Skip to content
2000
image of Ameliorative Potential of Ethyl Gallate in a Rat Model of Chronic Constriction Injury-Induced Neuropathic Pain

Abstract

Introduction

Neuropathic pain (NP), a chronic and debilitating condition resulting from nerve injury, remains a significant clinical challenge due to limited effective therapies. Ethyl gallate (EG), a natural ester of gallic acid, possesses potent antioxidant and anti-inflammatory properties; however, its role in NP management has not been previously explored.

Methods

This study investigated the neuroprotective potential of EG in a chronic constriction injury (CCI)-induced NP model in rats. EG was administered intraperitoneally at doses of 10, 15, and 20 mg/kg/day for 14 days. Behavioral assessments, including thermal hyperalgesia, mechanical allodynia, and motor nerve conduction velocity (MNCV), were performed. Biochemical evaluations, such as oxidative stress markers (SOD, GSH, catalase, MDA) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were conducted. Histopathological analysis of the sciatic nerve was performed to assess structural integrity. Additionally, molecular docking was employed to evaluate the binding interactions of EG with key redox and inflammatory regulators, Nrf2 and NF-κB, in comparison with the standard drug gabapentin (GBP).

Results

EG significantly alleviated CCI-induced pain behaviors, demonstrated by increased paw withdrawal latency, enhanced mechanical threshold, and improved MNCV. EG treatment restored antioxidant enzyme activities and reduced MDA levels, indicating decreased oxidative stress. Additionally, EG markedly lowered pro-inflammatory cytokine levels. Histological findings revealed preserved nerve fiber integrity and reduced structural damage in EG-treated groups. Molecular docking revealed stronger binding affinity of EG (–6.8 kcal/mol with Nrf2; -5.1 kcal/mol with NF-κB) compared to GBP (–5.9 kcal/mol and –4.3 kcal/mol, respectively), supporting its potential mechanistic role in modulating oxidative stress and inflammatory pathways.

Discussion

These results suggest that EG mitigates NP symptoms by modulating oxidative stress and inflammation. Its ability to enhance endogenous antioxidant defenses and suppress pro-inflammatory responses underlies its neuroprotective action.

Conclusion

EG demonstrates promising therapeutic potential in the management of NP through its antioxidant, anti-inflammatory, and neuroprotective properties. Further molecular studies are warranted to elucidate its underlying mechanisms.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026409563251204065841
2026-01-19
2026-01-25
Loading full text...

Full text loading...

References

  1. Finnerup N.B. Kuner R. Jensen T.S. Neuropathic pain: From mechanisms to treatment. Physiol. Rev. 2021 101 1 259 301 10.1152/physrev.00045.2019 32584191
    [Google Scholar]
  2. Jayathilake N.J. Phan T.T. Kim J. Lee K.P. Park J.M. Modulating neuroplasticity for chronic pain relief: Noninvasive neuromodulation as a promising approach. Exp. Mol. Med. 2025 57 3 501 514 10.1038/s12276‑025‑01409‑0 40025172
    [Google Scholar]
  3. Pickering G. Pickering M.E. Kocot-Kępska M. Neuropathic pain considerations in the aging population. Curr. Opin. Support. Palliat. Care 2025 19 3 150 154 10.1097/SPC.0000000000000769 40662894
    [Google Scholar]
  4. Moisset X. Neuropathic pain: Evidence based recommendations. Presse Med. 2024 53 2 104232 10.1016/j.lpm.2024.104232 38641202
    [Google Scholar]
  5. Ahmadi R. Kuner R. Weidner N. Keßler J. Bendszus M. Krieg S.M. The diagnosis and treatment of neuropathic pain. Dtsch. Arztebl. Int. 2024 121 25 825 832 10.3238/arztebl.m2024.0215 39475707
    [Google Scholar]
  6. Gilron I. Baron R. Jensen T. Neuropathic pain: Principles of diagnosis and treatment. Mayo Clin. Proc. 2015 90 4 532 545 10.1016/j.mayocp.2015.01.018 25841257
    [Google Scholar]
  7. Fan C.Y. McAllister B.B. Stokes-Heck S. Divergent sex-specific pannexin-1 mechanisms in microglia and T cells underlie neuropathic pain. Neuron 2025 113 6 896 911.e9 10.1016/j.neuron.2025.01.005 39892387
    [Google Scholar]
  8. Singh S Dhiraaj S Shamshery C Incidence of different characters of neuropathic pain in cancer patients coming to tertiary care centre in North India over a period of 1 year - An observational study. Indian J Palliat Care 2024 30 1 27 33 10.25259/IJPC_199_2023
    [Google Scholar]
  9. Fernandes J. Dudhani S. Mukkannavar P. Vaigankar S. Impact of painful diabetic peripheral neuropathy on the quality of life of patients in Goa, India: A cross-sectional study. J. Clin. Diagn. Res. 2024 18 10 10.7860/JCDR/2024/74583.20127
    [Google Scholar]
  10. Reynolds E.L. Callaghan B.C. Banerjee M. Feldman E.L. Viswanathan V. The metabolic drivers of neuropathy in India. J. Diabetes Complications 2020 34 10 107653 10.1016/j.jdiacomp.2020.107653 32624332
    [Google Scholar]
  11. Rosenberger D.C. Blechschmidt V. Timmerman H. Wolff A. Treede R.D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020 127 4 589 624 10.1007/s00702‑020‑02145‑7 32036431
    [Google Scholar]
  12. Lee S.O. Kuthati Y. Huang W.H. Wong C.S. Semaglutide ameliorates diabetic neuropathic pain by inhibiting neuroinflammation in the spinal cord. Cells 2024 13 22 1857 10.3390/cells13221857 39594606
    [Google Scholar]
  13. Carpentier S. Bottale S. Cenci N. Development of the SCI-BodyMap - Measuring mental body representations in adults with spinal cord injury: Protocol for item generation, reliability, and validity testing. JMIR Res. Protoc. 2025 14 e72370 10.2196/72370 40921071
    [Google Scholar]
  14. Teixeira-Santos L. Albino-Teixeira A. Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol. Res. 2020 162 105280 10.1016/j.phrs.2020.105280 33161139
    [Google Scholar]
  15. Petrikonis K. Bernatoniene J. Kopustinskiene D.M. Casale R. Davinelli S. Saso L. The antinociceptive role of Nrf2 in neuropathic pain: From mechanisms to clinical perspectives. Pharmaceutics 2024 16 8 1068 10.3390/pharmaceutics16081068 39204413
    [Google Scholar]
  16. Ilari S. Giancotti L.A. Lauro F. Natural antioxidant control of neuropathic pain - Exploring the role of mitochondrial SIRT3 pathway. Antioxidants 2020 9 11 1103 10.3390/antiox9111103 33182469
    [Google Scholar]
  17. Dash U.C. Bhol N.K. Swain S.K. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2025 15 1 15 34 10.1016/j.apsb.2024.10.004 40041912
    [Google Scholar]
  18. Jomova K. Raptova R. Alomar S.Y. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  19. Panday S. Talreja R. Kavdia M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc. Res. 2020 131 104010 10.1016/j.mvr.2020.104010 32335268
    [Google Scholar]
  20. Oeckinghaus A. Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 2009 1 4 a000034 10.1101/cshperspect.a000034 20066092
    [Google Scholar]
  21. Priya Dharshini L.C. Vishnupriya S. Sakthivel K.M. Rasmi R.R. Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cell. Signal. 2020 72 109670 10.1016/j.cellsig.2020.109670 32418887
    [Google Scholar]
  22. Bąska P. Norbury L.J. The role of nuclear factor kappa B (NF-κB) in the immune response against parasites. Pathogens 2022 11 3 310 10.3390/pathogens11030310 35335634
    [Google Scholar]
  23. Hasan S.K. Jayakumar S. Espina Barroso E. Molecular targets of oxidative stress: Focus on nuclear factor erythroid 2–related factor 2 function in leukemia and other cancers. Cells 2025 14 10 713 10.3390/cells14100713 40422216
    [Google Scholar]
  24. Li Z. Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed. Pharmacother. 2024 180 117513 10.1016/j.biopha.2024.117513 39341075
    [Google Scholar]
  25. Ohashi Y. Uchida K. Fukushima K. Inoue G. Takaso M. Mechanisms of peripheral and central sensitization in osteoarthritis pain. Cureus 2023 15 2 e35331 10.7759/cureus.35331 36846635
    [Google Scholar]
  26. Filipov N.M. Chapter 6 - Overview of peripheral and central inflammatory responses and their contribution to neurotoxicity. Academic Press In: Advances in Neurotoxicology. 2019 3 169 93 10.1016/bs.ant.2018.10.001
    [Google Scholar]
  27. Tesfaye S. Kempler P. Conventional management and current guidelines for painful diabetic neuropathy. Diabetes Res. Clin. Pract. 2023 206 Suppl. 1 110765 10.1016/j.diabres.2023.110765 38245323
    [Google Scholar]
  28. Pușcașu C. Zanfirescu A. Negreș S. Recent progress in gels for neuropathic pain. Gels 2023 9 5 417 10.3390/gels9050417 37233008
    [Google Scholar]
  29. Hadidi M. Liñán-Atero R. Tarahi M. Christodoulou M.C. Aghababaei F. The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants 2024 13 8 1001 10.3390/antiox13081001 39199245
    [Google Scholar]
  30. Bhat P. Patil V.S. Anand A. Ethyl gallate isolated from phenol-enriched fraction of Caesalpinia mimosoides Lam. Promotes cutaneous wound healing: A scientific validation through bioassay-guided fractionation. Front. Pharmacol. 2023 14 1214220 10.3389/fphar.2023.1214220 37397484
    [Google Scholar]
  31. Ezhilarasan D. Shree Harini K. Karthick M. Selvaraj C. Ethyl gallate concurrent administration protects against acetaminophen‐induced acute liver injury in mice: An in vivo and in silico approach. Chem. Biol. Drug Des. 2024 103 1 e14369 10.1111/cbdd.14369 37817304
    [Google Scholar]
  32. Nagori K. Pradhan M. Nakhate K.T. Ethyl gallate ameliorates diabetes-induced Alzheimer’s disease-like phenotype in rats via activation of α7 nicotinic receptors and mitigation of oxidative stress. Biochem. Biophys. Res. Commun. 2024 737 150925 10.1016/j.bbrc.2024.150925 39492127
    [Google Scholar]
  33. Faheem M. Khan A. Shah F.A. Pharmacological investigation of natural compounds for therapeutic potential in neuropathic pain. Nat. Prod. Res. 2024 1 25 10.1080/14786419.2024.2429116 39623812
    [Google Scholar]
  34. Takeda M. Sashide Y. Pain management with natural products: Neurophysiological insights. Int. J. Mol. Sci. 2025 26 13 6305 10.3390/ijms26136305 40650082
    [Google Scholar]
  35. Chanchal S.K. Mahajan U.B. Siddharth S. In vivo and in vitro protective effects of omeprazole against neuropathic pain. Sci. Rep. 2016 6 1 30007 10.1038/srep30007 27435304
    [Google Scholar]
  36. Bannister K. Qu C. Navratilova E. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain 2017 158 12 2386 2395 10.1097/j.pain.0000000000001040 28832395
    [Google Scholar]
  37. Goecks C.S.B. Horst A. Moraes M.S. Assessment of oxidative parameters in rat spinal cord after chronic constriction of the sciatic nerve. Neurochem. Res. 2012 37 9 1952 1958 10.1007/s11064‑012‑0815‑0 22674084
    [Google Scholar]
  38. Aswar M. Kute P. Mahajan S. Mahajan U. Nerurkar G. Aswar U. Protective effect of hesperetin in rat model of partial sciatic nerve ligation induced painful neuropathic pain: An evidence of anti-inflammatory and anti-oxidative activity. Pharmacol. Biochem. Behav. 2014 124 101 107 10.1016/j.pbb.2014.05.013 24871567
    [Google Scholar]
  39. Morani A.S. Bodhankar S.L. Early co-administration of vitamin E acetate and methylcobalamin improves thermal hyperalgesia and motor nerve conduction velocity following sciatic nerve crush injury in rats. Pharmacol. Rep. 2010 62 2 405 409 10.1016/S1734‑1140(10)70281‑4 20508297
    [Google Scholar]
  40. Flores Jiménez N.G. Zamorano M.M. Reséndiz-González G. Biochemical parameters, oxidative stress biomarkers, and anatomopathological changes in Wistar rats treated with 3′-demethoxy-6-O-demethylisoguaiacin and norisoguaiacin. Sci. Rep. 2024 14 1 11568 10.1038/s41598‑024‑61903‑9 38773157
    [Google Scholar]
  41. Sinzato Y. Rodrigues T. da Cruz L. Assessment of oxidative stress biomarkers in rat blood. Bio Protoc. 2023 13 5 e4626 10.21769/BioProtoc.4626 36908641
    [Google Scholar]
  42. Ioannidou S. Tsiakalidou A. Kazeli K. Evaluation of biochemical and oxidative stress markers in the early stages of rheumatoid arthritis in a comparative study of two different therapeutic approaches. Oxygen 2024 4 3 253 265 10.3390/oxygen4030014
    [Google Scholar]
  43. Pawar H.D. Patil Y. Patil A. Cardioprotective effect of CB1 receptor antagonist AM251 against β receptor-stimulated myocardial infarction via modulation of NF-kB signaling pathway in diabetic mice. Heliyon 2024 10 15 e35138 10.1016/j.heliyon.2024.e35138 39161822
    [Google Scholar]
  44. Pawar H.D. Mahajan U.B. Nakhate K.T. Curcumin protects diabetic mice against isoproterenol-induced myocardial infarction by modulating CB2 cannabinoid receptors. Life 2022 12 5 624 10.3390/life12050624 35629293
    [Google Scholar]
  45. Amartumur S. Nguyen H. Huynh T. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat. Commun. 2024 15 1 2219 10.1038/s41467‑024‑46554‑8 38472255
    [Google Scholar]
  46. Yang Y. Zhao B. Wang Y. Diabetic neuropathy: Cutting-edge research and future directions. Signal Transduct. Target. Ther. 2025 10 1 132 10.1038/s41392‑025‑02175‑1 40274830
    [Google Scholar]
  47. Bhol N.K. Bhanjadeo M.M. Singh A.K. The interplay between cytokines, inflammation, and antioxidants: Mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed. Pharmacother. 2024 178 117177 10.1016/j.biopha.2024.117177 39053423
    [Google Scholar]
  48. Li B. Ming H. Qin S. Redox regulation: Mechanisms, biology and therapeutic targets in diseases. Signal Transduct. Target. Ther. 2025 10 1 72 10.1038/s41392‑024‑02095‑6 40050273
    [Google Scholar]
  49. Huang A. Ji L. Huang Y. Yu Q. Li Y. miR-185-5p alleviates CCI-induced neuropathic pain by repressing NLRP3 inflammasome through dual targeting MyD88 and CXCR4. Int. Immunopharmacol. 2022 104 108508 10.1016/j.intimp.2021.108508 34999395
    [Google Scholar]
  50. Zhu X.Z. Wang J.Q. Wu Y.H. MG53 ameliorates nerve injury induced neuropathic pain through the regulation of Nrf2/HO-1 signaling in rats. Behav. Brain Res. 2023 449 114489 10.1016/j.bbr.2023.114489 37169128
    [Google Scholar]
  51. Guo X. Geng X. Chu Y. Gao J. Jiang L. MiR-204-5p alleviates neuropathic pain by targeting BRD4 in a rat chronic constrictive injury model. J. Pain Res. 2022 15 2427 2435 10.2147/JPR.S371616 36003288
    [Google Scholar]
  52. Interdonato L. Ferrario G. Cordaro M. Targeting Nrf2 and NF-κB signaling pathways in inflammatory pain: The role of polyphenols from thinned apples. Molecules 2023 28 14 5376 10.3390/molecules28145376 37513248
    [Google Scholar]
  53. Șerban M. Toader C. Covache-Busuioc R.A. The redox revolution in brain medicine: Targeting oxidative stress with AI, multi-omics and mitochondrial therapies for the precision eradication of neurodegeneration. Int. J. Mol. Sci. 2025 26 15 7498 10.3390/ijms26157498 40806624
    [Google Scholar]
  54. Stojanovic B. Bevc I.M. Stojanovic M.D. Oxidative stress, inflammation, and cellular senescence in neuropathic pain: Mechanistic crosstalk. Antioxidants 2025 14 10 1166 10.3390/antiox14101166
    [Google Scholar]
  55. Lin Y. Chen K. Zhao L. Zhao M. Liu Y. Li Y. Dexmedetomidine attenuates oxaliplatin-induced neuropathic pain by modulating the TLR4/NF-κB pathway to reduce spinal inflammation and oxidative stress. Arch. Biochem. Biophys. 2025 772 110572 10.1016/j.abb.2025.110572 40744255
    [Google Scholar]
  56. Silva Á.J.C. de Lavor M.S.L. Nitroxidative stress, cell—signaling pathways, and manganese porphyrins: Therapeutic potential in neuropathic pain. Int. J. Mol. Sci. 2025 26 5 2050 10.3390/ijms26052050 40076672
    [Google Scholar]
  57. Pasupulati H. SV Padi S, Koganti B, Koganti PVSRG. Curcumin ameliorates paclitaxel-induced pain hypersensitivity via alleviation of inflammation and oxidative stress in rats. Int. J. Life Sci. Pharma Res. 2021 11 58 P67 10.22376/ijpbs/lpr.2021.11.4.P58‑67
    [Google Scholar]
  58. Forouzanfar F. Pourbagher-Shahri A.M. Darroudi M. Cerium oxide nanoparticles ameliorate oxidative stress, inflammation, and pain behavior in neuropathic rats. Curr. Neurovasc. Res. 2023 20 1 54 61 10.2174/1567202620666230125104604 36698228
    [Google Scholar]
  59. Chen L. Wu X. Shen T. Protective effects of ethyl gallate on H2O2-induced mitochondrial dysfunction in PC12 cells. Metab. Brain Dis. 2019 34 2 545 555 10.1007/s11011‑019‑0382‑z 30746596
    [Google Scholar]
  60. Gu D. Xia Y. Ding Z. Inflammation in the peripheral nervous system after injury. Biomedicines 2024 12 6 1256 10.3390/biomedicines12061256 38927464
    [Google Scholar]
  61. Ji R.R. Nackley A. Huh Y. Terrando N. Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 2018 129 2 343 366 10.1097/ALN.0000000000002130 29462012
    [Google Scholar]
  62. Kocot-Kępska M. Zajączkowska R. Mika J. Wordliczek J. Dobrogowski J. Przeklasa-Muszyńska A. Peripheral mechanisms of neuropathic pain—the role of neuronal and non-neuronal interactions and their implications for topical treatment of neuropathic pain. Pharmaceuticals 2021 14 2 77 10.3390/ph14020077 33498496
    [Google Scholar]
  63. Jing B. Zhao J. Chen Z. (+)-Catechin alleviates CCI-induced neuropathic pain by modulating microglia M1 and M2 polarization via the TLR4/MyD88/NF-κB signaling pathway. J. Neuroimmune Pharmacol. 2025 20 1 33 10.1007/s11481‑025‑10202‑9 40195186
    [Google Scholar]
  64. Yang Y. Xia C. Xu Z. rTMS applied to the PFC relieves neuropathic pain and modulates neuroinflammation in CCI rats. Neuroscience 2024 554 137 145 10.1016/j.neuroscience.2024.07.004 38992566
    [Google Scholar]
  65. Ji Y.Z. Lin Z.H. Liao C.X. Inhibition of macrophage activation by minocycline attenuates CCI-induced neuropathic pain. Inflammation 2025 10.1007/s10753‑025‑02300‑w 40281365
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026409563251204065841
Loading
/content/journals/cnr/10.2174/0115672026409563251204065841
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test