Skip to content
2000
image of Anandamide as a Therapeutic Target for Alleviating Neuropathic Pain and Inflammation in Rat Models

Abstract

Introduction

Anandamide (AEA), an endocannabinoid, has demonstrated analgesic and anti-inflammatory properties in various experimental models. However, the mechanisms underlying its role in neuropathic pain and inflammation remain unclear.

Methods

Carrageenan-induced inflammation and Chronic Constriction Injury (CCI) were used to model inflammatory and neuropathic pain in Wistar rats. Behavioral tests (., paw edema, mechanical and thermal hyperalgesia), hematological and biochemical analyses, and molecular studies (mRNA expression of AEA pathway enzymes) were conducted to evaluate AEA’s therapeutic potential.

Results

Anandamide significantly reduced paw edema and alleviated pain behaviors in CCI rats in a dose-dependent manner. It normalized hematological and biochemical markers and decreased levels of oxidative stress indicators (MDA, nitrite). mRNA analysis revealed upregulation of AEA degradation enzymes following CCI, indicating disrupted endocannabinoid signaling.

Discussion

AEA’s analgesic and anti-inflammatory actions appear to be mediated through CB1 receptor activation and modulation of ATP-sensitive potassium channels. The observed improvements in biochemical and behavioral markers suggest its efficacy in modulating neuroinflammation and neuropathic pain.

Conclusion

Anandamide demonstrates significant potential as a therapeutic agent in managing neuropathic and inflammatory pain. Further studies are warranted to elucidate its mechanisms and optimize its clinical applicability.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026391315250822063941
2025-10-16
2025-10-30
Loading full text...

Full text loading...

References

  1. Mitchell S.W. Injuries of nerves and their consequences. Arch. Neurol. 1970 22 1 90 94 10.1001/archneur.1970.00480190094016 4912198
    [Google Scholar]
  2. Dworkin R.H. Panarites C.J. Armstrong E.P. Malone D.C. Pham S.V. Is treatment of postherpetic neuralgia in the community consistent with evidence-based recommendations? Pain 2012 153 4 869 875 10.1016/j.pain.2012.01.015 22356792
    [Google Scholar]
  3. Mitchell SW Injuries of nerves and their consequences. Dover citations 1965 2
    [Google Scholar]
  4. Doth A.H. Hansson P.T. Jensen M.P. Taylor R.S. The burden of neuropathic pain: A systematic review and meta-analysis of health utilities. Pain 2010 149 2 338 344 10.1016/j.pain.2010.02.034 20227832
    [Google Scholar]
  5. Attal N. Lanteri-Minet M. Laurent B. Fermanian J. Bouhassira D. The specific disease burden of neuropathic pain: Results of a French nationwide survey. Pain 2011 152 12 2836 2843 10.1016/j.pain.2011.09.014 22019149
    [Google Scholar]
  6. Langley P.C. Van Litsenburg C. Cappelleri J.C. Carroll D. The burden associated with neuropathic pain in Western Europe. J. Med. Econ. 2013 16 1 85 95 10.3111/13696998.2012.729548 22970839
    [Google Scholar]
  7. Colloca L. Ludman T. Bouhassira D. Neuropathic pain. Nat. Rev. Dis. Primers 2017 3 1 17002 10.1038/nrdp.2017.2 28205574
    [Google Scholar]
  8. Jensen T.S. Baron R. Haanpää M. A new definition of neuropathic pain. Pain 2011 152 10 2204 2205 10.1016/j.pain.2011.06.017 21764514
    [Google Scholar]
  9. Woolf C.J. Pain: Moving from symptom control toward mechanism-specific pharmacologic management. Ann. Intern. Med. 2004 140 6 441 451 10.7326/0003‑4819‑140‑8‑200404200‑00010 15023710
    [Google Scholar]
  10. Torrance N. Smith B.H. Watson M.C. Bennett M.I. Medication and treatment use in primary care patients with chronic pain of predominantly neuropathic origin. Fam. Pract. 2007 24 5 481 485 10.1093/fampra/cmm042 17670804
    [Google Scholar]
  11. Bennett M.I. Smith B.H. Torrance N. Lee A.J. Can pain can be more or less neuropathic? Comparison of symptom assessment tools with ratings of certainty by clinicians. Pain 2006 122 3 289 294 10.1016/j.pain.2006.02.002 16540249
    [Google Scholar]
  12. Torrance N. Ferguson J.A. Afolabi E. Neuropathic pain in the community: More under-treated than refractory? Pain 2013 154 5 690 699 10.1016/j.pain.2012.12.022 23485369
    [Google Scholar]
  13. Wood G.W. The psychology of wellbeing. Routledge 2020 10.4324/9781003021254
    [Google Scholar]
  14. Cianfrini L.R. Doleys D.M. Psychological assessment in the context of head and facial pain. Diagnosis and Management of Head and Face Pain. Springer 2018 69 93 10.1007/978‑3‑319‑90999‑8_7
    [Google Scholar]
  15. Forouzanfar F. Pourbagher-Shahri A.M. Ghazavi H. Evaluation of antiarthritic and antinociceptive effects of cedrol in a rat model of arthritis. Oxid. Med. Cell. Longev. 2022 2022 4943965 10.1155/2022/4943965 35509836 PMCID: PMC9060983
    [Google Scholar]
  16. Loeser J.D. Treede R.D. The Kyoto protocol of IASP basic pain terminology. Pain 2008 137 3 473 477 10.1016/j.pain.2008.04.025 18583048
    [Google Scholar]
  17. Fonseca B.M. Costa M.A. Almada M. Correia-da-Silva G. Teixeira N.A. Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat. 2013 102-103 13 30 10.1016/j.prostaglandins.2013.02.002 23474290
    [Google Scholar]
  18. Makriyannis A. Nikas S. Thakur G. Pavlopoulos S. Cannabinoid receptors as therapeutic targets. Curr. Pharm. Des. 2006 12 14 1751 1769 10.2174/138161206776873743 16712486
    [Google Scholar]
  19. Katona I. Freund T.F. Multiple functions of endocannabinoid signaling in the brain. Annu. Rev. Neurosci. 2012 35 1 529 558 10.1146/annurev‑neuro‑062111‑150420 22524785
    [Google Scholar]
  20. ACTS, RULES AND GUIDELINES: Committee for the purpose of control and supervision of experiments on animals. 2018. 2018 Available from: https://cpcsea.nic.in/Content/54_1_ACTS,RULESANDGUIDELINES.aspx
  21. Winter C.A. Risley E.A. Nuss G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med. (Maywood) 1962 111 3 544 547 10.3181/00379727‑111‑27849 14001233
    [Google Scholar]
  22. Lanhers M.C. Fleurentin J. Mortier F. Vinche A. Younos C. Anti-inflammatory and analgesic effects of an aqueous extract of Harpagophytum procumbens. Planta Med. 1992 58 2 117 123 10.1055/s‑2006‑961411 1529021
    [Google Scholar]
  23. Morris C.J. Carrageenan-induced paw edema in the rat and mouse. Inflamm Protoc 2003 115 121 10.1385/1‑59259‑374‑7:115
    [Google Scholar]
  24. Bennett G.J. Xie Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988 33 1 87 107 10.1016/0304‑3959(88)90209‑6 2837713
    [Google Scholar]
  25. Jaggi A.S. Singh N. Differential effect of spironolactone in chronic constriction injury and vincristine-induced neuropathic pain in rats. Eur. J. Pharmacol. 2010 648 1-3 102 109 10.1016/j.ejphar.2010.08.050 20846523
    [Google Scholar]
  26. Muthuraman A. Jaggi A.S. Singh N. Singh D. Ameliorative effects of amiloride and pralidoxime in chronic constriction injury and vincristine induced painful neuropathy in rats. Eur. J. Pharmacol. 2008 587 1-3 104 111 10.1016/j.ejphar.2008.03.042 18486127
    [Google Scholar]
  27. Forouzanfar F. Tanha N.K. Pourbagher-Shahri A.M. mahdianpour S, Esmaeili M, Ghazavi H. Synergistic effect of ellagic acid and gabapentin in a rat model of neuropathic pain. Metab. Brain Dis. 2023 38 4 1421 1432 10.1007/s11011‑023‑01190‑x 36811684
    [Google Scholar]
  28. Nees T.A. Tappe-Theodor A. Sliwinski C. Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury. Pain 2016 157 3 687 697 10.1097/j.pain.0000000000000422 26588690
    [Google Scholar]
  29. Di Rosa M. Giroud J.P. Willoughby D.A. Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J. Pathol. 1971 104 1 15 29 10.1002/path.1711040103 4398139
    [Google Scholar]
  30. Flatters S.J.L. Bennett G.J. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004 109 1 150 161 10.1016/j.pain.2004.01.029 15082137
    [Google Scholar]
  31. Erichsen H.K. Blackburn-Munro G. Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 2002 98 1 151 161 10.1016/S0304‑3959(02)00039‑8 12098627
    [Google Scholar]
  32. Jain V. Jaggi A.S. Singh N. Ameliorative potential of rosiglitazone in tibial and sural nerve transection-induced painful neuropathy in rats. Pharmacol. Res. 2009 59 6 385 392 10.1016/j.phrs.2009.02.001 19429470
    [Google Scholar]
  33. Gracely R.H. Lynch S.A. Bennett G.J. Painful neuropathy: Altered central processing maintained dynamically by peripheral input. Pain 1992 51 2 175 194 10.1016/0304‑3959(92)90259‑E 1484715
    [Google Scholar]
  34. Ochoa J.L. Yarnitsky D. Mechanical hyperalgesias in neuropathic pain patients: Dynamic and static subtypes. Ann. Neurol. 1993 33 5 465 472 10.1002/ana.410330509 8388678
    [Google Scholar]
  35. Thibault K. Elisabeth B. Sophie D. Claude F.Z.M. Bernard R. Bernard C. Antinociceptive and anti-allodynic effects of oral PL37, a complete inhibitor of enkephalin-catabolizing enzymes, in a rat model of peripheral neuropathic pain induced by vincristine. Eur. J. Pharmacol. 2008 600 1-3 71 77 10.1016/j.ejphar.2008.10.004 18938155
    [Google Scholar]
  36. Weissman-Fogel I. Dashkovsky A. Rogowski Z. Yarnitsky D. Vagal damage enhances polyneuropathy pain: Additive effect of two algogenic mechanisms. Pain 2008 138 1 153 162 10.1016/j.pain.2007.11.017 18207324
    [Google Scholar]
  37. Jo E.J. Bae E. Yoon J.H. Kim J.Y. Han J.S. Comparison of murine retroorbital plexus and facial vein blood collection to mitigate animal ethics issues. Lab. Anim. Res. 2021 37 1 12 10.1186/s42826‑021‑00090‑4 33958002
    [Google Scholar]
  38. Kratz D. Wilken-Schmitz A. Sens A. Post-mortem changes of prostanoid concentrations in tissues of mice: Impact of fast cervical dislocation and dissection delay. Prostaglandins Other Lipid Mediat. 2022 162 106660 10.1016/j.prostaglandins.2022.106660 35714920
    [Google Scholar]
  39. Jahangir T. Sultana S. Modulatory effects of Pluchea lanceolata against chemically induced oxidative damage, hyperproliferation and two-stage renal carcinogenesis in Wistar rats. Mol. Cell. Biochem. 2006 291 1-2 175 185 10.1007/s11010‑006‑9213‑8 16767495
    [Google Scholar]
  40. Wills E.D. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J. 1966 99 3 667 676 10.1042/bj0990667 5964963
    [Google Scholar]
  41. Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959 82 1 70 77 10.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  42. Green L.C. Wagner D.A. Glogowski J. Skipper P.L. Wishnok J.S. Tannenbaum S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982 126 1 131 138 10.1016/0003‑2697(82)90118‑X 7181105
    [Google Scholar]
  43. Culling C.F.A. Handbook of Histopathological and Histochemical Techniques. 3rd ed Oxford, UK Butterworth-Heinemann 1974 29 61
    [Google Scholar]
  44. Attal N. Jazat F. Kayser V. Guilbaud G. Further evidence for ‘pain-related’ behaviours in a model of unilateral peripheral mononeuropathy. Pain 1990 41 2 235 251 10.1016/0304‑3959(90)90022‑6 2164179
    [Google Scholar]
  45. Hu B. Doods H. Treede R.D. Ceci A. Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW405833. Pain 2009 143 3 206 212 10.1016/j.pain.2009.02.018 19345493
    [Google Scholar]
  46. Jesse C.R. Wilhelm E.A. Nogueira C.W. Depression-like behavior and mechanical allodynia are reduced by bis selenide treatment in mice with chronic constriction injury: A comparison with fluoxetine, amitriptyline, and bupropion. Psychopharmacology (Berl.) 2010 212 4 513 522 10.1007/s00213‑010‑1977‑6 20689938
    [Google Scholar]
  47. Urban R. Scherrer G. Goulding E.H. Tecott L.H. Basbaum A.I. Behavioral indices of ongoing pain are largely unchanged in male mice with tissue or nerve injury-induced mechanical hypersensitivity. Pain 2011 152 5 990 1000 10.1016/j.pain.2010.12.003 21256675
    [Google Scholar]
  48. Myers R.R. Yamamoto T. Yaksh T.L. Powell H.C. The role of focal nerve ischemia and Wallerian degeneration in peripheral nerve injury producing hyperesthesia. Anesthesiology 1993 78 2 308 316 10.1097/00000542‑199302000‑00015 8439027
    [Google Scholar]
  49. Grace P.M. Hutchinson M.R. Manavis J. Somogyi A.A. Rolan P.E. A novel animal model of graded neuropathic pain: Utility to investigate mechanisms of population heterogeneity. J. Neurosci. Methods 2010 193 1 47 53 10.1016/j.jneumeth.2010.08.025 20817038
    [Google Scholar]
  50. Kajander K.C. Pollock C.H. Berg H. Evaluation of hindpaw position in rats during chronic constriction injury (CCI) produced with different suture materials. Somatosens. Mot. Res. 1996 13 2 95 101 10.3109/08990229609051397 8844958
    [Google Scholar]
  51. Xu J. Pollock C.H. Kajander K.C. Chromic gut suture reduces calcitonin-gene-related peptide and substance P levels in the spinal cord following chronic constriction injury in the rat. Pain 1996 64 3 503 509 10.1016/0304‑3959(95)00172‑7 8783315
    [Google Scholar]
  52. Sommer C. Schäfers M. Painful mononeuropathy in C57BL/Wld mice with delayed wallerian degeneration: Differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity. Brain Res. 1998 784 1-2 154 162 10.1016/s0006‑8993(97)01327‑9 9518588
    [Google Scholar]
  53. Mogil J.S. Davis K.D. Derbyshire S.W. The necessity of animal models in pain research. Pain 2010 151 1 12 17 10.1016/j.pain.2010.07.015 20696526
    [Google Scholar]
  54. Ho Kim S. Mo Chung J. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992 50 3 355 363 10.1016/0304‑3959(92)90041‑9 1333581
    [Google Scholar]
  55. Rakhshandeh H. Ghorbanzadeh A. Negah S.S. Akaberi M. Rashidi R. Forouzanfar F. Pain-relieving effects of Lawsonia inermis on neuropathic pain induced by chronic constriction injury. Metab. Brain Dis. 2021 36 7 1709 1716 10.1007/s11011‑021‑00773‑w 34169409
    [Google Scholar]
  56. Chan C.C. Boyce S. Brideau C. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: A novel nonsteroidal anti-inflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J. Pharmacol. Exp. Ther. 1995 274 3 1531 1537 10.1016/S0022‑3565(25)10713‑1 7562530
    [Google Scholar]
  57. Khattab M.M. TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: A key role for superoxide anion. Eur. J. Pharmacol. 2006 548 1-3 167 173 10.1016/j.ejphar.2006.08.007 16973155
    [Google Scholar]
  58. Sharma G. Badruddeen B. Akhtar J. Khan M.I. Ahmad M. Neopane D. Target receptors in diabetic neuropathy: Key insights & implications. Biomed. Res. Ther. 2024 11 8 6698 6719 10.15419/bmrat.v11i8.914
    [Google Scholar]
  59. Nabavi S.M. Rahimnejad M. Asadi Ardebili A. Hajikhani R. The role of Cannabinoid receptors in visceral pain sensation of rat: An interventional study. Journal of Lab Animal Research 2024 3 1 1 5 10.58803/jlar.v3i1.38
    [Google Scholar]
  60. Pénzes Z. Horváth D. Molnár P. Anandamide modulation of monocyte-derived Langerhans cells: Implications for immune homeostasis and skin inflammation. Front. Immunol. 2024 15 1423776 10.3389/fimmu.2024.1423776 38979427
    [Google Scholar]
  61. Carrascosa A.J. García-Gutiérrez M.S. Saldaña R. Manzanares J. Additive antinociceptive action of intrathecal anandamide reuptake inhibitor and morphine in the management of post-incisional pain in rats. Biomed. Pharmacother. 2024 177 117054 10.1016/j.biopha.2024.117054 38943991
    [Google Scholar]
  62. Das A. Balakrishnan P. Mechanisms and clinical applications of palmitoylethanolamide (PEA) in the treatment of neuropathic pain. Inflammopharmacology 2025 33 1 121 133 10.1007/s10787‑024‑01623‑8 39714723
    [Google Scholar]
  63. Bäckryd E. Themistocleous A. Stensson N. Serum levels of endocannabinoids and related lipids in painful vs painless diabetic neuropathy: Results from the pain in neuropathy study. Pain 2024 165 1 225 232 10.1097/j.pain.0000000000003015 37578507
    [Google Scholar]
  64. Kowalczyk K. Lasek P. Trąbka N. Medical cannabis: Mechanisms of action and therapeutic targets. J. Educ. Health Sport 2024 58 176 190 10.12775/JEHS.2024.58.013
    [Google Scholar]
  65. Zhu C. Lan X. Wei Z. Yu J. Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm. Sin. B 2024 14 1 67 86 10.1016/j.apsb.2023.07.020 38239234
    [Google Scholar]
  66. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Correlation between cognitive impairment and peripheral biomarkers - significance of phosphorylated tau and amyloid-β in alzheimer’s disease: a new insight. Current Psychiatry Research and Reviews 2024 1 25
    [Google Scholar]
  67. Sharma H. Pathak R. Jain S. Ficus racemosa L: A review on its important medicinal uses, phytochemicals and biological activities. J. Popul. Ther. Clin. Pharmacol. 2023 30 17 213 227 10.47750/jptcp.2023.30.17.018
    [Google Scholar]
  68. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration. Curr. Drug Targets 2024 26 1 24
    [Google Scholar]
  69. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. Indian Drugs 2024 61 07 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  70. Pathak R. Sharma S. Bhandari M. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions. J. Exp. Zool. India 2024 21 2 2447 2461
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026391315250822063941
Loading
/content/journals/cnr/10.2174/0115672026391315250822063941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test