Skip to content
2000
image of Ischemic Postconditioning Attenuates Cerebral Ischemic Injury by Suppressing the Ferroptosis-associated Gene NOX4

Abstract

Introduction

This study investigated the neuroprotective mechanisms of ischemic postconditioning (IPostC) in ischemic stroke, focusing on ferroptosis and the regulatory role of the ferroptosis-related gene NADPH oxidase 4 (NOX4).

Methods

Male C57BL/6 mice underwent 45-minute middle cerebral artery occlusion (MCAO), followed by IPostC (three 15s/30s ischemia/reperfusion cycles after initial 2-minute reperfusion). RNA sequencing, combined with the least absolute shrinkage and selection operator (LASSO) and random forest machine learning, quantitative real-time PCR (qRT-PCR), infarct size measurement, and neurological tests, was used to identify ferroptosis-related genes and validate their roles in IPostC-induced neuroprotection.

Results

RNA sequencing revealed that 42 ferroptosis-associated differentially expressed genes underlie the neuroprotective effects of IPostC. Among them, NOX4 emerged as a central pathogenic regulator through LASSO and random forest machine learning analyses. IPostC reduced cerebral infarct size and improved foot-fault rate compared to MCAO mice. Notably, the ferroptosis inducer Erastin abolished the protective effects of IPostC. qRT-PCR validation revealed that IPostC downregulated NOX4 mRNA expression compared to MCAO controls, while Erastin upregulated NOX4 expression. In addition, pharmacological inhibition of NOX4 with GLX351322 reduced its mRNA expression, decreased infarct size, and improved neurological function, further confirming its critical role in mediating ferroptosis-driven brain injury after ischemic stroke.

Discussion

The inhibition of ferroptosis-associated gene NOX4 by IPostC may be a novel mechanism for treating ischemic stroke.

Conclusion

Our study indicates that IPostC attenuates cerebral ischemic injury by suppressing ferroptosis-associated gene NOX4.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026416419250930064544
2025-10-06
2025-10-31
Loading full text...

Full text loading...

References

  1. Zhao Y. Zhang X. Chen X. Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int. J. Mol. Med. 2021 49 2 15 10.3892/ijmm.2021.5070 34878154
    [Google Scholar]
  2. Qin C. Yang S. Chu Y.H. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022 7 1 215 10.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  3. Arkelius K. Wendt T.S. Andersson H. LOX-1 and MMP-9 inhibition attenuates the detrimental effects of delayed rt-PA therapy and improves outcomes after acute ischemic stroke. Circ. Res. 2024 134 8 954 969 10.1161/CIRCRESAHA.123.323371 38501247
    [Google Scholar]
  4. Zhang Y. Chen Q. Chen D. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci. Ther. 2022 28 4 566 579 10.1111/cns.13776 34897996
    [Google Scholar]
  5. Zhao M. Qiao Y. Weiss A. Zhao W. Neuroprotective strategies in acute ischemic stroke: A narrative review of recent advances and clinical outcomes. Brain Circ. 2024 10 4 296 302 10.4103/bc.bc_165_24 40012592
    [Google Scholar]
  6. Cheng Z. Wang H. Geng X. Time and tissue windows in futile reperfusion after ischemic stroke. Aging Dis. 2024 16 5 2544 2552 10.14336/AD.2024.1024 39500359
    [Google Scholar]
  7. Berge E. Whiteley W. Audebert H. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021 6 1 I LXII 10.1177/2396987321989865 33817340
    [Google Scholar]
  8. Suzuki K. Matsumaru Y. Takeuchi M. Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke. JAMA 2021 325 3 244 253 10.1001/jama.2020.23522 33464334
    [Google Scholar]
  9. Tian B. Tian X. Shi Z. Clinical and imaging indicators of hemorrhagic transformation in acute ischemic stroke after endovascular thrombectomy. Stroke 2022 53 5 1674 1681 10.1161/STROKEAHA.121.035425 34872341
    [Google Scholar]
  10. Zubair A.S. Sheth K.N. Hemorrhagic conversion of acute ischemic stroke. Neurotherapeutics 2023 20 3 705 711 10.1007/s13311‑023‑01377‑1 37085684
    [Google Scholar]
  11. Qiao Y. Fayyaz A.I. Ding Y. Ji X. Zhao W. Recent advances in the prevention of secondary ischemic stroke: A narrative review. Brain Circ. 2024 10 4 283 295 10.4103/bc.bc_159_24 40012589
    [Google Scholar]
  12. Alsbrook D.L. Di Napoli M. Bhatia K. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr. Neurol. Neurosci. Rep. 2023 23 8 407 431 10.1007/s11910‑023‑01282‑2 37395873
    [Google Scholar]
  13. Guan X. Zhu S. Song J. Microglial CMPK2 promotes neuroinflammation and brain injury after ischemic stroke. Cell Rep. Med. 2024 5 5 101522 10.1016/j.xcrm.2024.101522 38701781
    [Google Scholar]
  14. Shen Z. Xiang M. Chen C. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed. Pharmacother. 2022 151 113125 10.1016/j.biopha.2022.113125 35609367
    [Google Scholar]
  15. Neves D. Salazar I.L. Almeida R.D. Silva R.M. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci. 2023 328 121814 10.1016/j.lfs.2023.121814 37236602
    [Google Scholar]
  16. Coppi E. Cherchi F. Gibb A.J. Adenosine A2A receptor blockade attenuates excitotoxicity in rat striatal medium spiny neurons during an ischemic-like insult. Neural Regen. Res. 2024 19 2 255 257 10.4103/1673‑5374.375309 37488874
    [Google Scholar]
  17. Guo P. Li H. Zhang X. Matrix metalloproteinase 9 in hemorrhagic transformation after acute ischemic stroke. Mol. Med. Rep. 2025 32 2 1 15 [Review] 10.3892/mmr.2025.13590 40476578
    [Google Scholar]
  18. Lu W. Wen J. The relationship among H2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int. Immunopharmacol. 2025 146 113902 10.1016/j.intimp.2024.113902 39724730
    [Google Scholar]
  19. Ugale R. Vatte S. Girdhar P. Anandani D. Deferoxamine prevents BBB disruption, neuroinflammation and apoptotic changes in early hours of ischemic reperfusion injury. Neurochem. Int. 2025 188 106009 10.1016/j.neuint.2025.106009 40517956
    [Google Scholar]
  20. Wang A-P. Tian Y. Zhang W. Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen. Res. 2021 16 1 6 11 10.4103/1673‑5374.286954 32788440
    [Google Scholar]
  21. Liang Z. Lou Y. Hao Y. Li H. Feng J. Liu S. The relationship of astrocytes and microglia with different stages of ischemic stroke. Curr. Neuropharmacol. 2023 21 12 2465 2480 10.2174/1570159X21666230718104634 37464832
    [Google Scholar]
  22. Picca A. Calvani R. Coelho-Junior H.J. Landi F. Bernabei R. Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants 2020 9 8 647 10.3390/antiox9080647 32707949
    [Google Scholar]
  23. Xu X. Pang Y. Fan X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025 10 1 190 10.1038/s41392‑025‑02253‑4 40500258
    [Google Scholar]
  24. Jiang R.Q. Li Q.Q. Sheng R. Mitochondria associated ER membranes and cerebral ischemia: Molecular mechanisms and therapeutic strategies. Pharmacol. Res. 2023 191 106761 10.1016/j.phrs.2023.106761 37028777
    [Google Scholar]
  25. Zhang Y. Zhang H. Zhao F. Mitochondrial-targeted and ROS-responsive nanocarrier via nose-to-brain pathway for ischemic stroke treatment. Acta Pharm. Sin. B 2023 13 12 5107 5120 10.1016/j.apsb.2023.06.011 38045064
    [Google Scholar]
  26. Wang J. Yang L. Wu L. Direct ischemic postconditioning following stroke thrombectomy: A promising therapy for reperfusion injury. Neurosci. Bull. 2024 40 7 1017 1020 10.1007/s12264‑024‑01243‑w 38856959
    [Google Scholar]
  27. Mohammadi M. Mobini M. Mashayekhi F. Ischemic post-conditioning is neuroprotective even at delayed tPA administration after embolic stroke in female rats. Iran. J. Basic Med. Sci. 2021 24 12 1676 1682 10.22038/IJBMS.2021.55674.12456 35432799
    [Google Scholar]
  28. Deng J. He G. Yi T. Neuroprotective effects of rapid local ischemic postconditioning in successful endovascular thrombectomy patients. Stroke 2024 55 12 2896 2900 10.1161/STROKEAHA.124.047674 39523943
    [Google Scholar]
  29. Wu L. Wei M. Zhang B. Safety and tolerability of direct ischemic postconditioning following thrombectomy for acute ischemic stroke. Stroke 2023 54 9 2442 2445 10.1161/STROKEAHA.123.044060 37497674
    [Google Scholar]
  30. Morisaki Y. Nakagawa I. Ogawa Y. Ischemic postconditioning reduces NMDA receptor currents through the opening of the mitochondrial permeability transition pore and KATP channel in mouse neurons. Cell. Mol. Neurobiol. 2022 42 4 1079 1089 10.1007/s10571‑020‑00996‑y 33159622
    [Google Scholar]
  31. Sasaki H. Nakagawa I. Furuta T. Mitochondrial calcium uniporter (MCU) is involved in an ischemic postconditioning effect against ischemic reperfusion brain injury in mice. Cell. Mol. Neurobiol. 2024 44 1 32 10.1007/s10571‑024‑01464‑7 38568450
    [Google Scholar]
  32. Chen H. Shen J. Zhao H. Ischemic postconditioning for stroke treatment: Current experimental advances and future directions. Cond. Med. 2020 3 2 104 115 34396060
    [Google Scholar]
  33. Liu Z. Huang W. Chen Y. Ischemic postconditioning ameliorates acute kidney injury induced by limb ischemia/reperfusion via transforming TLR4 and NF-κB signaling in rats. J. Orthop. Surg. Res. 2021 16 1 416 10.1186/s13018‑021‑02565‑5 34210334
    [Google Scholar]
  34. Miao W. Yan Y. Bao T. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124. Biomed. Pharmacother. 2020 126 109786 10.1016/j.biopha.2019.109786 32113052
    [Google Scholar]
  35. Yu Y. Yan Y. Niu F. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021 7 1 193 10.1038/s41420‑021‑00579‑w 34312370
    [Google Scholar]
  36. Liu J. Kang R. Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022 289 22 7038 7050 10.1111/febs.16059 34092035
    [Google Scholar]
  37. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  38. Tang D. Chen X. Kang R. Kroemer G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021 31 2 107 125 10.1038/s41422‑020‑00441‑1 33268902
    [Google Scholar]
  39. Chen X. Kang R. Kroemer G. Tang D. Organelle-specific regulation of ferroptosis. Cell Death Differ. 2021 28 10 2843 2856 10.1038/s41418‑021‑00859‑z 34465893
    [Google Scholar]
  40. Hu X. Bao Y. Li M. Zhang W. Chen C. The role of ferroptosis and its mechanism in ischemic stroke. Exp. Neurol. 2024 372 114630 10.1016/j.expneurol.2023.114630 38056585
    [Google Scholar]
  41. Guo J. Tuo Q. Lei P. Iron, ferroptosis, and ischemic stroke. J. Neurochem. 2023 165 4 487 520 10.1111/jnc.15807 36908209
    [Google Scholar]
  42. Liao J. Wei M. Wang J. Naotaifang formula attenuates OGD/R-induced inflammation and ferroptosis by regulating microglial M1/M2 polarization through BMP6/SMADs signaling pathway. Biomed. Pharmacother. 2023 167 115465 10.1016/j.biopha.2023.115465 37713988
    [Google Scholar]
  43. Chen H. He Y. Chen S. Qi S. Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol. Res. 2020 158 104877 10.1016/j.phrs.2020.104877 32407958
    [Google Scholar]
  44. Liu C. Yang J. Zhang C. Geng X. Zhao H. Remote ischemic conditioning reduced cerebral ischemic injury by modulating inflammatory responses and ERK activity in type 2 diabetic mice. Neurochem. Int. 2020 135 104690 10.1016/j.neuint.2020.104690 31981607
    [Google Scholar]
  45. Yao Y. Li Y. Ni W. Systematic study of immune cell diversity in ischemic postconditioning using high-dimensional single-cell analysis with mass cytometry. Aging Dis. 2021 12 3 812 825 10.14336/AD.2020.1115 34094644
    [Google Scholar]
  46. Ren H. Zhang Z. Zhang J. Physical exercise exerts neuroprotective effect on memory impairment by mitigate the decline of] striatum catecholamine and spine density in a vascular dementia] rat model. Am. J. Alzheimers Dis. Other Demen. 2022 37 15333175221144367 10.1177/15333175221144367 36515911
    [Google Scholar]
  47. Chen C. Chencheng Z. Cuiying L. Xiaokun G. Plasmacytoid dendritic cells protect against middle cerebral artery occlusion induced brain injury by priming regulatory T cells. Front. Cell. Neurosci. 2020 14 8 10.3389/fncel.2020.00008 32076400
    [Google Scholar]
  48. Luo E. Li Z. Zhang S. Hyperglycemia induces microglial pyroptosis by increasing oxygen extraction rate: Implication in neurological impairment during ischemic stroke. Mol. Med. Rep. 2024 30 2 146 10.3892/mmr.2024.13270 38940333
    [Google Scholar]
  49. Wang Y. Zhuang H. Jiang X. Zou R. Wang H. Fan Z. Unveiling the key genes, environmental toxins, and drug exposures in modulating the severity of ulcerative colitis: A comprehensive analysis. Front. Immunol. 2023 14 1162458 10.3389/fimmu.2023.1162458 37539055
    [Google Scholar]
  50. Ma Q. Wang C. Wang M. Investigation of brain damage mechanism in middle cerebral artery occlusion/reperfusion rats based on i-TRAQ quantitative proteomics. Exp. Brain Res. 2021 239 4 1247 1260 10.1007/s00221‑021‑06054‑3 33599834
    [Google Scholar]
  51. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  52. Zhang N. Wang Y. Wang J. Transcriptomic analysis of regulatory mechanisms in the telogen-anagen transition of ovine hair follicles. BMC Genomics 2024 25 1 1166 10.1186/s12864‑024‑11059‑7 39623320
    [Google Scholar]
  53. Bernhardt A. Jamil A. Morshed M.T. Oxidative stress and regulation of adipogenic differentiation capacity by sirtuins in adipose stem cells derived from female patients of advancing age. Sci. Rep. 2024 14 1 19885 10.1038/s41598‑024‑70382‑x 39191852
    [Google Scholar]
  54. Gerace E. Scartabelli T. Pellegrini-Giampietro D.E. Landucci E. Tolerance induced by (S)-3,5-Dihydroxyphenylglycine postconditioning is mediated by the PI3K/Akt/GSK3β signalling pathway in an in vitro model of cerebral ischemia. Neuroscience 2020 433 221 229 10.1016/j.neuroscience.2019.12.047 31935492
    [Google Scholar]
  55. Sisalli M.J. Secondo A. Esposito A. Endoplasmic reticulum refilling and mitochondrial calcium extrusion promoted in neurons by NCX1 and NCX3 in ischemic preconditioning are determinant for neuroprotection. Cell Death Differ. 2014 21 7 1142 1149 10.1038/cdd.2014.32 24632945
    [Google Scholar]
  56. Formisano L. Guida N. Mascolo L. Transcriptional and epigenetic regulation of ncx1 and ncx3 in the brain. Cell Calcium 2020 87 102194 10.1016/j.ceca.2020.102194 32172011
    [Google Scholar]
  57. Formisano L. Laudati G. Guida N. HDAC4 and HDAC5 form a complex with DREAM that epigenetically down-regulates NCX3 gene and its pharmacological inhibition reduces neuronal stroke damage. J. Cereb. Blood Flow Metab. 2020 40 10 2081 2097 10.1177/0271678X19884742 31696766
    [Google Scholar]
  58. Pignataro G. Cuomo O. Vinciguerra A. NCX as a key player in the neuroprotection exerted by ischemic preconditioning and postconditioning. Adv. Exp. Med. Biol. 2013 961 223 240 10.1007/978‑1‑4614‑4756‑6_19 23224883
    [Google Scholar]
  59. Pignataro G. Esposito E. Cuomo O. The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J. Cereb. Blood Flow Metab. 2011 31 1 362 370 10.1038/jcbfm.2010.100 20628398
    [Google Scholar]
  60. Wei D. Xiong X. Zhao H. Tim-3 cell signaling and iNOS are involved in the protective effects of ischemic postconditioning against focal ischemia in rats. Metab. Brain Dis. 2015 30 2 483 490 10.1007/s11011‑014‑9543‑2 24771108
    [Google Scholar]
  61. Driggers C.M. Shyng S.L. Mechanistic insights on KATP channel regulation from cryo-EM structures. J. Gen. Physiol. 2023 155 1 202113046 10.1085/jgp.202113046 36441147
    [Google Scholar]
  62. Liu C. Guan T. Lai Y. Shen Y. Association of KATP gene polymorphisms with dyslipidemia and ischemic stroke risks among hypertensive patients in South China. J. Mol. Neurosci. 2021 71 10 2142 2151 10.1007/s12031‑020‑01761‑y 33400071
    [Google Scholar]
  63. Zhao C. Fu X. Yang Z. Zhang Q. Zhao Y. ATP-sensitive potassium channel opener, Nicorandil, inhibits NF-κB/AIM2/GSDMD pathway activation to protect against neuroinflammation in ischemic stroke. Neurochem. Int. 2024 179 105810 10.1016/j.neuint.2024.105810 39069080
    [Google Scholar]
  64. Zhao Y. Yang Z. He Y. Sun R. Yuan H. The KATP channel opener, nicorandil, ameliorates brain damage by modulating synaptogenesis after ischemic stroke. PLoS One 2021 16 1 0246019 10.1371/journal.pone.0246019 33497397
    [Google Scholar]
  65. Fu J. Mu G. Liu X. Ou C. Zhao J. Ischemic postconditioning reduces spinal cord ischemia-reperfusion injury through ATP-sensitive potassium channel. Spinal Cord 2022 60 4 326 331 10.1038/s41393‑021‑00714‑5 34616009
    [Google Scholar]
  66. Li J. Zhou W. Chen W. Wang H. Zhang Y. Yu T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post conditioning. Mol. Med. Rep. 2020 21 3 1527 1536 10.3892/mmr.2020.10966 32016463
    [Google Scholar]
  67. Xu Y. Li K. Zhao Y. Zhou L. Liu Y. Zhao J. Role of Ferroptosis in Stroke. Cell. Mol. Neurobiol. 2023 43 1 205 222 10.1007/s10571‑022‑01196‑6 35102454
    [Google Scholar]
  68. Yang K. Zeng L. Yuan X. The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active components. Biomed. Pharmacother. 2022 154 113611 10.1016/j.biopha.2022.113611 36081288
    [Google Scholar]
  69. Park M.W. Cha H.W. Kim J. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021 41 101947 10.1016/j.redox.2021.101947 33774476
    [Google Scholar]
  70. Vermot A. Petit-Härtlein I. Smith S.M.E. Fieschi F. NADPH Oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants 2021 10 6 890 10.3390/antiox10060890 34205998
    [Google Scholar]
  71. Li G. Ye C. Zhu Y. Oxidative injury in ischemic stroke: A focus on NADPH oxidase 4. Oxid. Med. Cell. Longev. 2022 2022 1 1148874 10.1155/2022/1148874 35154560
    [Google Scholar]
  72. Boonpraman N. Yoon S. Kim C.Y. Moon J.S. Yi S.S. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson’s disease. Redox Biol. 2023 62 102698 10.1016/j.redox.2023.102698 37058998
    [Google Scholar]
  73. Gola L. Bierhansl L. Csatári J. NOX4-derived ROS are neuroprotective by balancing intracellular calcium stores. Cell. Mol. Life Sci. 2023 80 5 127 10.1007/s00018‑023‑04758‑z 37081190
    [Google Scholar]
  74. Qu Y. Sun Y. Yang Z. Ding C. Calcium ions signaling: Targets for attack and utilization by viruses. Front. Microbiol. 2022 13 889374 10.3389/fmicb.2022.889374 35859744
    [Google Scholar]
  75. Wang J. Liu Y. Shen H. Li H. Wang Z. Chen G. Nox2 and Nox4 participate in ROS-induced neuronal apoptosis and brain injury during ischemia-reperfusion in rats. Acta Neurochir. Suppl. 2020 127 47 54 10.1007/978‑3‑030‑04615‑6_8 31407062
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026416419250930064544
Loading
/content/journals/cnr/10.2174/0115672026416419250930064544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test