Skip to content
2000
image of Effect of 3',4'-dihydroxy Flavonol Supplementation for One Week on Renal Functions and Lipid Peroxidation as Distant Organ Damage After Brain Ischemia-reperfusion in Rats

Abstract

Introduction

The objective of this study was to investigate the effects of 3',4'-dihydroxyflavonol (DiOHF) on oxidative and antioxidant systems in kidney tissue and on renal function as distant organ damage following brain ischemia-reperfusion.

Methods

This study was conducted on 28 male Wistar-Albino rats, which were divided into four groups: Control, Sham, Ischemia-Reperfusion (I/R), and Ischemia-Reperfusion + DiOHF. Kidney tissue samples were collected to analyze malondialdehyde (MDA) and glutathione (GSH) levels. Additionally, concentrations of electrolytes (Ca, Cl, Na, K, and P), as well as urea, uric acid, creatinine, and urinary microprotein levels, were measured.

Results

Brain ischemia-reperfusion led to increased malondialdehyde (MDA) levels in both the kidney medulla and cortex, indicating oxidative stress in these distant organs, while glutathione (GSH) levels were suppressed. Additionally, ischemia-reperfusion caused elevations in blood and urine concentrations of urea, uric acid, creatinine, and urinary microproteins.

Discussion

This experimental model significantly elevated urea, uric acid, and creatinine levels, key indicators of kidney function, and similarly increased urinary microprotein loss. While our study demonstrates the detrimental effects of focal brain ischemia-reperfusion on kidney function as a distant organ, further research is needed to investigate its impact on other organs to gain a more comprehensive understanding of distant organ damage.

Conclusion

Results from this experimental model indicate that cerebral ischemia-reperfusion in rats suppresses the antioxidant system and increases oxidative stress in kidney tissue, leading to impaired renal function. However, a 1-week DiOHF treatment mitigated this damage by enhancing the antioxidant defense system.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026405662251007105724
2025-10-21
2025-12-22
Loading full text...

Full text loading...

References

  1. Siwicka-Gieroba D. Robba C. Gołacki J. Badenes R. Dabrowski W. Cerebral oxygen delivery and consumption in brain-injured patients. J. Pers. Med. 2022 12 11 1763 10.3390/jpm12111763 36573716
    [Google Scholar]
  2. Bozic M. Advances in understanding molecular mechanisms involved in chronic kidney injury and repair. IJMS 2024
    [Google Scholar]
  3. Akbas H. Ozden M. Kanko M. Protective antioxidant effects of carvedilol in a rat model of ischaemia-reperfusion injury. J. Int. Med. Res. 2005 33 5 528 536 10.1177/147323000503300508
    [Google Scholar]
  4. Dasdelen D. Solmaz M. Mogulkoc R. Baltaci A.K. Erdogan E. Apoptosis of hippocampus and cerebellum induced with brain ischemia reperfusion prevented by 3′,4′-dihydroxyflavonol (DiOHF). Biotech. Histochem. 2024 99 5 225 237 10.1080/10520295.2024.2360496 38940209
    [Google Scholar]
  5. Durak V.A. Sezer O. Armagan E. Çıkrıklar H.İ. Çelebi H. Analysis of fluid and electrolyte imbalances in patients diagnosed with acute cerebrovascular disease. UUFMJ 2022 48 3 307 313
    [Google Scholar]
  6. Rossi D.J. Brady J.D. Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci. 2022 23 12 749 64 17965658 10.1038/nn2004
    [Google Scholar]
  7. Serna J. Bergwitz C. Importance of dietary phosphorus for bone metabolism and healthy aging. Nutrients 2020 12 10 3001 10.3390/nu12103001 33007883
    [Google Scholar]
  8. Lerink L.J.S. de Kok M.J.C. Mulvey J.F. Preclinical models versus clinical renal ischemia reperfusion injury: A systematic review based on metabolic signatures. Am. J. Transplant. 2022 22 2 344 370 10.1111/ajt.16868 34657378
    [Google Scholar]
  9. Xu L. Li C. Wan T. Targeting uric acid: A promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases. Cell Commun. Signal. 2025 23 1 4 10.1186/s12964‑024‑01965‑4 39754256
    [Google Scholar]
  10. Duffy E.E. Assad E.G. Kalish B.T. Greenberg M.E. Small but mighty: The rise of microprotein biology in neuroscience. Front. Mol. Neurosci. ••• 17 1386219 10.3389/fnmol.2024.1386219 38807924
    [Google Scholar]
  11. Miller B. Kim S.J. Kumagai H. Yen K. Cohen P. Mitochondria-derived peptides in aging and healthspan. J. Clin. Invest. 2022 132 9 158449 10.1172/JCI158449 35499074
    [Google Scholar]
  12. Jiang W. Chen Z. Xu J. Proteinuria is a risk factor for acute kidney injury after cardiac surgery in patients with stages 3–4 chronic kidney disease: A case control study. BMC Cardiovasc. Disord. 2023 23 1 77 10.1186/s12872‑023‑03102‑4 36759765
    [Google Scholar]
  13. Dasdelen D. Solmaz M. Menevse E. Mogulkoc R. Baltaci A.K. Erdogan E. Increased apoptosis, tumor necrosis factor-α, and DNA damage attenuated by 3′,4′-dihydroxyflavonol in rats with brain İschemia-reperfusion. Indian J. Pharmacol. 2021 53 1 39 49 10.4103/ijp.IJP_727_20 33975998
    [Google Scholar]
  14. Uchiyama M. Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978 86 1 271 278 10.1016/0003‑2697(78)90342‑1 655387
    [Google Scholar]
  15. Kaur J. Kaur T. Sharma A.K. Fenofibrate attenuates ischemia reperfusion‐induced acute kidney injury and associated liver dysfunction in rats. Drug Dev. Res. 2021 82 3 412 421 10.1002/ddr.21764 33226649
    [Google Scholar]
  16. Hu Y. Nan Y. Lin H. Celastrol ameliorates hypoxic-ischemic brain injury in neonatal rats by reducing oxidative stress and inflammation. Pediatr. Res. 2024 96 7 1681 1692 10.1038/s41390‑024‑03246‑9 38763946
    [Google Scholar]
  17. Peng P. Zou J. Zhong B. Zhang G. Zou X. Xie T. Protective effects and mechanisms of flavonoids in renal ischemia-reperfusion injury. Pharmacology 2023 108 1 27 36 10.1159/000527262
    [Google Scholar]
  18. Wang W. Tai S. Cheng X. Protective role of exosomes in renal ischemia-reperfusion injury: A systematic review and meta-analysis. Front. Pharmacol. 2025 16 1653907 10.3389/fphar.2025.1653907
    [Google Scholar]
  19. Kompa A.R. Khong F.L. Zhang Y. NP202 treatment improves left ventricular systolic function and attenuates pathological remodelling following chronic myocardial infarction. Life Sci. 2022 289 120220 10.1016/j.lfs.2021.120220 34902438
    [Google Scholar]
  20. Aladag T. Acar G. Mogulkoc R. Baltaci A.K. Improvement of neuronal and cognitive functions following treatment with 3′,4′ dihydroxyflavonol in experimental focal cerebral ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 2024 976 176670 10.1016/j.ejphar.2024.176670 38795755
    [Google Scholar]
  21. Zhao Q. Yan T. Chopp M. Venkat P. Chen J. Brain–kidney interaction: Renal dysfunction following ischemic stroke. J. Cereb. Blood Flow Metab. 2020 40 2 246 262 10.1177/0271678X19890931 31766979
    [Google Scholar]
  22. Dulam V. Katta S. Nakka V.P. Stroke and distal organ damage: Exploring brain-kidney crosstalk. Neurochem. Res. 2024 49 7 1617 1627 10.1007/s11064‑024‑04126‑8 38376748
    [Google Scholar]
  23. Wang I.K. Liu C.H. Yen T.H. Renal function is associated with 1-month and 1-year mortality in patients with ischemic stroke. Atherosclerosis 2018 269 288 293 10.1016/j.atherosclerosis.2017.11.029 29254692
    [Google Scholar]
  24. Chwojnicki K. Król E. Wierucki Ł. Renal dysfunction in post-stroke patients. PLoS One 2016 11 8 0159775 10.1371/journal.pone.0159775 27575370
    [Google Scholar]
  25. Haselton J.R. Vari R.C. Neuronal cell bodies in paraventricular nucleus affect renal hemodynamics and excretion via the renal nerves. Am. J. Physiol. 1998 275 4 R1334 R1342 10.1152/ajpregu.1998.275.4.R1334 9756566
    [Google Scholar]
  26. Green H.D. Hoff E.C. Effects of faradic stimulation of the cerebral cortex on limb and renal volumes in the cat and monkey. Am. J. Physiol. 1937 118 4 641 658 10.1152/ajplegacy.1937.118.4.641
    [Google Scholar]
  27. Butcher K.S. Cechetto D.F. Insular lesion evokes autonomic effects of stroke in normotensive and hypertensive rats. Stroke 1995 26 3 459 465 10.1161/01.STR.26.3.459 7886725
    [Google Scholar]
  28. Mracsko E. Liesz A. Karcher S. Zorn M. Bari F. Veltkamp R. Differential effects of sympathetic nervous system and hypothalamic–pituitary–adrenal axis on systemic immune cells after severe experimental stroke. Brain Behav. Immun. 2014 41 200 209 10.1016/j.bbi.2014.05.015 24886966
    [Google Scholar]
  29. Smets P. Meyer E. Maddens B. Daminet S. Cushing’s syndrome, glucocorticoids and the kidney. Gen. Comp. Endocrinol. 2010 169 1 1 10 10.1016/j.ygcen.2010.07.004 20655918
    [Google Scholar]
  30. Fujii T. Kurata H. Takaoka M. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. Eur. J. Pharmacol. 2003 481 2-3 241 248 10.1016/j.ejphar.2003.09.036 14642792
    [Google Scholar]
  31. Mogi M. Kawajiri M. Tsukuda K. Matsumoto S. Yamada T. Horiuchi M. Serum levels of renin-angiotensin system components in acute stroke patients. Geriatr. Gerontol. Int. 2014 14 4 793 798 10.1111/ggi.12167 24279732
    [Google Scholar]
  32. Zhang W. Wang W. Yu H. Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension 2012 59 1 136 144 10.1161/HYPERTENSIONAHA.111.173328 22068875
    [Google Scholar]
  33. Joynt R.J. Feibel J.H. Sladek C.M. Antidiuretic hormone levels in stroke patients. Ann. Neurol. 1981 9 2 182 184 10.1002/ana.410090212 7235633
    [Google Scholar]
  34. Imig J.D. Ryan M.J. Immune and inflammatory role in renal disease. Compr. Physiol. 2013 3 2 957 976 10.1002/j.2040‑4603.2013.tb00511.x 23720336
    [Google Scholar]
  35. Brown N.J. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat. Rev. Nephrol. 2013 9 8 459 469 10.1038/nrneph.2013.110 23774812
    [Google Scholar]
  36. Ladenvall C. Jood K. Blomstrand C. Nilsson S. Jern C. Ladenvall P. Serum C-reactive protein concentration and genotype in relation to ischemic stroke subtype. Stroke 2006 37 8 2018 2023 10.1161/01.STR.0000231872.86071.68 16809555
    [Google Scholar]
  37. Stuveling E.M. Hillege H.L. Bakker S.J.L. Gans R.O.B. de Jong P.E. de Zeeuw D. C-reactive protein is associated with renal function abnormalities in a non-diabetic population. Kidney Int. 2003 63 2 654 661 10.1046/j.1523‑1755.2003.00762.x 12631131
    [Google Scholar]
  38. Wang W. Koka V. Lan H. Transforming growth factor‐β and Smad signalling in kidney diseases. Nephrology 2005 10 1 48 56 10.1111/j.1440‑1797.2005.00334.x 15705182
    [Google Scholar]
  39. Wytrykowska A. Prosba-Mackiewicz M. Nyka W.M. IL-1β, TNF-α, and IL-6 levels in gingival fluid and serum of patients with ischemic stroke. J. Oral Sci. 2016 58 4 509 513 10.2334/josnusd.16‑0278 28025434
    [Google Scholar]
  40. Chodobski A. Zink B.J. Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. 2011 2 4 492 516 10.1007/s12975‑011‑0125‑x 22299022
    [Google Scholar]
  41. Baud L. Ardaillou R. Reactive oxygen species: Production and role in the kidney. Am. J. Physiol. 1986 251 5 Pt 2 F765 F776 10.1152/ajprenal.1986.251.5.F765 3022602
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026405662251007105724
Loading
/content/journals/cnr/10.2174/0115672026405662251007105724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test