Skip to content
2000
image of Progress in the Mechanism of Recovery of Motor Function After Stroke

Abstract

Stroke is associated with a high rate of long-term disability, with motor and sensory impairments of the limbs being among the most common sequelae. Conventional treatments often show limited effectiveness in fully restoring function and may lead to persistent or irreversible deficits over time. Extracorporeal shock wave therapy (ESWT), a non-invasive therapeutic modality, has emerged as a potentially effective intervention for improving motor function after stroke. Its primary therapeutic actions include enhancing blood and lymphatic circulation in the affected limbs, promoting cellular repair, relieving pain, increasing joint range of motion, reducing pathological muscle spasms, strengthening connective tissue, and mitigating abnormal tissue calcification. Given these effects, ESWT may provide direct therapeutic benefits for patients with post-stroke limb dysfunction, with reported outcomes such as pain reduction, increased pain threshold, improved sensory function, decreased abnormal muscle tone, and enhanced overall motor ability. Therefore, this article reviews current research on ESWT for post-stroke motor dysfunction, aiming to explore its therapeutic mechanisms and provide evidence-based insights to support motor function rehabilitation after stroke.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026421138251204111624
2026-01-19
2026-01-25
Loading full text...

Full text loading...

References

  1. Tsao C.W. Aday A.W. Almarzooq Z.I. Heart disease and stroke statistics—2023 update: A report from the American Heart Association. Circulation 2023 147 8 e93 e621 10.1161/CIR.0000000000001123 36695182
    [Google Scholar]
  2. Ścisło L. Staszkiewicz M. Walewska E. Paplaczyk-Serednicka M. Bodys-Cupak I. Zawieja P. Factors determining the functional efficiency of patients after ischemic stroke after neurological rehabilitation. J. Multidiscip. Healthc. 2024 17 959 969 10.2147/JMDH.S444049 38465329
    [Google Scholar]
  3. Zhang Y. Lou H. Lu J. Scalp acupuncture alleviates cerebral ischemic stroke-induced motor dysfunction in rats via regulating endoplasmic reticulum stress and ER-phagy. Sci. Rep. 2023 13 1 10119 10.1038/s41598‑023‑36147‑8 37344501
    [Google Scholar]
  4. Amanzonwé E.R. Tedesco Triccas L. Codjo L. Hansen D. Feys P. Kossi O. Exercise dosage to facilitate the recovery of balance, walking, and quality of life after stroke. S. Afr. J. Physiother. 2023 79 1 1846 10.4102/sajp.v79i1.1846 36873960
    [Google Scholar]
  5. Milani G. Mantovani L. Baroni A. Variations in health-related quality of life after stroke: Insights from a clinical trial on arm rehabilitation with a long-term follow-up. Adv. Rehabil. Sci. Pract. 2023 12 27536351231214845 10.1177/27536351231214845 38034067
    [Google Scholar]
  6. Cheng Q.L. Hu X.Q. Research progress on peripheral magnetic stimulation for upper limb motor dysfunction in stroke patients. Chinese J Rehab Med 2023 38 6 840 844 10.3969/j.issn.1001‑1242.2023.06.022
    [Google Scholar]
  7. Jian X.X. Shao X.Q. Chen P. Research progress of rhythmic auditory stimulation on gait improvement in patients with traumatic brain injury. Clin. Nurs. Res. 2022 36 24 4439 4442
    [Google Scholar]
  8. Suputtitada A. Emerging theory of sensitization in post-stroke muscle spasticity. Front. Rehabil. Sci. 2023 4 1169087 10.3389/fresc.2023.1169087 37791371
    [Google Scholar]
  9. Liang H.J. Jia H.G. Zhu J.Y. Chinese guidelines for extracorporeal shock wave therapy for musculoskeletal diseases (2023 Edition). Chin J Med Front Electronic Edition 2023 15 9 1 20 10.12037/YXQY.2023.09‑01
    [Google Scholar]
  10. Expert consensus group on extracorporeal shock wave therapy for musculoskeletal diseases, branch of physical medicine and rehabilitation, chinese medical association musculoskeletal disease. Journal of extracorporeal shock wave therapy expert consensus of Chin J. Phys. Med. Rehabil. 2019 9 7 481 487 10.3760/cma.j.issn.0254‑1424.2019.07.001
    [Google Scholar]
  11. Duan H. Lian Y. Jing Y. Xing J. Li Z. Research progress in extracorporeal shock wave therapy for upper limb spasticity after stroke. Front. Neurol. 2023 14 1121026 10.3389/fneur.2023.1121026 36846123
    [Google Scholar]
  12. Cheng Y.H. Tsai N.C. Chen Y.J. Extracorporeal shock wave therapy combined with platelet-rich plasma during preventive and therapeutic stages of intrauterine adhesion in a rat model. Biomedicines 2022 10 2 476 10.3390/biomedicines10020476 35203684
    [Google Scholar]
  13. Opara J. Taradaj J. Walewicz K. Rosińczuk J. Dymarek R. The current state of knowledge on the clinical and methodological aspects of extracorporeal shock waves therapy in the management of post-stroke spasticity-Overview of 20 years of experiences. J. Clin. Med. 2021 10 2 261 10.3390/jcm10020261 33445623
    [Google Scholar]
  14. De la Corte-Rodríguez H. Román-Belmonte J.M. Rodríguez-Damiani B.A. Vázquez-Sasot A. Rodríguez-Merchán E.C. Extracorporeal shock wave therapy for the treatment of musculoskeletal pain: A narrative review. Health care 2023 11 21 2830 10.3390/healthcare11212830 37957975
    [Google Scholar]
  15. d'Agostino MC Craig K Tibalt E Respizzi S Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. nt J Surg 2015 24 Pt B 147 53 10.1016/j.ijsu.2015.11.030 26612525
    [Google Scholar]
  16. Sallehuddin H. Ong T. Md Said S. Non-pharmacological interventions for bone health after stroke: A systematic review. PLoS One 2022 17 2 e0263935 10.1371/journal.pone.0263935 35196338
    [Google Scholar]
  17. Sansone V. Ravier D. Pascale V. Applefield R. Del Fabbro M. Martinelli N. Extracorporeal shockwave therapy in the treatment of nonunion in long bones: A systematic review and meta-analysis. J. Clin. Med. 2022 11 7 1977 10.3390/jcm11071977 35407583
    [Google Scholar]
  18. Mandaglio-Collados D. Marín F. Rivera-Caravaca J.M. Peripheral artery disease: Update on etiology, pathophysiology, diagnosis and treatment. Med Clin 2023 161 8 344 350 10.1016/j.medcli.2023.06.005 37517924
    [Google Scholar]
  19. Moya D. Ramón S. Schaden W. Wang C.J. Guiloff L. Cheng J.H. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J. Bone Joint Surg. Am. 2018 100 3 251 263 10.2106/JBJS.17.00661 29406349
    [Google Scholar]
  20. Wang Y. Hua Z. Tang L. Therapeutic implications of extracorporeal shock waves in burn wound healing. J. Tissue Viability 2024 33 1 96 103 10.1016/j.jtv.2023.12.003 38155029
    [Google Scholar]
  21. Chen R.F. Lin Y.N. Liu K.F. Compare the effectiveness of extracorporeal shockwave and hyperbaric oxygen therapy on enhancing wound healing in a streptozotocin‐induced diabetic rodent model. Kaohsiung J. Med. Sci. 2023 39 11 1135 1144 10.1002/kjm2.12746 37658698
    [Google Scholar]
  22. Guo J. Hai H. Ma Y. Application of extracorporeal shock wave therapy in nervous system diseases: A review. Front. Neurol. 2022 13 963849 10.3389/fneur.2022.963849 36062022
    [Google Scholar]
  23. Sheets P.L. Suter B.A. Kiritani T. Chan C.S. Surmeier D.J. Shepherd G.M.G. Corticospinal-specific HCN expression in mouse motor cortex: I(h)-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. J. Neurophysiol. 2011 106 5 2216 2231 10.1152/jn.00232.2011 21795621
    [Google Scholar]
  24. Zhou M. Tu Y. Cui J. Effect of constraint-induced movement therapy on lower extremity motor dysfunction in post-stroke patients: A systematic review and meta-analysis. Front. Neurol. 2022 13 1028206 10.3389/fneur.2022.1028206 36479056
    [Google Scholar]
  25. Wan Ab Rahman W.M.A. Mazlan M. The Prevalence of depression and its correlates among informal caregivers of stroke patients in an urban community. Cureus 2024 16 1 e51486 10.7759/cureus.51486 38304672
    [Google Scholar]
  26. Bonanno L. Cannuli A. Pignolo L. Neural plasticity changes induced by motor robotic rehabilitation in stroke patients: The contribution of functional neuroimaging. Bioengineering 2023 10 8 990 10.3390/bioengineering10080990 37627875
    [Google Scholar]
  27. Cardoso de Oliveira M. Naville Watanabe R. Kohn A.F. Electrophysiological and functional signs of Guillain-Barré syndrome predicted by a multiscale neuromuscular computational model. J. Neural Eng. 2022 19 5 10.1088/1741‑2552/ac91f8 36103863
    [Google Scholar]
  28. Salcedo-Jiménez R. Koenig J.B. Lee O.J. Gibson T.W.G. Madan P. Koch T.G. Extracorporeal shock wave therapy enhances the in vitro metabolic activity and differentiation of equine umbilical cord blood mesenchymal stromal cells. Front. Vet. Sci. 2020 7 554306 10.3389/fvets.2020.554306 33344521
    [Google Scholar]
  29. Chen Y. Xu J. Huang Z. An innovative approach for enhancing bone defect healing using plga scaffolds seeded with extracorporeal-shock-wave-treated bone marrow mesenchymal stem cells (BMSCs). Sci. Rep. 2017 7 1 44130 10.1038/srep44130 28272494
    [Google Scholar]
  30. Suhr F. Delhasse Y. Bungartz G. Schmidt A. Pfannkuche K. Bloch W. Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res. 2013 11 2 951 964 10.1016/j.scr.2013.05.010 23880536
    [Google Scholar]
  31. Zhang H. Li Z.L. Yang F. Radial shockwave treatment promotes human mesenchymal stem cell self-renewal and enhances cartilage healing. Stem Cell Res. Ther. 2018 9 1 54 10.1186/s13287‑018‑0805‑5 29523197
    [Google Scholar]
  32. Rutter B Song H DePalma RG Shock wave physics as related to primary non-impact blast-induced traumatic brain injury. Mil Med 2021 186 601 9.(Suppl. 1) 10.1093/milmed/usaa290 33499439
    [Google Scholar]
  33. Schelling G. Delius M. Gschwender M. Grafe P. Gambihler S. Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism. Biophys. J. 1994 66 1 133 140 10.1016/S0006‑3495(94)80758‑1 8130332
    [Google Scholar]
  34. Mariotto S. de Prati A. Cavalieri E. Amelio E. Marlinghaus E. Suzuki H. Extracorporeal shock wave therapy in inflammatory diseases: Molecular mechanism that triggers anti-inflammatory action. Curr. Med. Chem. 2009 16 19 2366 2372 10.2174/092986709788682119 19601786
    [Google Scholar]
  35. Yahata K. Kanno H. Ozawa H. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. J. Neurosurg. Spine 2016 25 6 745 755 10.3171/2016.4.SPINE15923 27367940
    [Google Scholar]
  36. Richard S.A. Sackey M. Elucidating the pivotal neuroimmunomodulation of stem cells in spinal cord injury repair. Stem Cells Int. 2021 2021 1 19 10.1155/2021/9230866 34341666
    [Google Scholar]
  37. Xiong L.L. Hu Y. Zhang P. Neural stem cell transplantation promotes functional recovery from traumatic brain injury via brain derived neurotrophic factor-mediated neuroplasticity. Mol. Neurobiol. 2018 55 3 2696 2711 10.1007/s12035‑017‑0551‑1 28421542
    [Google Scholar]
  38. Kisoh K. Hayashi H. Arai M. Orita M. Yuan B. Takagi N. Possible involvement of PI3-K/Akt-dependent GSK-3β signaling in proliferation of neural progenitor cells after hypoxic exposure. Mol. Neurobiol. 2019 56 3 1946 1956 10.1007/s12035‑018‑1216‑4 29981053
    [Google Scholar]
  39. Zhang J. Kang N. Yu X. Ma Y. Pang X. Radial extracorporeal shock wave therapy enhances the proliferation and differentiation of neural stem cells by notch, PI3K/AKT, and Wnt/β-catenin signaling. Sci. Rep. 2017 7 1 15321 10.1038/s41598‑017‑15662‑5 29127399
    [Google Scholar]
  40. Bella A.J. Lin G. Tantiwongse K. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: Part I. J. Sex. Med. 2006 3 5 815 820 10.1111/j.1743‑6109.2006.00291.x 16942526
    [Google Scholar]
  41. Lin G. Bella A.J. Lue T.F. Lin C.S. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: Part 2. J. Sex. Med. 2006 3 5 821 829 10.1111/j.1743‑6109.2006.00292.x 16942527
    [Google Scholar]
  42. Li S. Chen Y.T. Francisco G.E. Zhou P. Rymer W.Z. A unifying pathophysiological account for post-stroke spasticity and disordered motor control. Front. Neurol. 2019 10 468 10.3389/fneur.2019.00468 31133971
    [Google Scholar]
  43. Ward A.B. A literature review of the pathophysiology and onset of post‐stroke spasticity. Eur. J. Neurol. 2012 19 1 21 27 10.1111/j.1468‑1331.2011.03448.x 21707868
    [Google Scholar]
  44. Trompetto C. Marinelli L. Mori L. Pathophysiology of spasticity: Implications for neurorehabilitation. BioMed Res. Int. 2014 2014 1 8 10.1155/2014/354906 25530960
    [Google Scholar]
  45. Brusola G. Garcia E. Albosta M. Daly A. Kafes K. Furtado M. Effectiveness of physical therapy interventions on post-stroke spasticity: An umbrella review. NeuroRehabilitation 2023 52 3 349 363 10.3233/NRE‑220275 36806522
    [Google Scholar]
  46. Park S.K. Yang D.J. Uhm Y.H. Yoon J.H. Kim J.H. Effects of extracorporeal shock wave therapy on upper extremity muscle tone in chronic stroke patients. J. Phys. Ther. Sci. 2018 30 3 361 364 10.1589/jpts.30.361 29581652
    [Google Scholar]
  47. Lee J.H. Kim E.J. A comprehensive review of the effects of extracorporeal shock wave therapy on stroke patients: Balance, pain, spasticity. Medicina 2023 59 5 857 10.3390/medicina59050857 37241089
    [Google Scholar]
  48. Liu T. Shindel A.W. Lin G. Lue T.F. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int. J. Impot. Res. 2019 31 3 170 176 10.1038/s41443‑019‑0113‑3 30670837
    [Google Scholar]
  49. Fan T. Chen R. Wei M. Effects of radial extracorporeal shock wave therapy on flexor spasticity of the upper limb in post-stroke patients: A randomized controlled trial. Clin. Rehabil. 2024 38 9 1200 1213 10.1177/02692155241258740 38863234
    [Google Scholar]
  50. Zhou X. Li Y. Lenahan C. Ou Y. Wang M. He Y. Glymphatic system in the central nervous system, a novel therapeutic direction against brain edema after stroke. Front. Aging Neurosci. 2021 13 698036 10.3389/fnagi.2021.698036 34421575
    [Google Scholar]
  51. Wang M. Yang D. Hu Z. Extracorporeal cardiac shock waves therapy improves the function of endothelial progenitor cells after hypoxia injury via activating PI3K/Akt/eNOS signal pathway. Front. Cardiovasc. Med. 2021 8 747497 10.3389/fcvm.2021.747497 34708093
    [Google Scholar]
  52. Seabaugh K.A. Thoresen M. Giguère S. Extracorporeal shockwave therapy increases growth factor release from equine platelet-rich plasma in vitro. Front. Vet. Sci. 2017 4 205 10.3389/fvets.2017.00205 29270410
    [Google Scholar]
  53. Yuan Z. Luo J. Cheng Q. Zhang Q. Clinical efficacy of ultrasound-guided stellate ganglion block combined with extracorporeal shock wave therapy on limb spasticity in patients with ischemic stroke. BMC Neurol. 2023 23 1 349 10.1186/s12883‑023‑03391‑4 37794321
    [Google Scholar]
  54. Chen K.H. Hsiao H.Y. Glenn Wallace C. Combined adipose-derived mesenchymal stem cells and low-energy extracorporeal shock wave therapy protect the brain from brain death-induced injury in rat. J. Neuropathol. Exp. Neurol. 2019 78 1 65 77 10.1093/jnen/nly108 30481326
    [Google Scholar]
  55. Wang Y. Wu Y. Sailike J. Fourteen composite probiotics alleviate type 2 diabetes through modulating gut microbiota and modifying M1/M2 phenotype macrophage in db/db mice. Pharmacol. Res. 2020 161 105150 10.1016/j.phrs.2020.105150 32818655
    [Google Scholar]
  56. Hsiao C.C. Hou Y.S. Liu Y.H. Ko J.Y. Lee C.T. Combined melatonin and extracorporeal shock wave therapy enhances podocyte protection and ameliorates kidney function in a diabetic nephropathy rat model. Antioxidants 2021 10 5 733 10.3390/antiox10050733 34066452
    [Google Scholar]
  57. Chai H.T. Chen K.H. Wallace C.G. Extracorporeal shock wave therapy effectively protects brain against chronic cerebral hypo-perfusion-induced neuropathological changes. Am. J. Transl. Res. 2017 9 11 5074 5093 [PMID: 29218106
    [Google Scholar]
  58. Bargeri S. Pellicciari L. Gallo C. Rossettini G. Castellini G. Gianola S. What is the landscape of evidence about the safety of physical agents used in physical medicine and rehabilitation? A scoping review. BMJ Open 2023 13 6 e068134 10.1136/bmjopen‑2022‑068134 37355261
    [Google Scholar]
  59. Ryskalin L. Morucci G. Natale G. Soldani P. Gesi M. Molecular mechanisms underlying the pain-relieving effects of extracorporeal shock wave therapy: A focus on fascia nociceptors. Life 2022 12 5 743 10.3390/life12050743 35629410
    [Google Scholar]
  60. Moon S.W. Kim J.H. Jung M.J. The effect of extracorporeal shock wave therapy on lower limb spasticity in subacute stroke patients. Ann. Rehabil. Med. 2013 37 4 461 470 10.5535/arm.2013.37.4.461 24020026
    [Google Scholar]
  61. Yang Z.J. Yan W.J. Chen X.P. Study on the efficacy of discrete extracorporeal shock wave therapy for post-stroke triceps spasticity of the calf muscle. Chin J Rehabil Med 2013 28 4 352 355 10.3969/j.issn.1001‑1242.2013.04.016
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026421138251204111624
Loading
/content/journals/cnr/10.2174/0115672026421138251204111624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test