scholar]
  88. MalikS. SuchalK. KhanS.I. BhatiaJ. KishoreK. DindaA.K. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-ĸB-TNF-α and TGF-β1-MAPK-fibronectin pathways.Ren. Physiol.20173132F414F42210.1152/ajprenal.00393.201628566504
    [Google Scholar]
  89. LeeY.Y. LeeE.J. ParkJ.S. JangS.E. KimD.H. KimH.S. Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia.J. Neuroimmune Pharmacol.201611229430510.1007/s11481‑016‑9657‑x26899309
    [Google Scholar]
  90. KangM.K. KimS.I. OhS.Y. NaW. KangY.H. Tangeretin ameliorates glucose-induced podocyte injury through blocking epithelial to mesenchymal transition caused by oxidative stress and hypoxia.Int. J. Mol. Sci.20202122857710.3390/ijms2122857733202982
    [Google Scholar]
  91. OhY. Bioactive compounds and their neuroprotective effects in diabetic complications.Nutrients20168847210.3390/nu808047227483315
    [Google Scholar]
  92. LvJ. ZhouD. WangY. SunW. ZhangC. XuJ. YangH. ZhouT. LiP. Effects of luteolin on treatment of psoriasis by repressing HSP90.Int. Immunopharmacol.20207910607010.1016/j.intimp.2019.10607031918062
    [Google Scholar]
  93. XiongC. WuQ. FangM. LiH. ChenB. ChiT. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats.J. Int. Med. Res.2020484030006052090364210.1177/030006052090364232242458
    [Google Scholar]
  94. ChenF. WeiG. XuJ. MaX. WangQ. Naringin ameliorates the high glucose-induced rat mesangial cell inflammatory reaction by modulating the NLRP3 Inflammasome.BMC Complement. Altern. Med.201818119210.1186/s12906‑018‑2257‑y29929501
    [Google Scholar]
  95. NyaneN.A. TlailaT.B. MalefaneT.G. NdwandweD.E. OwiraP.M.O. MalefaneT.G. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights.Eur. J. Pharmacol.201780310311110.1016/j.ejphar.2017.03.04228322845
    [Google Scholar]
  96. Al-NumairK.S. ChandramohanG. VeeramaniC. AlsaifM.A. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats.Redox Rep.201520519820910.1179/1351000214Y.000000011725494817
    [Google Scholar]
  97. ZangY. ZhangL. IgarashiK. YuC. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice.Food Funct.20156383484110.1039/C4FO00844H25599885
    [Google Scholar]
  98. SemwalD. SemwalR. CombrinckS. ViljoenA. Myricetin: A dietary molecule with diverse biological activities.Nutrients2016829010.3390/nu802009026891321
    [Google Scholar]
  99. SongX. TanL. WangM. RenC. GuoC. YangB. RenY. CaoZ. LiY. PeiJ. Myricetin: A review of the most recent research.Biomed. Pharmacother.202113411101710.1016/j.biopha.2020.11101733338751
    [Google Scholar]
  100. KuzuM. YıldırımS. KandemirF.M. KüçüklerS. ÇağlayanC. TürkE. DörtbudakM.B. Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats.Chem. Biol. Interact.20193088910010.1016/j.cbi.2019.05.01731100273
    [Google Scholar]
  101. KeY. LiuC. HaoJ. LuL. LuN. WuZ. ZhuS. ChenX. Morin inhibits cell proliferation and fibronectin accumulation in rat glomerular mesangial cells cultured under high glucose condition.Biomed. Pharmacother.20168462262710.1016/j.biopha.2016.09.08827694007
    [Google Scholar]
  102. KangW. XuQ. DongH. WangW. HuangG. ZhangJ. Eriodictyol attenuates osteoarthritis progression through inhibiting inflammation via the PI3K/AKT/NF-κB signaling pathway.Sci. Rep.20241411885310.1038/s41598‑024‑69028‑939143134
    [Google Scholar]
  103. LiW. DuQ. LiX. ZhengX. LvF. XiX. HuangG. YangJ. LiuS. Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/Akt/NF-κB signaling pathway.Front. Pharmacol.20201111410.3389/fphar.2020.0011432158391
    [Google Scholar]
  104. MohanyM. AhmedM.M. Al-RejaieS.S. Molecular mechanistic pathways targeted by natural antioxidants in the prevention and treatment of chronic kidney disease.Antioxidants20211111510.3390/antiox1101001535052518
    [Google Scholar]
  105. YanN. WenL. PengR. LiH. LiuH. PengH. SunY. WuT. ChenL. DuanQ. SunY. ZhouQ. WeiL. ZhangZ. Naringenin ameliorated kidney injury through let-7a/TGFBR1 signaling in diabetic nephropathy.J. Diabetes Res.2016201611310.1155/2016/873876027446963
    [Google Scholar]
  106. WuS. PangY. HeY. ZhangX. PengL. GuoJ. ZengJ. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds.Biomed. Pharmacother.202114011174110.1016/j.biopha.2021.11174134087696
    [Google Scholar]
  107. SahuR. RawalR.K. Modulation of the c-JNK/p38-MAPK signaling pathway: Investigating the therapeutic potential of natural products in hypertension.Phytomed Plus20244210056410.1016/j.phyplu.2024.100564
    [Google Scholar]
  108. SaravananG. PonmuruganP. Ameliorative potential of S-allyl cysteine on oxidative stress in STZ induced diabetic rats.Chem. Biol. Interact.20111891-210010610.1016/j.cbi.2010.10.00120951120
    [Google Scholar]
  109. AlqudahA. QnaisE.Y. WedyanM.A. AltaberS. BseisoY. OqalM. AbuDaloR. AlrosanK. AlrosanA.Z. Bani MelhimS. AlqudahM. AthamnehR.Y. GammouhO. Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/streptozotocin diabetic mice model.Molecules202328250210.3390/molecules2802050236677559
    [Google Scholar]
  110. JadhavR. Hypoglycemic and antidiabetic activity of flavonoids: boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats.Int. J. Pharm. Pharm. Sci.201242251256
    [Google Scholar]
  111. AhmadM.F. NaseemN. RahmanI. ImamN. YounusH. PandeyS.K. SiddiquiW.A. Naringin attenuates the diabetic neuropathy in STZ-induced type 2 diabetic wistar rats.Life20221212211110.3390/life1212211136556476
    [Google Scholar]
  112. ZangY. IgarashiK. LiY. Anti-diabetic effects of luteolin and luteolin-7- O -glucoside on KK- A y mice.Biosci. Biotechnol. Biochem.20168081580158610.1080/09168451.2015.111692827170065
    [Google Scholar]
  113. SzkudelskiT. SzkudelskaK. The anti-diabetic potential of baicalin: Evidence from rodent studies.Int. J. Mol. Sci.202325143110.3390/ijms2501043138203600
    [Google Scholar]
  114. NaseriR. FarzaeiF. HaratipourP. NabaviS.F. HabtemariamS. FarzaeiM.H. KhodarahmiR. TewariD. MomtazS. Anthocyanins in the management of metabolic syndrome: A pharmacological and biopharmaceutical review.Front. Pharmacol.20189131010.3389/fphar.2018.0131030564116
    [Google Scholar]
  115. KozłowskaA. Nitsch-OsuchA. Anthocyanins and type 2 diabetes: An update of human study and clinical trial.Nutrients20241611167410.3390/nu1611167438892607
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786333625250114080734
Loading
/content/journals/cnt/10.2174/0126659786333625250114080734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test