Skip to content
2000
Volume 10, Issue 4
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Nanomaterials for medication delivery have attracted interest owing to their potential for on-target delivery to infected areas while sparing healthy tissue. The aim of the current review was to explore the factors that make niosomes a superior drug delivery system compared to other methods. The study was conducted using the databases such as PubMed, Elsevier, Springer and others in order to set up the required research articles based on the keyword as niosomes. The articles that were relevant to the topic and in English were included in the study. Niosomes differ from liposomes because they are non-ionic spherical surfactants with advantages such as they are less poisonous, less prohibitive to access, non–toxic and comparatively much more stable. Niosomes range from 20-1000 nm; however, they can be classified as nanoparticles or/and nanostructures. Another property attributed to niosomes is their ability to entrap and release both polar and non-polar active compounds with equal effectiveness. For a drug to work, it needs to reach the right place in the body and attach to its target. This allows the drug to have its intended effect. Niosomes can best be described as a potential drug carrier system because well-formulated niosomes can target drugs to specific locations of the body without much harm. This approach minimises the effects that may arise from the drug interacting with other sites or getting into the systemic circulation in the wrong manner. Hence, there is hope for the future advancement in drug delivery systems using niosomes, distinguishing it from conventional techniques. The potential to encapsulate and deliver hydrophilic as well as lipophilic drugs and the capacity of target delivery make them suitable for a number of therapeutic uses. Therefore, with advancement in the research, more extensive applications of niosomes can be visualized in the formulation of advanced drug delivery systems with lesser side effects.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615345408241220062944
2024-12-31
2026-01-02
Loading full text...

Full text loading...

References

  1. AparajayP DevA Functionalized niosomes as a smart delivery device in cancer and fungal infection.Eur. J. Pharm. Sci.202216810605210.1016/j.ejps.2021.106052
    [Google Scholar]
  2. BachH. LealL.A.C. Use of niosomes for the treatment of intracellular pathogens infecting the lungs.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023154e189110.1002/wnan.189137032602
    [Google Scholar]
  3. BaveloniF.G. RiccioB.V.F. FilippoD.L.D. FernandesM.A. MeneguinA.B. ChorilliM. Nanotechnology-based drug delivery systems as potential for skin application: A review.Curr. Med. Chem.202128163216324810.2174/092986732766620083112565632867631
    [Google Scholar]
  4. BöttgerR. PauliG. ChaoP.H. FayezA.N. HohenwarterL. LiS.D. Lipid-based nanoparticle technologies for liver targeting.Adv. Drug Deliv. Rev.2020154-1557910110.1016/j.addr.2020.06.01732574575
    [Google Scholar]
  5. ChenJ. YeZ. HuangC. QiuM. SongD. LiY. XuQ. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response.Proc. Natl. Acad. Sci.202211934e220784111910.1073/pnas.220784111935969778
    [Google Scholar]
  6. DhamoonR.K. PopliH. GuptaM. Novel drug delivery strategies for the treatment of onychomycosis.Pharm. Nanotechnol.201971243810.2174/221173850766619022810403131092174
    [Google Scholar]
  7. DilliardS.A. ChengQ. SiegwartD.J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles.Proc. Natl. Acad. Sci.202111852e210925611810.1073/pnas.210925611834933999
    [Google Scholar]
  8. DuQ. ChenL. DingX. CuiB. ChenH. GaoF. WangY. CuiH. ZengZ. Development of emamectin benzoate-loaded liposome nano-vesicles with thermo-responsive behavior for intelligent pest control.J. Mater. Chem. B Mater. Biol. Med.202210479896990510.1039/D2TB02080G36448451
    [Google Scholar]
  9. Ergi̇nA.D. OltuluÇ. TürkerN.P. Demi̇rbolatG.M. In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: Fabrication, characterization and cell culture studies.Turk. J. Med. Sci.202353487288210.55730/1300‑0144.565138031943
    [Google Scholar]
  10. EygerisY. GuptaM. KimJ. SahayG. Chemistry of lipid nanoparticles for RNA delivery.Acc. Chem. Res.202255121210.1021/acs.accounts.1c0054434850635
    [Google Scholar]
  11. FanY. MarioliM. ZhangK. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery.J. Pharm. Biomed. Anal.202119211364210.1016/j.jpba.2020.11364233011580
    [Google Scholar]
  12. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities.Nanomedicine20191419312610.2217/nnm‑2018‑012030451076
    [Google Scholar]
  13. FayedN.D. EssaE.A. MaghrabyE.G.M. Menthol augmented niosomes for enhanced intestinal absorption of lopinavir.Pharm. Dev. Technol.202227995696410.1080/10837450.2022.213619536227222
    [Google Scholar]
  14. GauravI. ThakurA. IyaswamyA. WangX. ChenX. YangZ. Factors affecting extracellular vesicles based drug delivery systems.Molecules2021266154410.3390/molecules2606154433799765
    [Google Scholar]
  15. GebreM.S. BritoL.A. TostanoskiL.H. EdwardsD.K. CarfiA. BarouchD.H. Novel approaches for vaccine development.Cell202118461589160310.1016/j.cell.2021.02.03033740454
    [Google Scholar]
  16. GoteV. SikderS. SicotteJ. PalD. Ocular drug delivery: Present innovations and future challenges.J. Pharmacol. Exp. Ther.2019370360262410.1124/jpet.119.25693331072813
    [Google Scholar]
  17. GuimarãesD. PauloC.A. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  18. HardwickJ. TaylorJ. MehtaM. SatijaS. PaudelK.R. HansbroP.M. ChellappanD.K. BebawyM. DuaK. Targeting cancer using curcumin encapsulated vesicular drug delivery systems.Curr. Pharm. Des.202127121410.2174/18734286MTA4dNTgg232723255
    [Google Scholar]
  19. JouzdaniA.F. GanjiradZ. FirozianF. AslS.S. RanjbarA. Protective effects of N-acetylcysteine niosome nanoparticles on paraquatinduced nephrotoxicity in male rats.Pharm. Nanotechnol.202210213714510.2174/221173851066622021410203435156589
    [Google Scholar]
  20. KashyapK. ShuklaR. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges.Curr. Drug Deliv.2019161088790110.2174/156720181666619102912274031660815
    [Google Scholar]
  21. KheilnezhadB. HadjizadehA. Factors affecting the penetration of niosome into the skin, their laboratory measurements and dependency to the niosome composition: A review.Curr. Drug Deliv.202118555556910.2174/156720181799920082016143832842940
    [Google Scholar]
  22. GebologluK.I OncelSS Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake.J. Control. Rel.2022347533543
    [Google Scholar]
  23. LiM. DuC. GuoN. TengY. MengX. SunH. LiS. YuP. GalonsH. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.00730640028
    [Google Scholar]
  24. LiM. LiY. LiS. JiaL. WangH. LiM. DengJ. ZhuA. MaL. LiW. YuP. ZhuT. The nano delivery systems and applications of mRNA.Eur. J. Med. Chem.202222711391010.1016/j.ejmech.2021.11391034689071
    [Google Scholar]
  25. LiuJ. WuZ. LiuY. ZhanZ. YangL. WangC. JiangQ. RanH. LiP. WangZ. ROS-responsive liposomes as an inhaled drug delivery nanoplatform for idiopathic pulmonary fibrosis treatment via Nrf2 signaling.J. Nanobiotechnology202220121310.1186/s12951‑022‑01435‑435524280
    [Google Scholar]
  26. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  27. LoughreyD. DahlmanJ.E. Non-liver mRNA delivery.Acc. Chem. Res.2022551132310.1021/acs.accounts.1c0060134859663
    [Google Scholar]
  28. ŁukawskiM. DałekP. BorowikT. ForyśA. LangnerM. WitkiewiczW. PrzybyłoM. New oral liposomal vitamin C formulation: Properties and bioavailability.J. Liposome Res.202030322723410.1080/08982104.2019.163064231264495
    [Google Scholar]
  29. MahantS. SharmaA.K. GandhiH. WadhwaR. DuaK. KapoorD.N. Emerging trends and potential prospects in vaginal drug delivery.Curr. Drug Deliv.202320673075110.2174/156720181966622041313124335422213
    [Google Scholar]
  30. MoghtaderiM. SedaghatniaK. BourbourM. FatemizadehM. MoghaddamS.Z. HejabiF. HeidariF. QuaziS. FarF.B. Niosomes: A novel targeted drug delivery system for cancer.Med. Oncol.2022391224010.1007/s12032‑022‑01836‑336175809
    [Google Scholar]
  31. MohanN. ChakrabartiA. NazmN. MehtaR. EdwardD.P. Newer advances in medical management of glaucoma.Indian J. Ophthalmol.20227061920193010.4103/ijo.IJO_2239_2135647957
    [Google Scholar]
  32. MokdadR. AouabedA. BallV. YoucefS.F.F. NasrallahN. HeurtaultB. HadjSadokA. Formulation and rheological evaluation of liposomes-loaded carbopol hydrogels based on thermal waters.Drug Dev. Ind. Pharm.2022481163564510.1080/03639045.2022.215204436420770
    [Google Scholar]
  33. NaseroleslamiM. NiriN.M. AkbarzadeI. SharifiM. AboutalebN. Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury.Drug Deliv. Transl. Res.20221261423143210.1007/s13346‑021‑01019‑z34165730
    [Google Scholar]
  34. PandeyR. BhairamM. ShuklaS.S. GidwaniB. Colloidal and vesicular delivery system for herbal bioactive constituents.Daru202129241543810.1007/s40199‑021‑00403‑x34327650
    [Google Scholar]
  35. ParkH OtteA ParkK Evolution of drug delivery systems: From 1950 to 2020 and beyond.J. Control. Rel.20223425365
    [Google Scholar]
  36. PatelD. ChatterjeeB. Identifying underlying issues related to the inactive excipients of transfersomes based drug delivery system.Curr. Pharm. Des.202127797198010.2174/138161282666620101614435433069192
    [Google Scholar]
  37. WitikaB.A. BasseyK.E. DemanaP.H. NoundouS.X. PokaM.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications.Int. J. Mol. Sci.20222317966810.3390/ijms2317966836077066
    [Google Scholar]
  38. PhataleV VaipheiKK JhaS PatilD AgrawalM AlexanderA Overcoming skin barriers through advanced transdermal drug delivery approaches.J. Control. Rel.202235136138010.1016/j.jconrel.2022.09.025
    [Google Scholar]
  39. QamarZ. QizilbashF.F. IqubalM.K. AliA. NarangJ.K. AliJ. BabootaS. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective.Recent Pat. Drug Deliv. Formul.202013424625410.2174/187221131466619122411521131884933
    [Google Scholar]
  40. QiuM. TangY. ChenJ. MuriphR. YeZ. HuangC. EvansJ. HenskeE.P. XuQ. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis.Proc. Natl. Acad. Sci.20221198e211627111910.1073/pnas.211627111935173043
    [Google Scholar]
  41. QuF. GengR. LiuY. ZhuJ. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment.Theranostics20221273372340610.7150/thno.6999935547773
    [Google Scholar]
  42. RaguramA. BanskotaS. LiuD.R. Therapeutic in vivo delivery of gene editing agents.Cell2022185152806282710.1016/j.cell.2022.03.04535798006
    [Google Scholar]
  43. RenY. NieL. ZhuS. ZhangX. Nanovesicles-mediated drug delivery for oral bioavailability enhancement.Int. J. Nanomedicine2022174861487710.2147/IJN.S38219236262189
    [Google Scholar]
  44. SainiH. RapoluY. RazdanK. Nirmala SinhaV.R. Spanlastics: A novel elastic drug delivery system with potential applications via multifarious routes of administration.J. Drug Target.20233110999101210.1080/1061186X.2023.227480537926975
    [Google Scholar]
  45. SaleemZ. RehmanK. AkashH.M.S. Role of drug delivery system in improving the bioavailability of resveratrol.Curr. Pharm. Des.202228201632164210.2174/138161282866622070511351435792129
    [Google Scholar]
  46. ShahS. DhawanV. HolmR. NagarsenkerM.S. PerrieY. Liposomes: Advancements and innovation in the manufacturing process.Adv. Drug Deliv. Rev.2020154-15510212210.1016/j.addr.2020.07.00232650041
    [Google Scholar]
  47. ZhaoM. StratenV.D. BroekmanM.L.D. PréatV. SchiffelersR.M. Nanocarrier-based drug combination therapy for glioblastoma.Theranostics20201031355137210.7150/thno.3814731938069
    [Google Scholar]
  48. ZhangD. ShahP.K. CulverH.R. DavidS.N. StansburyJ.W. YinX. BowmanC.N. Photo-responsive liposomes composed of spiropyran-containing triazole-phosphatidylcholine: Investigation of merocyanine-stacking effects on liposome–fiber assembly-transition.Soft Matter201915183740375010.1039/C8SM02181C31042253
    [Google Scholar]
  49. SharmaP. MehtaM. DhanjalD.S. KaurS. GuptaG. SinghH. ThangaveluL. RajeshkumarS. TambuwalaM. BakshiH.A. ChellappanD.K. DuaK. SatijaS. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer.Chem. Biol. Interact.201930910872010.1016/j.cbi.2019.06.03331226287
    [Google Scholar]
  50. ZhaoX. ZhaoR. NieG. Nanocarriers based on bacterial membrane materials for cancer vaccine delivery.Nat. Protoc.202217102240227410.1038/s41596‑022‑00713‑735879454
    [Google Scholar]
  51. ZhuZ. ZhangH. DongX. LinM. YangC. Niosome-assisted delivery of DNA fluorescent probe with optimized strand displacement for intracellular MicroRNA21 imaging.Biosensors202212855710.3390/bios1208055735892454
    [Google Scholar]
  52. SuX. ZhangX. LiuW. YangX. AnN. YangF. SunJ. XingY. ShangH. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy.Semin. Cancer Biol.202286Pt 292994210.1016/j.semcancer.2021.08.00334375726
    [Google Scholar]
  53. TenchovR. SassoJ.M. WangX. LiawW.S. ChenC.A. ZhouQ.A. Exosomes─nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics.ACS Nano20221611178021784610.1021/acsnano.2c0877436354238
    [Google Scholar]
  54. WangC. ZhangY. DongY. Lipid nanoparticle–mRNA formulations for therapeutic applications.Acc. Chem. Res.202154234283429310.1021/acs.accounts.1c0055034793124
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615345408241220062944
Loading
/content/journals/cnm/10.2174/0124054615345408241220062944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test