Skip to content
2000
image of Dibutyryl Cyclic AMP Attenuates Cerebral Ischemia-reperfusion Injury by Inhibiting Cuproptosis: A Preliminary Study

Abstract

Introduction

Cerebral ischemia-reperfusion injury (CIRI) poses a significant challenge in the treatment of ischemic stroke. Dibutyryl cyclic AMP (dBcAMP), a cell-permeable cAMP analog, has previously been shown to exert therapeutic effects in CIRI, indicating its neuroprotective potential. However, its underlying mechanisms remain incompletely understood.

Methods

We employed an integrated approach. First, an unbiased RNA-sequencing analysis of hippocampal tissues from a murine model of CIRI (induced by unilateral common carotid artery occlusion, UCCAO) was conducted to generate hypotheses. Subsequently, the hypothesis was functionally assessed using HT22 hippocampal neuronal cells subjected to oxygen-glucose deprivation/reperfusion (OGD/R). Key features of cuproptosis, including intracellular copper accumulation, mitochondrial membrane potential, and cell viability, were assessed.

Results

Transcriptomics revealed significant suppression of the cuproptosis pathway by dBcAMP. Functional experiments confirmed that dBcAMP treatment significantly reduced OGD/R-induced intracellular copper accumulation ( < 0.05), restored mitochondrial membrane potential ( < 0.05), and improved neuronal survival ( < 0.05).

Discussion

These integrated findings suggest that dBcAMP may attenuate CIRI, at least in part, by inhibiting cuproptosis-a newly defined copper-dependent cell death pathway. This preliminary evidence positions dBcAMP as a potential modulator of cuproptosis, revealing a therapeutic dimension beyond classical programmed cell death.

Conclusion

This study provides initial evidence that dBcAMP-mediated neuroprotection involves the reduction of intracellular copper overload and preservation of mitochondrial integrity, pointing to cuproptosis inhibition as a promising mechanism for future therapeutic exploration.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026458138251211073956
2026-01-19
2026-01-25
Loading full text...

Full text loading...

References

  1. Feigin V.L. Stark B.A. Johnson C.O. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021 20 10 795 820 10.1016/S1474‑4422(21)00252‑0 34487721
    [Google Scholar]
  2. Tang L. Yin Y. Liu H. Blood–brain barrier‐penetrating and lesion‐targeting nanoplatforms inspired by the pathophysiological features for synergistic ischemic stroke therapy. Adv. Mater. 2024 36 21 2312897 10.1002/adma.202312897 38346008
    [Google Scholar]
  3. Hilkens N.A. Casolla B. Leung T.W. de Leeuw F.E. Stroke. Lancet 2024 403 10446 2820 2836 10.1016/S0140‑6736(24)00642‑1 38759664
    [Google Scholar]
  4. Health quality ontario mechanical thrombectomy in patients with acute ischemic stroke: A health technology assessment. Ont. Health Technol. Assess. Ser. 2016 16 4 1 79 27026799
    [Google Scholar]
  5. Kaesmacher J. Cavalcante F. Kappelhof M. Time to treatment with intravenous thrombolysis before thrombectomy and functional outcomes in acute ischemic stroke. JAMA 2024 331 9 764 777 10.1001/jama.2024.0589 38324409
    [Google Scholar]
  6. Li S. Gu H.Q. Feng B. Safety and efficacy of intravenous recombinant human prourokinase for acute ischaemic stroke within 4·5 h after stroke onset (PROST-2): A phase 3, open-label, non-inferiority, randomised controlled trial. Lancet Neurol. 2025 24 1 33 41 10.1016/S1474‑4422(24)00436‑8 39617030
    [Google Scholar]
  7. Li Y. Chu L. Liu C. Zha Z. Shu Y. Protective effect of GSK-3β/Nrf2 mediated by dimethyl fumarate in middle cerebral artery embolization reperfusion rat model. Curr. Neurovasc. Res. 2021 18 4 456 464 10.2174/1567202618666211109105024 34751118
    [Google Scholar]
  8. Yao Y. Bade R. Li G. Global-scale profiling of differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia–reperfusion injury rats. Cell. Mol. Neurobiol. 2023 43 5 1989 2004 10.1007/s10571‑022‑01277‑6 36030297
    [Google Scholar]
  9. Yuan Y.J. Chen T. Yang Y.L. Han H.N. Xu L.M. E2F1/CDK5/DRP1 axis mediates microglial mitochondrial division and autophagy in the pathogenesis of cerebral ischemia‐reperfusion injury. Clin. Transl. Med. 2025 15 2 70197 10.1002/ctm2.70197 39968698
    [Google Scholar]
  10. Wu X. Lin L. Qin J.J. CARD3 promotes cerebral ischemia‐reperfusion injury via activation of TAK1. J. Am. Heart Assoc. 2020 9 9 014920 10.1161/JAHA.119.014920 32349637
    [Google Scholar]
  11. Gong L. Tang Y. An R. Lin M. Chen L. Du J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis. 2017 8 10 3080 10.1038/cddis.2017.465 28981095
    [Google Scholar]
  12. Lan X. Wang Q. Liu Y. Isoliquiritigenin alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the Nrf2 pathway. Redox Biol. 2024 77 103406 10.1016/j.redox.2024.103406 39454290
    [Google Scholar]
  13. Zhou Y. She R. Mei Z. Liu D. Ge J. Crosstalk between ferroptosis and necroptosis in cerebral ischemia/reperfusion injury and Naotaifang formula exerts neuroprotective effect via HSP90-GCN2-ATF4 pathway. Phytomedicine 2024 130 155399 10.1016/j.phymed.2024.155399 38850632
    [Google Scholar]
  14. Xu D. Kong T. Shao Z. Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 11 166230 10.1016/j.bbadis.2021.166230 34358627
    [Google Scholar]
  15. Zeng X. Zhang Y.D. Ma R.Y. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil. Med. Res. 2022 9 1 25 10.1186/s40779‑022‑00383‑2 35624495
    [Google Scholar]
  16. Liao J. Wei M. Wang J. Naotaifang formula attenuates OGD/R-induced inflammation and ferroptosis by regulating microglial M1/M2 polarization through BMP6/SMADs signaling pathway. Biomed. Pharmacother. 2023 167 115465 10.1016/j.biopha.2023.115465 37713988
    [Google Scholar]
  17. Kahlson M.A. Dixon S.J. Copper-induced cell death. Science 2022 375 6586 1231 1232 10.1126/science.abo3959 35298241
    [Google Scholar]
  18. Sun L. Zhang Y. Yang B. Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat. Commun. 2023 14 1 6523 10.1038/s41467‑023‑42025‑8 37863889
    [Google Scholar]
  19. Lu J. Ling X. Sun Y. FDX1 enhances endometriosis cell cuproptosis via G6PD-mediated redox homeostasis. Apoptosis 2023 28 7-8 1128 1140 10.1007/s10495‑023‑01845‑1 37119432
    [Google Scholar]
  20. Wang X. Ling W. Zhu Y. Spermidine alleviates copper‐induced oxidative stress, inflammation and cuproptosis in the liver. FASEB J. 2025 39 6 70453 10.1096/fj.202403002R 40079199
    [Google Scholar]
  21. Li Z. Zhou H. Zhai X. MELK promotes HCC carcinogenesis through modulating cuproptosis-related gene DLAT-mediated mitochondrial function. Cell Death Dis. 2023 14 11 733 10.1038/s41419‑023‑06264‑3 37949877
    [Google Scholar]
  22. Wen H. Qu C. Wang Z. Cuproptosis enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT/mTOR pathway in prostate cancer. FASEB J. 2023 37 9 23145 10.1096/fj.202300980R 37584654
    [Google Scholar]
  23. Chen X. Li K. Xiao Y. SP1/CTR1 ‐mediated oxidative stress‐induced cuproptosis in intervertebral disc degeneration. Biofactors 2024 50 5 1009 1023 10.1002/biof.2052 38599595
    [Google Scholar]
  24. Wang S. Zhang H. Chen T. Injectable hyaluronate-L- cysteine gel potentiates photothermal therapy in osteosarcoma via vorinostat-copper cell death. Mater. Today Bio 2024 29 101368 10.1016/j.mtbio.2024.101368 39659842
    [Google Scholar]
  25. Huang R. Xu R. Zhang R. Identification of potential crucial cuproptosis-related genes in myocardial ischemia-reperfusion injury through the bioinformatic analysis. Clinics 2024 79 100410 10.1016/j.clinsp.2024.100410 38901133
    [Google Scholar]
  26. Cai X. Deng J. Zhou X. Comprehensive analysis of cuproptosis-related genes involved in immune infiltration and their use in the diagnosis of hepatic ischemia-reperfusion injury: An experimental study. Int. J. Surg. 2025 111 1 242 256 10.1097/JS9.0000000000001893 38935114
    [Google Scholar]
  27. Xiao F. Huang G. Yuan G. Identification and validation of potential diagnostic signature and immune cell infiltration for HIRI based on cuproptosis-related genes through bioinformatics analysis and machine learning. Front. Immunol. 2024 15 1372441 10.3389/fimmu.2024.1372441 38690269
    [Google Scholar]
  28. Yang S. Li X. Yan J. Disulfiram downregulates ferredoxin 1 to maintain copper homeostasis and inhibit inflammation in cerebral ischemia/reperfusion injury. Sci. Rep. 2024 14 1 15175 10.1038/s41598‑024‑64981‑x 38956251
    [Google Scholar]
  29. Guo Q. Ma M. Yu H. Han Y. Zhang D. Dexmedetomidine enables copper homeostasis in cerebral ischemia/reperfusion via ferredoxin 1. Ann. Med. 2023 55 1 2209735 10.1080/07853890.2023.2209735 37162502
    [Google Scholar]
  30. Lou Q. Yu L. Liu S. Shao C. Wan H. He Y. Calycosin-7-O-β-D-glucoside modulates copper homeostasis through SLC31A1 to mitigate cuproptosis in cerebral ischemia/reperfusion injury. Chem. Biol. Interact. 2025 420 111702 10.1016/j.cbi.2025.111702 40812562
    [Google Scholar]
  31. Li C. Niu L. Zhou J. Huang Y. Chen Y. db-Cyclic adenosine monophosphate promotes axon regeneration and motor function recovery in cerebral ischemia-reperfusion rats. Neurol. India 2010 58 2 195 200 10.4103/0028‑3886.63786 20508335
    [Google Scholar]
  32. Jiao S. Liu Z. Ren W.H. cAMP/protein kinase A signalling pathway protects against neuronal apoptosis and is associated with modulation of Kv2.1 in cerebellar granule cells. J. Neurochem. 2007 100 4 979 991 10.1111/j.1471‑4159.2006.04261.x 17156132
    [Google Scholar]
  33. Hilário-Souza E. Valverde R.H.F. Britto-Borges T. Vieyra A. Lowe J. Golgi membranes from liver express an ATPase with femtomolar copper affinity, inhibited by cAMP-dependent protein kinase. Int. J. Biochem. Cell Biol. 2011 43 3 358 362 10.1016/j.biocel.2010.11.004 21084060
    [Google Scholar]
  34. Huuskonen M.T. Tuo Q. Loppi S. The copper bis(thiosemicarbazone) complex CuII(atsm) is protective against cerebral ischemia through modulation of the inflammatory milieu. Neurotherapeutics 2017 14 2 519 532 10.1007/s13311‑016‑0504‑9 28050710
    [Google Scholar]
  35. Silva B. Sousa L. Miranda A. Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke. Arq. Neuropsiquiatr. 2015 73 8 655 659 10.1590/0004‑282X20150083 26222355
    [Google Scholar]
  36. Watanabe N. Noda Y. Nemoto T. Iimura K. Shimizu T. Hotta H. Cerebral artery dilation during transient ischemia is impaired by amyloid β deposition around the cerebral artery in Alzheimer’s disease model mice. J. Physiol. Sci. 2020 70 1 57 10.1186/s12576‑020‑00785‑8 33302862
    [Google Scholar]
  37. Ma X. Liu K. Li F. Jiang X. Jiang L. Li H. Human mesenchymal stem cells increases expression of α-tubulin and angiopoietin 1 and 2 in focal cerebral ischemia and reperfusion. Curr. Neurovasc. Res. 2013 10 2 103 111 10.2174/1567202611310020003 23469950
    [Google Scholar]
  38. Zabłocka B. Dużniewska J. Zaja̧c H. Domańska-Janik K. Opposite reaction of ERK and JNK in ischemia vulnerable and resistant regions of hippocampus: Involvement of mitochondria. Brain Res. Mol. Brain Res. 2003 110 2 245 252 10.1016/S0169‑328X(02)00653‑8 12591160
    [Google Scholar]
  39. Kwak D. Park J.H. Kim Y.H. Yoo H.I. Decoding hippocampal subfield and glial responses in ischemia using single-cell transcriptomics. J. Transl. Med. 2025 23 1 671 10.1186/s12967‑025‑06738‑2 40528218
    [Google Scholar]
  40. Montoya-García R. Fernández-Vargas V. Albor-Martínez K.N. Analysis of hippocampus in rats with acute brain ischemia-reperfusion injury treated with leuprolide acetate, an agonist of GnRH. Restor. Neurol. Neurosci. 2023 41 3-4 83 89 10.3233/RNN‑221286 37355916
    [Google Scholar]
  41. Spratt N.J. Fernandez J. Chen M. Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J. Neurosci. Methods 2006 155 2 285 290 10.1016/j.jneumeth.2006.01.020 16513179
    [Google Scholar]
  42. Bouley J. Fisher M. Henninger N. Comparison between coated vs. uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging. Neurosci. Lett. 2007 412 3 185 190 10.1016/j.neulet.2006.11.003 17123725
    [Google Scholar]
  43. Kagitani F. Uchida S. Hotta H. Sato A. Effects of nicotine on blood flow and delayed neuronal death following intermittent transient ischemia in rat hippocampus. Jpn. J. Physiol. 2000 50 6 585 595 10.2170/jjphysiol.50.585 11173554
    [Google Scholar]
  44. Sun YY Kuan CY A thrombotic stroke model based on transient cerebral hypoxia-ischemia. J Vis Exp 2000 e52978 102 52978 10.3791/52978 26325524
    [Google Scholar]
  45. Sun Y.Y. Morozov Y.M. Yang D. Synergy of combined tPA-edaravone therapy in experimental thrombotic stroke. PLoS One 2014 9 6 98807 10.1371/journal.pone.0098807 24911517
    [Google Scholar]
  46. Hart S.N. Therneau T.M. Zhang Y. Poland G.A. Kocher J.P. Calculating sample size estimates for RNA sequencing data. J. Comput. Biol. 2013 20 12 970 978 10.1089/cmb.2012.0283 23961961
    [Google Scholar]
  47. Liu Y. Zhou J. White K.P. RNA-seq differential expression studies: More sequence or more replication? Bioinformatics 2014 30 3 301 304 10.1093/bioinformatics/btt688 24319002
    [Google Scholar]
  48. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 15 12 550 10.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  49. Salehi F. Hosseini-Zare M.S. Aghajani H. Seyedi S.Y. Hosseini-Zare M.S. Sharifzadeh M. Effect of bucladesine, pentoxifylline, and H‐89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain. Fundam. Clin. Pharmacol. 2017 31 4 411 419 10.1111/fcp.12282 28267871
    [Google Scholar]
  50. Hosseini-Zare M.S. Salehi F. Seyedi S.Y. Effects of pentoxifylline and H-89 on epileptogenic activity of bucladesine in pentylenetetrazol-treated mice. Eur. J. Pharmacol. 2011 670 2-3 464 470 10.1016/j.ejphar.2011.09.026 21946102
    [Google Scholar]
  51. Abd-El-Basset E.M. Rao M.S. Dibutyryl cyclic adenosine monophosphate rescues the neurons from degeneration in stab wound and excitotoxic injury models. Front. Neurosci. 2018 12 546 10.3389/fnins.2018.00546 30135639
    [Google Scholar]
  52. Ye K. Han X. Tian M. Analysis of human brain RNA-seq data reveals combined effects of 4 types of RNA modifications and 18 types of programmed cell death on Alzheimer’s disease. J. Transl. Med. 2025 23 1 396 10.1186/s12967‑025‑06324‑6 40181382
    [Google Scholar]
  53. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  54. Ritchie M.E. Phipson B. Wu D. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  55. Szklarczyk D. Gable A.L. Nastou K.C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  56. Pfeiffer A. Jaeckel M. Lewerenz J. Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress. Br. J. Pharmacol. 2014 171 8 2147 2158 10.1111/bph.12549 24319993
    [Google Scholar]
  57. Erber L. Liu S. Gong Y. Tran P. Chen Y. Quantitative proteome and transcriptome dynamics analysis reveals iron deficiency response networks and signature in neuronal cells. Molecules 2022 27 2 484 10.3390/molecules27020484 35056799
    [Google Scholar]
  58. Yang J. Ma Y.M. Yang L. Quercetin alleviates cerebral ischemia and reperfusion injury in hyperglycemic animals by reducing endoplasmic reticulum stress through activating SIRT1. PLoS One 2025 20 4 0321006 10.1371/journal.pone.0321006 40273147
    [Google Scholar]
  59. Deng Z. Ou H. Ren F. LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol. Res. 2020 53 1 38 10.1186/s40659‑020‑00304‑4 32912324
    [Google Scholar]
  60. Yang L. Liu X. Chen S. Scutellarin ameliorates mitochondrial dysfunction and apoptosis in OGD/R-insulted HT22 cells through mitophagy induction. Biomed. Pharmacother. 2024 179 117340 10.1016/j.biopha.2024.117340 39191025
    [Google Scholar]
  61. Chang H.S. Jeon K.W. Kim Y.H. Chung I.Y. Park C.S. Role of cAMP-dependent pathway in eosinophil apoptosis and survival. Cell. Immunol. 2000 203 1 29 38 10.1006/cimm.2000.1668 10915559
    [Google Scholar]
  62. Kobayashi Y. Shinozawa T. Effect of dibutyryl cAMP and several reagents on apoptosis in PC12 cells induced by a sialoglycopeptide from bovine brain. Brain Res. 1997 778 2 309 317 10.1016/S0006‑8993(97)01072‑X 9459548
    [Google Scholar]
  63. Chen N. Guo L. Wang L. Dai S. Zhu X. Wang E. Sleep fragmentation exacerbates myocardial ischemia‒reperfusion injury by promoting copper overload in cardiomyocytes. Nat. Commun. 2024 15 1 3834 10.1038/s41467‑024‑48227‑y 38714741
    [Google Scholar]
  64. Vakilzadeh G. Khodagholi F. Ghadiri T. Protective effect of a cAMP analogue on behavioral deficits and neuropathological changes in cuprizone model of demyelination. Mol. Neurobiol. 2015 52 1 130 141 10.1007/s12035‑014‑8857‑8 25128030
    [Google Scholar]
  65. Spitzer D. Guérit S. Puetz T. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood–brain barrier in acute ischemic stroke. Acta Neuropathol. 2022 144 2 305 337 10.1007/s00401‑022‑02452‑1 35752654
    [Google Scholar]
  66. Arkelius K. Wendt T.S. Andersson H. LOX-1 and MMP-9 inhibition attenuates the detrimental effects of delayed rt-PA therapy and improves outcomes after acute ischemic stroke. Circ. Res. 2024 134 8 954 969 10.1161/CIRCRESAHA.123.323371 38501247
    [Google Scholar]
  67. Xu C. Zhang Q. Zhang Y. Lateralized response of skull bone marrow via osteopontin signaling in mice after ischemia reperfusion. J. Neuroinflammation 2023 20 1 294 10.1186/s12974‑023‑02980‑x 38071333
    [Google Scholar]
  68. Pu Z. Bao X. Xia S. Shao P. Xu Y. Serpine1 regulates peripheral neutrophil recruitment and acts as potential target in ischemic stroke. J. Inflamm. Res. 2022 15 2649 2663 10.2147/JIR.S361072 35494316
    [Google Scholar]
  69. Shirakawa K. Endo J. Kataoka M. IL (Interleukin)-10–STAT3–Galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation 2018 138 18 2021 2035 10.1161/CIRCULATIONAHA.118.035047 29967195
    [Google Scholar]
  70. Radhakrishnan S. Shenoy S.J. Devidasan I. Periostin regulates lysyl oxidase through ERK1/2 MAPK‐dependent serum response factor in activated cardiac fibroblasts. Cell Biochem. Funct. 2024 42 4 4066 10.1002/cbf.4066 38822669
    [Google Scholar]
  71. Wagenhäuser M.U. Mulorz J. Krott K.J. Crosstalk of platelets with macrophages and fibroblasts aggravates inflammation, aortic wall stiffening, and osteopontin release in abdominal aortic aneurysm. Cardiovasc. Res. 2024 120 4 417 432 10.1093/cvr/cvad168 37976180
    [Google Scholar]
  72. Coelho S.C. Berillo O. Caillon A. Three-month endothelial human endothelin-1 overexpression causes blood pressure elevation and vascular and kidney injury. Hypertension 2018 71 1 208 216 10.1161/HYPERTENSIONAHA.117.09925 29133362
    [Google Scholar]
  73. Li W. Shen N. Kong L. STING mediates microglial pyroptosis via interaction with NLRP3 in cerebral ischaemic stroke. Stroke Vasc. Neurol. 2024 9 2 153 164 10.1136/svn‑2023‑002320 37402504
    [Google Scholar]
  74. Wu J. Han Y. Xu H. Deficient chaperone-mediated autophagy facilitates LPS-induced microglial activation via regulation of the p300/NF-κB/NLRP3 pathway. Sci. Adv. 2023 9 40 eadi8343 10.1126/sciadv.adi8343 37801503
    [Google Scholar]
  75. Zhang N. Zhang P. Deng X. Protective effect of nicotinamide riboside on glucocorticoid-induced glaucoma: Mitigating mitochondrial damage and extracellular matrix deposition. Invest. Ophthalmol. Vis. Sci. 2024 65 8 1 10.1167/iovs.65.8.1 38949632
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026458138251211073956
Loading
/content/journals/cnr/10.2174/0115672026458138251211073956
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test